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Abstract. This paper deals with the development and analysis of a fully discrete finite ele-
ment method for a nonlinear differential system for describing an air-water system in groundwater
hydrology. The nonlinear system is written in a fractional flow formulation, i.e., in terms of a satu-
ration and a global pressure. The saturation equation is approximated by a finite element method,
while the pressure equation is treated by a mixed finite element method. The analysis is carried
out first for the case where the capillary diffusion coefficient is assumed to be uniformly positive,
and is then extended to a degenerate case where the diffusion coefficient can be zero. It is shown
that error estimates of optimal order in the L2-norm and almost optimal order in the L∞-norm can
be obtained in the nondegenerate case. In the degenerate case we consider a regularization of the
saturation equation by perturbing the diffusion coefficient. The norm of error estimates depends on
the severity of the degeneracy in diffusivity, with almost optimal order convergence for nonsevere
degeneracy. Implementation of the fractional flow formulation with various nonhomogeneous bound-
ary conditions is also discussed. Results of numerical experiments using the present approach for
modeling groundwater flow in porous media are reported.
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1. Introduction. In this paper we develop and analyze a fully discrete finite el-
ement procedure for solving the flow equations for an air-water system in groundwater
hydrology, α = a,w [3], [14], [32]:

∂(φραsα)
∂t

+∇ · (ραuα) = fα, x ∈ Ω, t > 0,(1.1)

uα = −kkrα
µα

(∇pα − ραg), x ∈ Ω, t > 0,(1.2)

where Ω ⊂ <d, d ≤ 3 is a porous medium, φ and k are the porosity and absolute
permeability of the porous system, ρα, sα, pα, uα, and µα are the density, saturation,
pressure, volumetric velocity, and viscosity of the α-phase, fα is the source/sink term,
krα is the relative permeability of the α-phase, and g is the gravitational, downward-
pointing, constant vector.

Flow simulation in groundwater reservoirs has been extensively studied in past
years (see, e.g., [27], [29], and the bibliographies therein). However, in most previous
works the air-phase equation is eliminated by the assumption that the air phase
remains essentially at atmospheric pressure. This assumption, as mentioned in [12],
is reasonable in most cases because the mobility of air is much larger than that of
water, due to the viscosity difference between the two fluids. When the air-phase
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FINITE ELEMENT ANALYSIS OF MULTIPHASE FLOW 2229

pressure is assumed constant, the air-phase mass balance equation can be eliminated
and thus only the water-phase equation remains. Namely, the Richards equation is
used to model the movement of water in groundwater reservoirs. However, it provides
no information on the motion of air. If contaminant transport is the main concern
and the contaminant can be transported in the air phase, the air phase needs to be
included to determine the advective component of air-phase contaminant transport
[7]. Furthermore, the dynamic interaction between the air and water phases is also
important in vapor extraction systems. Hence, in these cases the coupled system
of nonlinear equations for the air-water system must be solved. It is the purpose
of this paper to develop and analyze a finite element procedure for approximating
the solution of the coupled system of nonlinear equations for the air-water system in
groundwater hydrology.

In petroleum reservoir simulation the governing equations that describe fluid flow
are usually written in a fractional flow formulation, i.e., in terms of a saturation and
a global pressure [1], [8]. The main reason for this fractional flow approach is that
efficient numerical methods can be devised to take advantage of many physical prop-
erties inherent in the flow equations. However, this pressure-saturation formulation
has not yet achieved application in groundwater hydrology. In petroleum reservoirs
total flux-type boundary conditions are conveniently imposed and often used, but in
groundwater reservoirs boundary conditions are very complicated. The most com-
monly encountered boundary conditions for a groundwater reservoir are of first type
(Dirichlet), second type (Neumann), third type (mixed), and “well” type [8]. The
problem of incorporating these nonhomogeneous boundary conditions into the frac-
tional flow formulation has been a challenge [14]. In particular, in using the fractional
flow approach a difficulty arises when the Dirichlet boundary condition is imposed for
one phase (e.g., air) and the Neumann type is used for another phase (e.g., water).

