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" Increasing the reaction rate promotes instability around an interface delivering nano-catalysts.
" Increasing the nano-catalysts deposition rate stabilizes the displacement front.
" Accumulation of nano-catalysts behind the front can destabilize the reactive front.
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The application of nanoparticles as a catalyst in porous media has recently been increased and is
generally relevant to applications that include in situ heavy oil upgrading and removal of reactive and
non-reactive pollutants in groundwater. The objective of this paper is investigation of the effects of reac-
tive nano-catalysts on viscous fingering instability. In order to understand the behaviour of frontal insta-
bilities during transport of reactive nanoparticles, the basic equations of conservation of mass and
momentum are linearized and solved numerically. The analysis reveals that increasing the reaction rate
promotes the viscous fingering instability around an interface delivering nano-catalysts, while increasing
the nano-catalysts deposition rate usually stabilizes the displacement front. It is also shown that accumu-
lation of nano-catalysts behind the front can destabilize the reactive front. The effects of the interface
sharpness, nanoparticles diffusion coefficient, permeability of porous media, and viscosity ratios of differ-
ent phases are also discussed.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction Major characteristics of nanoparticles that determine the
The transport of nanoparticles in porous media has recently
garnered attention in many studies [1–4]. Despite their minuscule
state, nanoparticles may hold the potential to cost-effectively
address some of the challenges of in situ heavy oil and bitumen
upgrading and also site remediation. Two factors contribute to
nanoparticles’ capabilities as an extremely versatile tool. The first
is their small particle sizes (1–100 nm). Nanoparticles can be effec-
tively transported in porous media by the flow either by injection
or by gravity. Nanoparticles can also remain as a suspension for
extended periods of time to establish an in situ treatment zone.

Equally important, they provide enormous flexibility for both
in situ and ex situ applications. For example, nanoparticles are eas-
ily deployed in slurry bioreactors for treatment of contaminated
soils, sediments and solid wastes. The technology holds great
promise for mobilizing heavy oil and bitumen, which is currently
a big challenge in the oil industry.
ll rights reserved.
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applicability of nano-materials in porous media are their mobility
and reactivity. In fact, the higher mobility and reactivity of the
nanoparticles provide greater potential for exposure, as nano-
materials disperse over greater distances and promote their effec-
tive persistence in the environment.

The problem of reaction in porous media using nano-catalysts
has recently been the subject of many studies in three main cate-
gories, including transport optimization [1,5,6], particle deposition
and aggregation [7–10], and testing of different nano-materials as
catalysts [11]. Although extensive experimental works have been
conducted, there are still only a few analytical and numerical
studies of such systems [12].

One of the major challenges in modeling these systems is
finding appropriate correlations to predict deposition kinetics of
nanoparticles in porous media and also the change of permeability
and porosity. One phenomenon that may reduce nanoparticles’
exposure is a tendency to attach to the surface (deposition), as well
as to each other (aggregation). The deposition kinetics of nano and
micro scale particles has already been reviewed by many authors.
A number of predictive models were developed essentially by
following the filtration equations proposed by Iwasaki [13], and a
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significant advancement in the theoretical understanding of the
process was achieved by Payatakes et al. [14] and Rajagopalan
and Kim [15], who imparted a new theoretical insight to the empir-
ical correlations developed in the past.

As a pioneering work, Spielman and Friedlander [16] presented
a theoretical analysis to describe the deposition of Brownian parti-
cles that interact with collectors through an attractive–repulsive
potential. They showed that, when the interactions are confined
sufficiently near the collector surface, the process is equivalent to
ordinary convection and diffusion in the bulk with a first-order
surface reaction at the collector. Gruesbeck and Collins [17] also
presented a simple model to predict entrainment and deposition
of naturally occurring fine particles in porous media. The central
concept of the theory was representation of both particle and pore
size distributions by partitioning the porous medium at any cross
section into parallel plugging and non-plugging pathways. Their
simple model was shown to be adequate, as the validity was tested
with experimental data.

Sharma and Yortsos [18] formulated a mathematical model for
the transport of stable particulate suspensions in porous media,
where a first-order kinetics model was presented for both release
and deposition mechanisms of fine particles in the porous medium.
Several other theoretical models for transport of the flow of parti-
cles with Brownian motion have been established and validated
experimentally by many authors [19–21].

All of the mentioned parameters, such as deposition, aggrega-
tion, particle diffusion coefficient, and viscosity difference between
phase and nanoparticle concentration, can have significant impact
on the stability of the front when nanoparticles are used as nano-
catalysts. Many studies have addressed the reactive and non-
reactive front instability due to adverse viscosity in porous media
both numerically and experimentally. As several authors have re-
ported [22–25] when chemical reactions come into play, different
fingering instability mechanisms can be expected. However, a clear
understanding of how the addition of a nano-catalyst to the flow
system and the physical properties of the nanoparticles can affect
the stability has not yet been studied.

Among the first experimental studies that attempted to under-
stand this fingering instability is the pioneering work of Hill [26].
Later studies by Saffman and Taylor [27] involved experimental
analyses and physical explanations of the growth of the finger
instability. Numerous subsequent studies analyzed the effects of
surface tension [28], non-Newtonian rheological behavior of the
fluids [29], transverse gravity fields [30], adsorption on a porous
matrix [31], and a cell gap [32].

There has been equally rich activity dealing with the numerical
and mathematical modeling of this fingering instability. Efforts in
this field date back to at least the work of Peaceman and Rachford
[33], who numerically modeled the nonlinear development of the
flow for a rectilinear miscible displacement. Subsequent studies
allowed for examination of the role of many factors, such as disper-
sion [34,35], viscosity ratio [36], density and viscosity distribution
[37], gravity [38], effect of Brownian motion of sedimenting
suspension [39], carbon dioxide (CO2) sequestration [40–43], and
reactive–dispersive behavior [35,44,45].

One of the difficulties that may be found in the use of nano-cat-
alysts in porous media is the front stability. The stability of the
front at the injection line can play an important role for the
efficiency of the in situ process. In some processes, such as the con-
vective mixing of CO2 in deep saline aquifers [43], the unstable
front is usually favorable; whereas, it is unfavorable in most
environmental and oil recovery relevant applications. There is still
a lack of understanding on how the addition of nanoparticles into
the carrier phase may affect the front stability.