This paper follows the fractional flow formulation. Based on this approach, we
develop a fully discrete finite element procedure for the saturation and pressure equa-
tions. The saturation equation is approximated by a Galerkin finite element method,
while the pressure equation is treated by a mixed finite element method. It is well
known that the physical transport dominates the diffusive effects in incompressible
flow in petroleum reservoirs. In the air-water system studied here, the transport again
dominates the entire process. Hence, it is important to obtain good approximate ve-
locities. This motivates the use of the parabolic mixed method, as in [18], in the
computation of the pressure and the velocity. Also, due to its convection-dominated
feature, more efficient approximate procedures should be used to solve the satura-
tion equation. However, since this is the first time to carry out an analysis for the
present problem, it is of some importance to establish that the standard finite ele-
ment method for this model converges at an asymptotically optimal rate for smooth
problems. Characteristic Petrov–Galerkin methods based on operator splitting [21],
transport diffusion methods [33], and other characteristic-based methods will be con-
sidered in forthcoming papers.

The main part of this paper deals with an asymptotical analysis for the fully
discrete finite element method for the first-type and second-type boundary conditions

pα = pαD(x, t), x ∈ Γ1, t > 0,(1.3)
uα · ν = dα(x, t), x ∈ Γ2, t > 0,(1.4)

where pαD and dα are given functions, ∂Ω = Γ1∪Γ2 with Γ1 and Γ2 being disjoint, and
ν is the outer unit normal to ∂Ω. We point out that petroleum reservoir simulation

D
ow

nl
oa

de
d 

12
/0

1/
14

 to
 1

36
.1

59
.1

19
.1

11
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



2230 ZHANGXIN CHEN AND RICHARD E. EWING

is different from groundwater reservoir simulation. In the latter case the pressures
are much lower, the variety of species is much larger, the topography plays important
role, and the needed accuracy for numerical approximations is often high (in partic-
ular, for the concentration of pollutants). Also, the flow of two incompressible fluids
(e.g., water and oil) is usually considered in the former case, while the latter system
consists of the air and water phases. Consequently, the finite element analyses for
these two cases differ. As shown here, compressibility and combination of the bound-
ary conditions (1.3) and (1.4) complicate error analyses. Indeed, if optimality is to
be preserved for the finite element method, the standard error argument just fails
unless we work with higher order time-differentiated forms of error equations, which
require properly scaling initial conditions. Next, we mention that a slightly compress-
ible miscible displacement problem was treated in [15], [19], [24], [34]; however, only
the single phase was handled, gravitational terms were omitted, and total flux-type
boundary conditions were assumed. Furthermore, the so-called “quadratic” terms in
velocity were neglected. The dropping of these quadratic terms may not be valid near
wells, and so the miscible displacement model was oversimplified both physically and
mathematically. The analysis of this paper includes these terms. Finally, only the
Raviart–Thomas mixed finite element spaces [35] have been considered in these earlier
papers. We are here able to discuss all existing mixed spaces.

The error analysis is given first for the case where the capillary diffusion coefficient
is assumed to be uniformly positive. In this case, we show error estimates of optimal
order in the L2-norm and almost optimal order in the L∞-norm. Then we treat a
degenerate case where the diffusion coefficient vanishes for two values of saturation.
In the degenerate case we consider a regularization of the saturation equation by
perturbing the diffusion coefficient to obtain a nondegenerate problem with smooth
solutions. It is shown that the regularized solutions converge to the original solution
as the perturbation parameter goes to zero with specific convergence rates given. The
norm of error estimates depends on the severity of the degeneracy in diffusivity, with
almost optimal order convergence for the degeneracy under consideration.

The rest of this paper is concerned with implementation of the fractional flow
formulation with various nonhomogeneous boundary conditions. We show that all
the commonly encountered boundary conditions can be incorporated in the fractional
flow formulation. Normally the “global” boundary conditions are highly nonlinear
functions of the physical boundary conditions for the original two flow phases. This
means that we have to iterate on these global boundary conditions as part of the solu-
tion process. We here develop a general solution approach to handle these boundary
conditions. Results of numerical experiments using the present approach for modeling
groundwater flow are reported here.