In a recent study we have studied the effect of nonreactive
nanoparticles on dynamics of miscible flows [12]. In this work,
we extend our previous study to reactive nanoparticles and ad-
dress how the viscous fingering instability of a front may be af-
fected by the addition of nano-catalysts into the flow system
right behind the injection line. The effects of the nanoparticle dif-
fusion coefficient, deposition rate, reaction rate, viscosity ratios
of displaced and displacing fluids, and permeability change are dis-
cussed. Readers should note that the current work is different from
classic viscous fingering works [22,23,34–36], where an interface is
considered in the middle of low and high viscous fluids, the do-
main of which is extended to infinity from both side, x 2 [�1,1].
In contrast to previous viscous fingering studies, in the current
study, the interface is at the injection line and the domain is finite,
x 2 [0,Pe]. This makes the problem different from both physics and
mathematical points of view.

The other difference between this work and others on reactive
flow in porous media is that this paper is an attempt to understand
the role of nano-catalysts on the fingering instability of miscible
flows. Particles are considered to play the role of catalysts and to
expedite the chemical reaction.
2. Mathematical model

We consider a horizontal displacement involving a Newtonian
incompressible fluid in a homogeneous porous medium. A sche-
matic of the flow geometry is shown in Fig. 1. The porous medium
is initially saturated with pseudo-component b, which is assumed
to undergo a cracking reaction. The nano-catalyst solution is in-
jected at the injection line, shown by the value of zero on the x-axis
in Fig. 1. This geometry and position of interface makes this prob-
lem different from classic works of viscous fingering [37].

The reaction can take place using nano-catalyst particles (com-
ponents c) in the displacing or carrier fluid. The displacing fluid is a
pseudo-component called component a. It is usually expected that
several components are produced when the cracking reaction takes
place as shown in:

bþ c ! a1 þ a2 þ � � � þ an þ c ð1Þ

In order to simplify the problem, we consider all the products
(a1,. . .an) as a pseudo-component, a. The pseudo component is con-
sidered as a fluid with averaged physical properties of all produced
components. The product of the reaction is also component a and is
assumed to have a high concentration behind the front and can be
considered as the displacing fluid. One representative example can
be the injection of a less viscous hydrocarbon as a displacing fluid
delivering nanoparticle catalysts into a heavy oil reservoir. The
heavy oil undergoes the cracking reaction and produces less vis-
cous hydrocarbon. In this case, as given by Levenspiel [46] for
homogeneous catalyzed reactions, the equation is simply:

bþ c ! aþ c ð2Þ

The nano-catalysts are usually injected into the reservoirs or
subsurface in very low concentrations and are diluted solutions
[7,12]. This is the reason that we may assume that the catalyst par-
ticles that are nano sized have Brownian motion in the medium.
The carrier phase, including the nano-catalysts, with a viscosity
of l0 initially displaces the original fluid with a viscosity of l1.
The system is modeled using Darcy’s law, the continuity equation,
and equations of convection–diffusion–reaction for components a
and b. Assuming a constant porosity, the equation of motion and
governing equations for components a and b are shown as follows:

u ¼ � K
ul
rp ð3Þ

r � u ¼ 0 ð4Þ
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Fig. 1. Schematic of nano-reactive front displacement in porous media.
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@ca

@t
þ u � rca ¼ Dar2ca þ krcccb ð5Þ

@cb

@t
þ u � rcb ¼ Dbr2cb � krcccb ð6Þ

where u(u,v), p, c, l and K represent the two-dimensional intersti-
tial velocity vectors, pressure, component concentration, viscosity
and medium permeability, respectively. In the above set of equa-
tions, Da, Db, and kr represent the diffusion coefficients of compo-
nents a and b and the reaction rate constant for the reaction,
respectively.

The governing equation for the concentration distribution of
Brownian particles over a surface in the presence of interaction
forces is [47,16]:

@cc

@t
þ u � rcc ¼ r � ðDPrcc þmccrUÞ ð7Þ

where cc, is the particle concentration, DP is the nanoparticle diffu-
sion coefficient, m is the particle mobility, and U represents the to-
tal colloidal interaction energy.

There are several relationships presented in the literature for
the nano and micro scale interaction of the particles in a porous
medium (Ri =r � (mccrU)). This interaction usually results in the
deposition and release of particles to or from the medium
[17,18,48]. Some researchers relate the particle deposition and re-
lease to a critical velocity and others to the concentration of the
particles in the medium. We select the formulation presented by
Sharma and Yortsos [18], Chu et al. [49] and Jin et al. [50], where
deposition of the particle is assumed at a constant rate and con-
trolled by a first-order kinetic mechanism:

Ri ¼ �kdepcc ð8Þ

where kdep is positive and represents the deposition rate constant.
The deposition rate constant, kdep, depends on the molecular
interaction and electrostatic forces; and, any change of these forces
is reflected in this constant. It is necessary to mention that there is
no published result regarding deposition of nanoparticles in heavy
oil.

In this study, we assume that the initial concentrations of com-
ponents a and b are equal to ca0 = cb0 and the initial injection veloc-
ity is U0. Viscosity is assumed as a function of the concentrations of
all components (a, b and c), such that l(a0,0,0) = lA and
l(0,a0,0) = lB. The addition of nanoparticle catalysts is also as-
sumed to affect the viscosity. The relationship between viscosity
and concentration can be shown with functions used previously
[22,35,36]. The viscosity of the solution can be even affected by
nanoparticle addition when the particle concentration is enough
large:

l ¼ �leðaacaþabcbþacccÞ=a0 ð9Þ

where aa, ab and ac are log mobility ratios defined at concentration
a0. �l is constant and solvent viscosity, and aa ¼ ln lA=�l

� �
,

ab ¼ ln lB=�l
� �

and ac ¼ ln lC=�l
� �

are logarithmic mobility ratios.
The permeability may also change when nano-catalysts are

deposited in the porous medium. This functionality can be consid-
ered as a nano-catalyst concentration change, such that
K(cc = a0) = Kc and K(cc = 0) = K1. It has been shown [7,21] that the
nanoparticles may aggregate, resulting in deposition in the porous
medium. Indeed, the areas with a higher concentration of nanopar-
ticles may be imposed by a higher rate of deposition, resulting in a
permeability reduction. This may lead us to assuming an arbitrary
formulation, in which the permeability change is higher wherever
the concentration of nanoparticles is higher. Although there is no
solid mathematical relationship between permeability and con-
centration of nanoparticles in the literature, we may assume an
exponential relationship, as given by Civan [51,52]:

K ¼ Kebcc=a0 ð10Þ

where b is a mobility ratio at particle concentration of a0. K is also a
constant. It is necessary to mention that the change of porosity is
assumed to be negligible due to particle deposition.

For the entire study, the system is also studied in a reference
moving at the velocity of the injection line, U0:

u
_
¼ u� U0i ð11Þ

For convenience, the equations are made dimensionless using a
diffusion scale. Thus, we scale all lengths by the diffusion length, Da

/U0, time by the diffusive time, Da=U2
0, viscosity by l0, permeability

by K0, concentration by a0, and velocity by U0. The domain length in
the flow direction is also shown by the Peclet number, U0L/Da, using
the above scaling criteria. By dropping all hats, the equations are
then converted into:

uþ i ¼ � K
ul
rp ð12Þ

r � u ¼ 0 ð13Þ

@ca

@t
þ u � rca ¼ r2ca þ Da � cbcc ð14Þ
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@cb

@t
þ u � rcb ¼ D�br2cb � Da � cbcc ð15Þ

@cc

@t
þ u � rcc ¼ D�Pr2cc � Dadepcc ð16Þ

where Da represents a dimensionless reaction rate constant known
as the Damköhler number; and, D�b and D�P are the dimensionless
displaced fluid and nanoparticles diffusion coefficients, which are
the ratios of the displaced fluid and nanoparticles diffusion coeffi-
cients to the displacing fluid diffusion coefficient. Dadep also stands
for dimensionless rate of nanoparticles deposition. Damköhler, Da,
is Da ¼ Da � kr � a0=U2

0 representing the ratio of reaction rate to the
convection. Dadep is Da � kdep=U2

0 and the same as Da it is represent-
ing the rate of mass transportation by deposition to the convection.
It is necessary to mention that diffusion coefficients of nanoparticle
in both fluids a and b are assumed to be equal as both displacing
and displaced fluids are hydrocarbon and have usually similar phys-
ical properties such as density and diffusion coefficient. It is also
attempted to find nanoparticles which have the same physical
properties. As our study is also a parametric one, we assume diffu-
sion coefficient of one and then analyze how it affects the front
instability when it deviates from one.

In order to conduct a linear stability analysis, small perturba-
tions are introduced into the system at the base state:

cðx; y; tÞ ¼ c0ðx; tÞ þ c0ðx; y; tÞ ð17Þ

pðx; y; tÞ ¼ p0ðx; tÞ þ p0ðx; y; tÞ ð18Þ

uðx; y; tÞ ¼ u0 þ u0ðx; y; tÞ ð19Þ

vðx; y; tÞ ¼ v0 þ v 0ðx; y; tÞ ð20Þ

lðx; y; tÞ ¼ l0ðx; tÞ þ l0ðx; y; tÞ ð21Þ

Kðx; y; tÞ ¼ K0ðx; tÞ þ K 0ðx; y; tÞ ð22Þ

where the primed terms represent small perturbations from the
base state. In the moving reference frame u0 and v0 are equal to
zero.

First, a solution is sought for the base state by substituting Eqs.
(17)–(22) into Eqs. (12)–(16). The resulting equations are:
@ca0

@t
¼ @

2ca0

@x2 þ Da � cc0cb0 ð23Þ

@cb0

@t
¼ D�b

@2cb0

@x2 � Da � cc0cb0 ð24Þ

@cc0

@t
¼ D�P

@2cc0

@x2 � Dadep � cc0 ð25Þ

The initial and boundary conditions for the above equations
are:

caðx;0Þ ¼ ccðx;0Þ ¼ 0; cbðx;0Þ ¼ cb0 ð26Þ

cað�t; tÞ ¼ ca0; cbð�t; tÞ ¼ 0; ccð�t; tÞ ¼ cc0 ð27Þ

caðPe� t; tÞ ¼ ccðPe� t; tÞ ¼ 0; cbðPe� t; tÞ ¼ cb0 ð28Þ

Obviously, only Eq. (25) has an analytical solution; and, two
other Eqs. (23) and (24) must be solved numerically. The solution
for the nano-catalyst base state can be obtained using the separa-
tion of variable method, as given by Kreyszig [53]:
ccðx;tÞ¼
cc0

e
�2
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where An is given by:

An ¼ �
2npcc0

Pe2 1� e
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Fig. 2 illustrates different concentration profiles for fluids a, b
and nanoparticles c. Time t0 represents the corresponding times
of the concentration profile. As shown in the figure, a and c have
descending profiles from the injection line to the downstream
domain, while b has an ascending trend. The Damköhler number
usually slightly affects the concentration profile in this study, as
the amounts of the nano-catalyst concentration are assumed to
be very small. It is clear that the profiles are extended downstream
over time. The porous medium is fully occupied by fluid b when
time is close to zero. In fact, this means that fluid a and nanoparti-
cle c appear only at the left boundary when time is exactly zero.
Consequently, the introduced perturbations may be only placed
in fluid b

3. Linear stability analysis

3.1. Linearized equations

We examine the linear stability of the flow to determine the
effects of nanoparticle presence in the porous medium on the
stability of reactive fronts. In order to linearize the problem, Eqs.
(17)–(22) are substituted into Eqs. (12)–(16), and the second-order
perturbation terms are eliminated from the system of equations.
Eqs. (14)–(16) can be simplified further to obtain the following
equations:

ðc0aÞt þ u0ðca0Þx ¼ r2c0a þ Daðcc0c0b þ cb0c0cÞ ð31Þ

ðc0bÞt þ u0ðcb0Þx ¼ D�br2c0b � Da cc0c0b þ cb0c0c
� �

ð32Þ

ðc0cÞt þ u0ðcc0Þx ¼ D�Pr2c0c � Dadepc0c ð33Þ

Taking the curl of Darcy’s equation (12) reformulates the equa-
tion to:

r2u0 ¼ K�1
0 ðK

0Þyy � l�1
0 ðl0Þyy þ ðK

�1
0 ðK0Þx � l�1

0 ðl0ÞxÞ
h i

ðu0Þx ð34Þ

As the coefficients of the above equations are independent of
the y-direction, we may use the Fourier decomposition modes in
that direction. We also implement the quasi steady-state approxi-
mation (QSSA) used by Tan and Homsy [36]. In the above formula-
tion, the base state is a function of both time (t) and space (x). In
order to use the standard linear stability analysis approach, the
time dependence of the base state is eliminated using the QSSA.
Using this approximation, one assumes that the small perturba-
tions’ change in time is much faster than that of the base state,
allowing for the treatment of the base state as if it were steady
by freezing it at one time:

u0; c0a; c
0
b; c

0
c

� �
¼ n;wa;wb;wcð ÞðxÞeikyþxðt0Þt ð35Þ
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Fig. 2. Concentration profiles for a, b, c at different times, Da = 0, Pe = 1500, D�P ¼ 1,
Dadep = 0.01.
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where k and x are the wavenumber and growth rate of the pertur-
bations, respectively; and time t0 is also frozen time. Substituting
Eq. (35) into Eqs. (31)–(34), one can obtain:

ðwaÞxx � k2 þx
� �

wa ¼ nðca0Þx � Da cb0wc þ cc0wbð Þ ð36Þ

D�bðwbÞxx � k2D�b þxþ Da � cc0

� �
wb ¼ nðcb0Þx þ Da � cb0wc ð37Þ

D�PðwcÞxx � ðk
2D�P þ Dadep þxÞwc ¼ nðcc0Þx ð38Þ

ðnÞxx � bðcc0Þx � aaðca0Þx � abðcb0Þx � acðcc0Þx
� �

nx � k2n

¼ aak2wa þ abk2wb þ ack2 � bk2
� �

wc ð39Þ
The boundary conditions that are required to solve the system
of equations are:

wa ¼ wb ¼ wc ¼ n ¼ 0 at x ¼ �t and x ¼ Pe� t ð40Þ

Eq. (40) implies that the boundaries remain unperturbed. The above
system of Eqs. (36)–(40) is an eigenvalue problem where we may
find the growth rate, x, for each wavenumber, k, using a numerical
approach. A finite difference method is used to solve the eigenvalue
problem consisting of a system of four coupled ordinary differential
equations. The finite difference technique has advantage over other
methods, since by using this method the complete spectrum of the
eigenvalues can be obtained. The spatial derivatives are approxi-
mated using second-order central difference formula. A non-
uniform geometric mesh is used which is very fine around the
interface where the concentration gradients are large, and spacing
increases geometrically with the distance from the origin. Eigen-
functions are discretized using this technique, and the computation
domain is chosen wide enough to capture all the eigen-solutions. A
standard method is used to solve for the eigenvalues and eigenvec-
tors of the resulting problem. In this approach reduces the general
real matrix into an upper Hessenberg form in order to solve for
the eigenvalues. In order to check the validity of the results, the
code was tested for a domain size of 100, 200 and 300. The results
were reported if the convergence was achieved quickly and the ob-
tained results were the same for all number of meshes with the
appropriate geometric spacing. The discrete eigenvalues are insen-
sitive to the width of the domain, if the domain is chosen large en-
ough to accommodate the decaying eigenfunctions. From the set of
discrete eigenvalues obtained, we report only the largest one, since
for given values of the parameters it dominates all other modes.
4. Results and discussion

In this section, the dispersion curves for different scenarios are
plotted and examined. It is necessary to mention that, in all cases,
the logarithmic viscosity ratios (aa = �3, ab = 0, ac = 0), logarithmic
permeability ratio (b = �2), frozen time (t0 = 2), nanoparticle diffu-
sion coefficient D�P ¼ 1

� �
, fluid diffusion coefficient D�b ¼ 1

� �
, reac-

tion rates (Da = 2, Da = 10), and nano-catalyst concentrations
(cc0 = 0.01, cc0 = 0.002) are all considered to be constant, unless
the sensitivity of these parameters is being studied.

In our examination, the variation of growth rates with wave-
numbers is discussed for different nano-catalyst concentrations
and Damköhler numbers. We first discuss a simplified case, for
which the numerical results can be validated. It is necessary to
mention that this parametric study is not universal, as we always
need to assume some parameters are fixed.

4.1. Special case

In order to validate the developed numerical code, some special
cases are studied. First, it is assumed that the nano-catalyst con-
centration in the medium is zero, so that no reaction takes place.
This results in a simple displacement where instability may occur,
due to the viscosity difference between the displacing and the dis-
placed fluids. The time, t0, is assumed to be zero, so that a step
function profile can be found for fluids a and b.

It should be mentioned that the step function solution (t0 = 0) is
different from the classic work of Tan and Homsy [36]. They had
the miscible interface at the middle of geometry and found that
the step function always results in the most unstable growth rate.
However, as we are dealing with an unperturbed boundary layer
problem (see Fig. 2), the flow system could be totally stable. Their
results may be recoverable, if we deal with a perturbed boundary
layer instead. In fact, in the classic works of viscous fingering
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[22,23,35,36], the introduced perturbations are placed in both flu-
ids a and b on the left- and right-hand sides of interface. Using a
jump condition, this could result in an analytical solution.

In our study, however, the step function profile results in a sys-
tem in which perturbations are placed in only fluid b, right after
the injection line. In this case, fluid b is only in contact with fluid
a and nanoparticle c at the boundary. In this scenario, the jump
condition cannot be valid, as the boundary is assumed to be unper-
turbed. In this case, we need only to solve Eqs. (36)–(40) for com-
ponent a. The simplified equations are given by:

ðwaÞxx � ðk
2 þxÞwa ¼ nðca0Þx ð41Þ
ðnÞxx þ aaðca0Þx
� �

nx � k2n ¼ aak2wa ð42Þ

Since the boundary remains unperturbed, as shown in Eq. (40),
the base state solution is a step function when t0 has a very small
value. Consequently, an analytical solution can be obtained for Eq.
(41) when x > 0:

waðxÞ ¼ A1 exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þx

q
x

	 

þ A2 exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þx

q
x

	 

ð43Þ

Implementing the appropriate boundary conditions (40) gives:

A1 1� exp 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þx

q
Pe

	 
	 

¼ 0 ð44Þ

A1 = 0 results in A2 = 0; thus, wc = 0. As the eigenfunctions
should be non-zero, the growth rate can be found easily from Eq.
(44):

x ¼ �k2 ð45Þ

Indeed, the solution reveals that the system is totally stable for
a step function profile of a, b and c. In this scenario, perturbations
are located in a uniform profile of fluid b and are damped, while the
boundary remains unperturbed. Although there is a viscosity dif-
ference between the displacing and displaced fluids, the system re-
mains stable at short times. Consequently, in order to destabilize
the front, a viscosity profile between the fluids has to be estab-
lished as time passes. However, the flow system gradually turns
unstable as t0 increases. In fact, the diffusion of components a
and c from the left boundary into the flow system causes a viscos-
ity profile to be established. Consequently, there is enough driving
force for perturbations to grow.