The paper is organized as follows. In section 2, we define a fractional flow for-
mulation for equations (1.1)–(1.4). Then, in section 3 we introduce weak forms of
the pressure-saturation equations, and in section 4 a fully discrete finite element pro-
cedure for solving these equations. An asymptotical analysis is given in sections 5
and 6 for the nondegenerate case and the degenerate case, respectively. Finally, in
section 7 we discuss implementation of various nonhomogeneous boundary conditions
and present the results of numerical experiments.

2. A pressure-saturation formulation. In addition to (1.1)–(1.4), we impose
the customary property that the fluid fills the volume,

sa + sw = 1,(2.1)
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FINITE ELEMENT ANALYSIS OF MULTIPHASE FLOW 2231

and define the capillary pressure function pc by

pc(sw) = pa − pw.(2.2)

Introduce the phase mobilities

λα = krα/µα, α = a,w,

and the total mobility

λ = λa + λw.

To devise our numerical method, it is important to choose a reasonable set of depen-
dent variables. Since pw = −∞ if sw is equal to the water residual saturation [3],
pw cannot generally be expected to lie in any Sobolev space. Air being a continuous
phase implies that pa is well behaved. Hence, as mentioned in the introduction, we
define the global pressure [1] with s = sw:

p =pa −
∫ s

sc

λw
λ

dpc
dξ

dξ

=pa −
∫ pc(s)

0

(
λw
λ

)(
p−1
c (ξ)

)
dξ,

(2.3)

where pc(sc) = 0. The integral in the right-hand side of (2.3) is well defined [1], [8].
As usual, assume that ρα depends on p [8]. Then we define the total velocity

u = −kλ (∇p−G(s, p)) ,(2.4)

where

G(s, p) =
λaρa + λwρw

λ
g.

Now it can be easily seen that

uw = qwu+ kλaqw∇pc − kλaqwρ̃,(2.5a)
ua = qau− kλwqa∇pc + kλwqaρ̃,(2.5b)

where qα = λα/λ, α = a,w, and ρ̃ = (ρa − ρw)g. Consequently,

u = ua + uw.(2.6)

Equations (1.1) and (1.2) can be manipulated using (2.1)–(2.6) to have the pressure
equation

∇ · u = −∂φ
∂t
−

a∑
α=w

1
ρα

(
φsα

∂ρα
∂t

+ uα · ∇ρα − fα
)
,(2.7)

and the saturation equation

φ
∂sw
∂t

+∇ · (qwu+ kλaqw(∇pc − ρ̃))

= −sw
∂φ

∂t
− 1
ρw

(
φsw

∂ρw
∂t

+ uw · ∇ρw − fw
)
.

(2.8)
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2232 ZHANGXIN CHEN AND RICHARD E. EWING

Terms of the form uα · ∇ρα, α = a,w have been neglected in compressible miscible
displacement problems [15], [19], [24], [34]. The dropping of these terms may not
be valid near wells. Also, if they are neglected, the model may not be qualitatively
equivalent to the usual formulation of two-phase flow. Hence, we keep them in this
paper. However, the water phase is usually assumed to be incompressible. With the
incompressibility of the water phase and the notation

c(s, p) =
φ(1− s)
ρa

dρa
dp

, D(s) = −kλaqw
dpc
ds

,

a(s) = kλ, A(s, p) =
qaa
−1(s)
ρa

dρa
dp

,

f̃w =
fw
ρw
, b(s, p) = −kλaqwρ̃,

B(s, p) = − 1
ρa

dρa
dp

(
qaG(s, p) + a−1(s)kλwqa(∇pc − ρ̃)

)
,

f(s, p) =
1
ρa

dρa
dp

kλwqa(∇pc − ρ̃) ·G(s, p) +
fa
ρa

+
fw
ρw
− ∂φ

∂t
,

equations (2.7) and (2.8) can now be written as

c(s, p)
∂p

∂t
+∇ · u = A(s, p)u2 +B(s, p) · u+ f(s, p),(2.9)

u = −a(s) (∇p−G(s, p)) ,(2.10)

φ
∂s

∂t
−∇ · (D(s)∇s− qwu− b(s, p)) = f̃w − s

∂φ

∂t
.(2.11)

The boundary conditions for the pressure-saturation equations become

p = pD(x, t), x ∈ Γ1, t > 0,(2.12)

u · ν = d̃(x, t), x ∈ Γ2, t > 0,(2.13)
s = sD(x, t), x ∈ Γ1, t > 0,(2.14)
(D(s)∇s− qwu− b(s, p)) · ν = −dw(x, t), x ∈ Γ2, t > 0,(2.15)

where sD and pD are the transforms of pwD and paD by (2.2) and (2.3), and d̃ =
da + dw.