Fig. 3 compares the analytical solution (Eq. (45)) with numerical
ones for a non-reactive flow system (cc0 = 0). It can be observed
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that the numerical solutions gradually overshadow the analytical
one (the solid thick line), if t0 is short enough.

4.2. Parametric studies

The effects of viscosity difference and different types of non-
catalytic chemical reactions on the fingering instability have been
extensively studied in the past decades [22,23,26,35,36]. These
studies have revealed that increasing the adverse viscosity ratio
or rate of chemical reaction in a miscible displacement mainly
results in a larger maximum growth rate, which means a more
unstable flow system. However, it is still unknown how this hydro-
dynamic instability may be affected when the displacing phase
carries nanoparticles. The addition of nanoparticles to liquids usu-
ally increases the viscosity of a solution [54].

The role of nanoparticle addition and flow of these particles in
porous media on any kind of fingering instability is unknown,
especially when these particles are used as catalysts to drive a
chemical reaction. In this section, an attempt is made to reveal
how the addition of only small amounts of nanoparticles can affect
fingering instability. As the effects of viscosity ratios and general
non-catalytic chemical reaction are well known in the literature
[22], the focus in this study is more on the role of nanoparticles.
The concentration of nanoparticles and its impact on the chemical
reaction, rate of deposition and molecular diffusion coefficient of
these particles are discussed in detail.

It is necessary to mention that the growth or damping of the
perturbations depends on three competing mechanisms of mass
transportation, including hydrodynamic convection, fluid and
nanoparticle diffusion, and reaction chemistry. Perturbations may
grow by one or two of the mechanisms, while damping occurs by
the other one(s). In fact, different scenarios may be found, depend-
ing on the physics of the problem. In what follows, the effects of
different physical parameters are discussed further.

4.2.1. Effect of front sharpness
Hydrodynamic and fingering instability has been known to be

highly affected by the concentration profiles of different compo-
nents in a miscible displacement [22,36]. The profile can usually
be extended downstream by changing the frozen time. As time in-
creases, more amounts of displacing phase a and nano-catalysts c
may diffuse into host fluid b in a porous medium. At the same time,
the reactant and product (b and a) concentration profiles are di-
rectly related to the nano-catalyst concentration profile (see Eqs.
(14)–(16)).

To determine how the sharpness of the front affects the insta-
bility, especially maximum growth rates and cutoff wavenumbers,
dispersion curves are plotted for a series of t0 at two different Dam-
köhler numbers. Fig. 4 reveals that the range of unstable spectrum
wavenumbers is initially shifted to larger values for both reaction
rates (Da = 2 and Da = 10) when t0 increases. Indeed, the boundary
layer turns out to be completely unstable as it becomes more dif-
fusive. Time t0 = 10 seems to be a turning point in both cases
(Da = 2 and Da = 10). Diffusion plays a destabilizing role for times
shorter than 10, while it has a stabilizing role for longer times.

Diffusion and convection, as well as chemical reaction, are the
main mechanisms that are competing here to drive instability. In
fact, diffusion initially helps to establish the viscosity gradient as
the main source of fingering instability; however, viscosity profile
becomes established beyond the injection line. This can be the rea-
son why cutoff wavenumbers are initially moving towards the lar-
ger numbers and diffusion plays a destabilizing role. However, as
diffusion time increases, the concentration field and, in turn, the
viscosity profile becomes relatively more uniform; and, the flow
system is less unstable. The same behavior may be observed when
the nano-catalyst concentration is low (cc0 = 0.002); however, the
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stabilizing effect of diffusion appears at shorter times, in compari-
son with higher concentrations of nano-catalysts. The same expla-
nation is applicable here; and, it is attributed to the establishment
of the viscosity profile, which is the driving force for the fingering
instability here.

More physical illustrations may be presented by the streamline
contours for Da = 10 and a wavenumber equal to 0.2, where the
flow system is unstable for all scenarios. The perturbations and
the base state distribution of all three components play a major
role in the determination of the degree of stability or instability
of a flow system. Here, the streamlines are all normalized between
zero to one. In fact, streamline contours correspond to the area in
which the mixing between low and high viscosity fluids is
effective.

Fig. 5 depicts that mixing is extended more downstream from
the injection line for t0 = 1 than for other cases; whereas, it is more
compact for t0 = 10, which is the most unstable case. Indeed, this
reveals that mixing between low and high viscosity fluids is higher
for short times, which results in a more uniform viscosity profile
along the domain. Consequently, one may expect a less unstable
flow system when t0 is adequately short (t0 = 1) or long
(t0 = 100), in comparison with an average time (t0 = 10). This figure
can also clearly depicts why the flow system at t0 = 1 is less unsta-
ble than at t0 = 100.

4.2.2. Effect of reaction rate
As shown in Eq. (2) and explained by Levenspiel [46], for

homogeneous catalytic reactions, nano-catalysts only affect the
kinetics of the chemical reaction, but their concentration remains
unchanged when the chemical reaction takes place. The concentra-
tion profiles of the reactant (a) and product (b) are slightly affected
by nano-catalysts at different Damköhler numbers, as the nano-
catalyst concentration is assumed to be low.

Basically, the analytical and numerical results describe the base
state concentration profiles; thus, the viscosity profiles are slightly
varied by either the nano-catalyst concentration or the Damköhler
number. In fact, the trend of the base state concentration profile is
mainly controlled by convection and diffusion and not by reaction
chemistry in the current study, as the range of nanoparticle con-
centrations is very low (cc0 < 0.01).

Fig. 6, however, clearly shows that the chemical reaction rate
could dramatically shift the flow system towards more unstable
systems. The figure represents results for different Damköhler
numbers. In most of the scenarios, the flow systems are stable at
small and large enough wavenumbers. Two different nano-cata-
lysts concentrations have been assigned to the curves. In particu-
lar, one may notice how introducing a reaction at the interface
around the injection line can increase the fingering instability of
the front of a non-reactive system. It can be also seen that the dis-
persion curves are significantly shifted to a larger spectrum of
wavenumbers as the nano-catalyst concentration varies.