The model given in equations (2.9)–(2.15) for the pressure p, velocity u, and
saturation s is completed by specifying the initial conditions

p(x, 0) = p0(x), x ∈ Ω,(2.16)

s(x, 0) = s0(x), x ∈ Ω.(2.17)

The later analysis for the nondegenerate case in section 5 is given under a number
of assumptions. First, the solution is assumed smooth; i.e., the external source terms
are smoothly distributed, the coefficients are smooth, the boundary and initial data
satisfy the compatibility condition, and the domain has at least the regularity required
for a standard elliptic problem to have H2(Ω)-regularity and more if error estimates
of order bigger than one are required. Second, the coefficients a(s), φ, and c(s, p) are
assumed bounded below positively:

0 < a∗ ≤ a(s) ≤ a∗ <∞,(2.18)
0 < φ∗ ≤ φ(x) ≤ φ∗ <∞,(2.19)
0 < c∗ ≤ c(s, p) ≤ c∗ <∞.(2.20)
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FINITE ELEMENT ANALYSIS OF MULTIPHASE FLOW 2233

The capillary diffusion coefficient D(s) is assumed to satisfy

0 < D∗ ≤ D(s) ≤ D∗ <∞.(2.21)

Finally, an example of the air density function ρa is given by the relation [3]

ρa(pa) = ρ0a

(
1 +

pa
p0a

)
,(2.22)

where ρ0a is the density of the air phase at the reference pressure p0a.
While the phase mobilities can be zero, the total mobility is always positive [32].

The assumptions (2.18) and (2.19) are physically reasonable. Also, the present anal-
ysis obviously applies to the incompressible case where c(s, p) = 0. In this case, the
analysis is simpler since we have an elliptic pressure equation instead of the parabolic
equation (2.9). Thus we assume condition (2.20) for the compressible case under con-
sideration. Next, although the reasonableness of the assumption (2.21) is discussed in
[17], the diffusion coefficient D(s) can be zero in reality [13]. It is for this reason that
section 6 is devoted to consideration of the case where the solution is not required
smooth and the assumption (2.21) is removed. As a final remark, we mention that
for the case where point sources and sinks occur in a porous medium, an argument
was given in [23] for the incompressible miscible displacement problem and can be
extended to the present case.

3. Weak forms. To handle the difficulty associated with the inhomogeneous
Neumann boundary condition (2.13) in the analysis of the mixed finite element method,
let d be such that d ·ν = d̃ and introduce the change of variable u = ũ+d in equations
(2.9)–(2.11). Then the homogeneous Neumann boundary condition holds for ũ. Thus,
without loss of generality, we assume that d̃ ≡ 0. To be compatible, we also require
that this homogeneous condition holds when t = 0.

In the two-dimensional case, let

H(div,Ω) = {v ∈ (L2(Ω))2 : ∇ · v ∈ L2(Ω)},

while it is accordingly defined in the three-dimensional case as follows:

H(div,Ω) = {v ∈ (L2(Ω))3 : ∇ · v ∈ L2(Ω)}.

Also, set

V = {v ∈ H(div,Ω) : v · ν = 0 on Γ2},
M = {w ∈ H1(Ω) : w = 0 on Γ1}.