It should be mentioned that the argument that the flow should
be more stable when the reaction rate increases, as more fluids with
less viscosity are produced, is not valid here. First, the interface re-
mains relatively unchanged. Second, the base state concentration
profile becomes slightly more diffusive when the Damköhler num-
ber increases. In particular, based on our discussion regarding the
effect of t0, one may expect a more unstable system when the
Damköhler number increases. In fact, more fluid of lower viscosity
is transferred from the highly viscous side of the interface to the less



0.0 0.2 0.4 0.6 0.8
-0.05

0.00

0.05

0.10

0.15

0.20

0.0
1.0
5.0
10
25
50

Wave number, k 

0.0 0.1 0.2 0.3 0.4 0.5 0.6

G
ro

w
th

 r
at

e,
 ω

 

-0.05

0.00

0.05

0.10
0.0
1.0 
5.0
10
25
50

Da

Da

(a)

(b)

Wave number, k 

G
ro

w
th

 r
at

e,
 ω
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viscous one; however, the base state profile is shifted towards a
more diffusive pattern. This may, in turn, increase the instability.
As the base state concentration profile change is small, one may look
for a stronger illustration using perturbation effects. Consequently,
the distribution and role of perturbations is the key in elucidating
the trend of maximum growth rate/wavenumber variation at differ-
ent Damköhler numbers. In general, perturbations should describe
how the instability may vary with chemical reactions.

The analyses of Fig. 6 for different concentrations (cc0 = 0.01 and
cc0 = 0.002) reveals that chemistry drives instability. As the effect of
nano-catalyst concentration on the fingering instability aligns with
the chemical reaction rate (Da), a detailed examination of how the
perturbations impact the fingering instability for such a system is
presented in more detail in the next section.

It is shown that increasing t0 or making the interface more dif-
fusive initially has a destabilizing effect, but has a stabilizing effect
later on. More analysis is conducted to reveal how t0 and Damköh-
ler number together may affect the flow system. Fig. 7 depicts the
variation of the most unstable growth rate with time at different
Damköhler numbers for two concentrations (cc0 = 0.01 and
cc0 = 0.002). It can be seen that flow systems with a larger reaction
rate are always more unstable at different times. This supports our
previous discussion that a more intensive chemical reaction always
makes the system more unstable.

As shown in Fig. 7, at all Damköhler numbers, the flow system
initially becomes more unstable as time goes by; however; it be-
comes less unstable after reaching its extrema. The same physical
interpretation as discussed before may be recalled here to justify
how the flow system is initially destabilized and then stabilizes.
Two significant findings should be mentioned here. First, the
instantaneous growth rate variation with time reveals that a flow
system with a higher concentration of nano-catalysts is destabi-
lized at shorter times than a system with a smaller concentration.
Second, the instantaneous growth rates for all Damköhler numbers
are merged into a unique value at very long times. This means that,
when fluids a and b are adequately mixed at long times, chemical
reaction and diffusion are not effective mechanisms in driving the
instability, compared to the viscous forces.

Fig. 8 depicts the onset time of instability at different reaction
rates and nanoparticle concentrations. The flow system begins to
be unstable at longer times as the concentration of nanoparticles
is decreased in a porous medium. The onset time initially descends
sharply with the Damköhler number. It is clear that the onset time
seems independent of the reaction rate at high enough Damköhler
numbers.

4.2.3. Effects of nano-catalyst concentration
Nanoparticles are usually used in low concentrations in porous

media; however, the concentration may increase or decrease
around the front for reasons such as accumulation, deposition or
aggregation. The nano-catalyst concentration may also influence
the reaction speed, which can result in different concentration pro-
files for reactants and products. In fact, this represents the com-
plexity of the nano-catalyst concentration role in porous media.
It has been already shown that a less intensive chemical reaction,
which could even correspond to a reduced concentration of
nano-catalysts, shifts the flow system to smaller cutoff wavenum-
bers and growth rates; however; the trend of dispersion curves re-
main the same.
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We now examine how the nano-catalyst concentration changes
the dispersion curves. The effect of this concentration in the dis-
placing phase on the stability of the front is illustrated in Fig. 9
for two different Damköhler numbers (Da = 2 and Da = 10). As
shown, the flow system is less unstable when the nano-catalysts
concentration is very small (cc0 = 0.001). However, the front can
become more unstable as the nano-catalyst injection concentra-
tion increases, so that the flow system becomes highly unstable
for cc0 = 0.1. Indeed, Fig. 9 shows how the concentration of nano-
particles may affect the hydrodynamic stability of the front.

As previously mentioned, the reason why the faster chemical
reactions originate from either larger Damköhler numbers or high-
er concentrations of nano-catalysts may be sought in the perturba-
tion effects on the instability. Clearly, two main mechanisms are
competing here to drive instability. First, the chemical reaction,
which becomes more intensive by increasing nano-catalysts con-
centration, has already been shown to have a destabilizing impact.

Second, viscous forces are weakened by an increase in nano-
catalyst concentration. In fact, the viscosity of the displacing phase
increases; and, in turn, the viscosity difference between the two
phases decreases. However, one may consider this effect to still
be negligible when the concentration of nano-catalysts is one or
two orders of magnitude smaller than fluids a and b. At the same
time, the logarithmic mobility ratio for nanoparticles is smaller
in comparison with fluids a and b. In fact, Fig. 9 illustrates that
the chemical reaction effects are stronger here and more pro-
nounced on the front instability.

As previously discussed, the instability increase by chemical
reaction may be explained by the key role of perturbation, as the
base state profile varies slightly with an increment in the reaction
rate of the nanoparticle concentration. To elucidate the effects of
the chemical reaction and the nano-catalyst concentration on the
instability, we again plot the contours of normalized streamlines.

Fig. 10 represents the normalized streamlines in two dimen-
sions, where both the nano-catalyst concentration (from top to
the bottom) and the Damköhler number (left to right) are increas-
ing. Basically, these contours represent the fluid circulation right
after the injection line, where less viscous fluid is brought into con-
tact with the higher viscous one and mixing occurs. It is clear that
the contours become wider as either the concentration behind the
injection line or Damköhler number decreases.

At the same time, the center of the vortices is shifted down-
stream. Consequently, the flow circulation covers a wider range
in the domain, leading to the mixing of fluids of less viscosity with
higher ones, when either the nano-catalyst concentration or Dam-
köhler number is small. This, in turn, results in a more stabilized
system.
It can be concluded here that the flow system becomes more
unstable with any change resulting in a faster reaction. In fact,
the flow circulation and vortices and also the center of the vortices
are extended upstream with any change, which makes the reaction
more intensive, by either increasing the Damkohler number or the
nano-catalyst concentration.

For given values of the deposition rate (Dadep = 0.01), frozen
time (t0 = 2) and nanoparticle diffusion coefficient D�P ¼ 1

� �
, the

contours of the maximum growth rates can be determined.
Fig. 11 illustrates the maximum growth rate contours for different
nano-catalyst concentrations and chemical reaction rates. From
Fig. 11 and based on our discussion, one should expect that the
most unstable flow system when both the nano-catalyst concen-
tration and the Damkohler number are large. This also reveals that
variation of the instantaneous growth rate with respect to the
nano-catalyst concentration and Damköhler number is more pro-
nounced when either the concentration or Damköhler number is
small.
4.2.4. Effect of nanoparticle diffusion coefficient
The diffusion coefficient is another physical property of nano-

particles that has a significant role in their applicability in porous
media. The order of magnitude of the diffusion coefficient may
be the same as that of the carrier fluid; however, it may vary
depending on the type of particles. Although there is still a lack
of knowledge in the measurement of the diffusion coefficient of
nanoparticles in gas and liquids, especially in saturated porous
media, there have been recent attempts to measure the coefficient
[55,56].
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One may find that nanoparticle diffusion coefficients can be a
function of different parameters, such as particle size, material
base and temperature. A wide range of diffusion coefficients from
the order of 10�5 to 10�11 m2/s have been reported by Rudyak
et al. [55] and d’Orlyé et al. [56]. Consequently, the nanoparticle
to liquid diffusion coefficients suggest various ratios, depending
on the fluid type – from water to very viscous liquids, such as hea-
vy oil and polymer solutions.

As shown by Einstein [57], the particle size and diffusion coef-
ficient are inversely proportional, so that any variation in the insta-
bility trend with the diffusion coefficient may also be considered as
the effect of the nanoparticle size. The relationship is valid for par-
ticles with Brownian motion, where the diffusion coefficient of the
particles is proportional to the inverse of particle size so that

D�P � d�1
p

� �
. Assuming that Einstein’s relationship is valid here,

one may relate the impact of the nanoparticle diffusion coefficient
on the reactive front stability to the particle size, if small particles
represent a large diffusion coefficient and vice versa.To study
the effect of nanoparticle diffusion coefficients or nanoparticle size
on the stability of reactive fronts, we first consider a special case in
which the nanoparticle diffusion coefficient is zero. The system of
Eqs. (36)–(40) can mathematically have a general solution, where
the particle diffusion coefficient D�P will be approximately zero;
in other words, the only mechanism of mass transportation in
the flow system for the nanoparticles is convection. In this case,
the nano-catalyst base state has a step function distribution in
the domain. This, in turn, further simplifies the nano-catalysts
mass conservation equation (Eq. (38)) to:

�ðDadep þxÞwc ¼ nðcc0Þx ð46Þ

The derivative of the nano-catalyst base is zero everywhere in the
domain. Since the eigenfunctions, wa, wb, wc and n, should have
non-zero values, two possible cases may be considered: either
x = �Dadep or wc = 0, but wa, wb and n may be nonzero. The first case
results in a stable flow system, in which the growth rate is the neg-
ative of the deposition rate constant. In the second case, the set of
Eqs. (36)–(39) can be analyzed.

ðwaÞxx � ðk
2 þxÞwa ¼ nðca0Þx ð47Þ

ðwbÞxx � ðk
2 þxÞwb ¼ nðcb0Þx ð48Þ

ðnÞxx � ½bðcc0Þx � aaðca0Þx � abðcb0Þx�nx � k2n

¼ aak2wa þ abk2wb ð49Þ

When a short t0 is considered, a and b base states can have also
a step function form for a sufficiently small value of t0. Assuming
step function profiles for all three base states suggests a simpler
set of equations than Eqs. (47)–(49). The equations convert to
Eqs. (41) and (42) and have non-zero eigenfunctions of wa, wb,
and n; and, the solution is:

x ¼ �k2 ð50Þ

In fact, this indicates that the flow system, including nano-cat-
alysts, is always stable for a zero nanoparticle diffusion coefficient
at short times, as the growth rate is negative. It can be concluded
that the corresponding growth rate of each wavenumber is a com-
bination of both x = �Dadep and x = �k2 curves.

In order to check the validity, results for different values of par-
ticle diffusion coefficients are now tested numerically. Fig. 12a
clearly depicts the analytical trend, showing the dispersion curves
for Dadep = 0.01 and different nanoparticle diffusion coefficients.
The growth rate for a large particle diffusion coefficient decreases
sharply and the flow system is always stable, however; it con-
verges into a plateau at �0.2 when the nanoparticle diffusion coef-
ficient is becoming zero D�P ¼ 0

� �
, as shown by the solid line in the

figure.
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Fig. 12. Dispersion curves for Da = 2, cc0 = 0.01: (a) different particle diffusion
coefficients and Dadep = 0.2; (b) different deposition rates and D�P ¼ 0.
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Fig. 13. Dispersion curves for different nanoparticle diffusion coefficients at t0 = 2:
(a) cc0 = 0.01, Da = 2; (b) cc0 = 0.002, Da = 2; (c) cc0 = 0.01, Da = 10.
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Further investigation may be performed to check this argument.
Another scenario is considered here, where the nanoparticle diffu-
sion coefficient is zero, but different values are assigned to deposi-
tion rates. Fig. 12b clearly shows that all of the dispersion curves
converge to different plateaus at the negatives of different deposi-
tion rates, and the system is stable in all cases. The growth rate for
small wavenumbers follows the x = �k2 solution, as shown by the
solid line. In fact, when t0 is short enough (i.e. t0 = 0.005), the re-
sults are exactly the combination of both the x = �Dadep and
x = �k2 curves. The flow system is tested for other cases with a
small nanoparticle diffusion coefficient, and all dispersion curves
show the same behavior.

Fig. 13 illustrates the variation of growth rate versus wavenum-
bers for different nanoparticle diffusion coefficients at two differ-
ent reaction rates and concentrations. It is revealed that stability
of the front is dramatically affected by the nanoparticle diffusion
coefficient. There is a non-monotonic trend, such that the flow sys-
tem becomes more unstable as the diffusion coefficient increase,
but becomes less unstable as the diffusion coefficient goes over
one. A diffusion coefficient of one may be considered as the critical
value in all scenarios.

Our arguments explaining the stabilization and destabilization
effects of diffusion may be applied here again. Basically, the
nanoparticles can move further as the diffusion coefficient
increases, resulting in a more diffusive base state. This can be again
attributed to the destabilization and stabilization effects of
diffusion around the time of analysis, where the nanoparticle base
state becomes more diffusive as the nanoparticle diffusion coeffi-
cient, D�P , increases. Indeed, the system is stable when the fronts
are sharp enough; however, diffusion gradually plays a significant
role in making the front more unstable, by expanding the reactive
area.

One should recall that the flow system is stable for a non-reac-
tive flow system with a sharp front (small t0), but the reaction can
turn that system to an unstable one as the Damköhler number in-
creases. The same explanation can again be applied here. Indeed,
the diffusion of nanoparticles can cause the expansion of the reac-
tion zone, which has a destabilizing effect. However, the stabilizing
effect of diffusion can overwhelm the competitive mechanisms and
make the front more stabilized, when the mixing area is shifted
downstream.
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4.2.5. Effect of nano-catalyst deposition
The reactivity and mobility of nano-catalysts are the most sig-

nificant parameters to determine the progress and efficiency of
the reaction. In fact, nano-catalysts with a low mobility can dra-
matically affect the efficiency and even stop the process. In addi-
tion, a low mobility or high deposition rate of the nano-catalysts
may also influence the stability of the front. The nanoparticles
may aggregate and deposit into the medium as the Brownian mo-
tion of the particles and the van der Waals and repulsive forces for
nano scale particles are important.

Fig. 14 indicates the dispersion curves for various nano-catalyst
deposition rates at two different nano-catalyst concentrations and
two Damköhler numbers. This reveals the significance of the nano-
particle deposition, even for a small particle number density in the
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Fig. 14. Dispersion curves for different nano-catalysts deposition rates at t0 = 2: (a)
cc0 = 0. 01, Da = 2; (b) cc0 = 0.002, Da = 2; (c) cc0 = 0.01, Da = 10.
medium, where the flow system leads to more unstable flows as
the rate of nanoparticle deposition increases.

A change in the dispersion curve trends can also be realized as if
the flow system is stable at very small wavenumbers when the
deposition rate is large. However, negative growth rates at small
wavenumbers fade away gradually as the rate of nanoparticle
deposition increases. Basically, the flow system is more unstable
when the mobility of nanoparticles in the pores is higher.

In general, the cutoff wavenumbers and maximum growth rates
are shifted towards a larger spectrum, as the deposition rate de-
creases. This again may be attributed to the deposition effect on
the reaction rate and the nano-catalyst concentration. It has been
already argued how increasing the Damköhler number or increas-
ing the nano-catalyst concentration can affect the stability of the
flow system.

In fact, a higher deposition rate causes a reduced concentration
of the nano-catalysts in the mobile phase, which can result in a
slower reaction. Both the smaller nano-catalyst concentration and
slower reaction have been shown earlier to have a stabilizing effect
on the flow system. Basically, the same discussion can be valid here.

All scenarios show the same trend. However, it seems that the
dispersion curve reaches a limiting mode (Dadep = 1) for a low con-
centration case (Fig. 14b), where the reaction and deposition rate
are in the same order. It can be argued that the concentration of
nano-catalysts is negligible in the medium, and the reaction is very
slow. Consequently, the non-reactive flow system stability analysis
may be recoverable here.

The variation of instantaneous maximum growth rates with time
is shown in Fig. 15, which depicts that a flow system with smaller
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rates of deposition is more unstable at similar times. This may be
considered as a general conclusion, if different Damköhler numbers
and nano-catalyst concentrations do not change the trend. All cases
reach extrema and descend to limiting small values. The examina-
tion reveals that the maximum growth rate keeps its decreasing
trend at very long times, but with a very small slope. Basically, this
trend describes the stabilizing and destabilizing effects of diffusion
and shows that it is not affected by the rate of nanoparticle
deposition.

Fig. 16 illustrates the contours of xmax for different deposition
rates and Damköhler numbers at two different concentrations of
nano-catalysts. The contours shrink to smaller values as the con-
centration of nanoparticles decreases. The figure shows that the
flow system at the highest Damköhler number and the smallest
deposition rate is always more unstable. Indeed, the contours illus-
trate that any factor that results in an increment in the rate of reac-
tion would make the flow system more unstable.
5. Summary and conclusions

Nano-catalytic reactions in porous media have recently been
tested, both experimentally and theoretically, with application in
environmental remediation and heavy oil upgrading. A detailed
linear stability analysis has been conducted to show how the
Brownian motion of the nanoparticles as nano-catalysts in homo-
geneous saturated porous media may affect the stability of a reac-
tive front. Using the quasi-steady state approximation, the
eigenvalue problem has been solved analytically and numerically
to find the corresponding perturbation growth rate of each
wavenumber.

It has been shown that the stability of the system is highly af-
fected by the addition of nanoparticles as nano-catalysts. In partic-
ular, we have found that increasing the reaction rate increases the
front instability by shifting the vortices upstream. The diffusion of
both particles and liquids have been found to have an initial desta-
bilizing effect, but can later have a destabilizing influence. The
nanoparticle diffusion coefficient has been shown to stabilize the
front when its values are very small or large enough; otherwise,
the flow system is unstable. Increasing the nano-catalysts deposi-
tion rate has been also found to have a stabilizing effect. In general,
factors that cause the reaction to be expedited were found to have
a destabilizing impact on the front. The results have revealed that
increasing nano-catalysts behind the front destabilizes the front as
the reaction rate increases.

It is necessary to mention that all above analyses have been
based on an isothermal system. However, the results may be chan-
ged if the reaction release or absorb heat. For instance, In this case
of heat generation, if reduction in viscosity of displaced fluid as a
result of temperature increase is larger than displacing fluid, then
we might see a stabilizing effect due to heat generation at the
interface. However, if reduction in viscosity of the displaced fluid
by heat generation is less in displaced fluid, then the heat genera-
tion might have destabilizing effects.

At this stage, the present work should guide future experimen-
tal and numerical investigations of nano-fluidics in porous media
by giving stability trends in the controlling parameters space. Fur-
ther work in this direction is in progress.
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