The weak form of (2.9)–(2.11) on which the finite element procedure is based is given
below. Let J = (0, T ] (T > 0) is the time interval of interest. The mixed formulation
for the pressure is defined by seeking a pair of maps {u, p} : J → V ×L2(Ω) such that

(α(s)u, v)− (∇ · v, p) = (G(s, p), v)− 〈pD, v · ν〉Γ1
∀v ∈ V,(3.1a) (

c(s, p)
∂p

∂t
, ψ

)
+ (∇ · u, ψ)(3.1b)

= (A(s, p)u2 +B(s, p) · u+ f(s, p), ψ) ∀ψ ∈ L2(Ω),
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2234 ZHANGXIN CHEN AND RICHARD E. EWING

where α(s) = a(s)−1, the inner products (·, ·) are to be interpreted to be in L2(Ω)
or (L2(Ω))d, as appropriate, and 〈·, ·〉Γ1

denotes the duality between H1/2(Γ1) and
H−1/2(Γ1). The weak form for the saturation s : J →M + sD is given by(

φ
∂s

∂t
, v

)
+
(
D(s)∇s− qw(s)u− b(s, p),∇v

)
=
(
f̃w − s

∂φ

∂t
, v

)
− 〈dw, v〉Γ2

∀v ∈M,

(3.2)

where the boundary condition (2.15) is used. Finally, to treat the nonzero initial
conditions imposed on s and p in (2.16) and (2.17), we introduce the following trans-
formations in (3.1) and (3.2):

s(x, t) =s(x, t) + s0(x),

p(x, t) =p(x, t) + p0(x),

u(x, t) =u(x, t) + u0(x),

where u0 = −a(s0)(∇p0 − G(s0, p0)) and u = −a(s + s0)(∇(p + p0) − G(s + s0, p +
p0))−u0(x). Then we have zero initial conditions for s, p, and u. Hence, without loss
of generality again, we assume that

s0 = p0 = u0 ≡ 0.(3.3)

The reason for introducing these transformations to have zero initial conditions is to
validate equation (5.15) later.

4. Fully discrete finite element procedures. Let Ω be a polygonal domain.
For 0 < hp < 1 and 0 < h < 1, let Thp and Th be quasi-uniform partitions into ele-
ments, say, simplexes, rectangular parallelepipeds, and/or prisms. In both partitions,
we also need that adjacent elements completely share their common edge or face. Let
Mh ⊂ W 1,∞(Ω) ∩M be a standard C0-finite element space associated with Th such
that

inf
ψ∈Mh

‖v − ψ‖1,q ≤ C
(∑

K

h2k
K ‖v‖2k+1,q,K

)1/2

, k ≥ 1, 1 ≤ q ≤ ∞,(4.1)

where hK =diam(K), K ∈ Th and ‖v‖k,q,K is the norm in the Sobolev space W k,q(K)
(we omit K when K = Ω and ‖v‖k,K = ‖v‖k,2,K). Also, let Vh ×Wh = Vhp ×Whp ⊂
V × L2(Ω) be the Raviart–Thomas–Nedelec [35], [30], the Brezzi–Douglas–Fortin–
Marini [5], the Brezzi–Douglas–Marini [6] (if d = 2), the Brezzi–Douglas–Durán–
Fortin [4] (if d = 3), or the Chen–Douglas [11] mixed finite element space associated
with the partition Thp of index such that the approximation properties below are
satisfied:

inf
ψ∈Vh

‖v − ψ‖ ≤ C
(∑

K

h2r
p,K‖v‖2r,K

)1/2

, 0 ≤ r ≤ k∗ + 1,(4.2)

inf
ψ∈Vh

‖∇ · (v − ψ)‖ ≤ C
(∑

K

h2r
p,K‖∇ · v‖2r,K

)1/2

, 0 ≤ r ≤ k∗∗,(4.3)

inf
ψ∈Wh

‖w − ψ‖ ≤ C
(∑

K

h2r
p,K‖w‖2r,K

)1/2

, 0 ≤ r ≤ k∗∗,(4.4)D
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FINITE ELEMENT ANALYSIS OF MULTIPHASE FLOW 2235

where hp,K = diam(K), K ∈ Thp , ‖v‖ = ‖v‖0, k∗∗ = k∗ + 1 for the first two spaces,
k∗∗ = k∗ for the second two spaces, and both cases are included in the last space.
Finally, let {tn}nTn=0 be a quasi-uniform partition of J with t0 = 0 and tnT = T , and
set ∆tn = tn − tn−1, ∆t = max{∆tn, 1 ≤ n ≤ nT }, and

ψn = ψ(tn), ∂ψn = (ψn − ψn−1)/∆tn.

We are now in a position to introduce our finite element procedure.
The fully discrete finite element method is given as follows. The approxima-

tion procedure for the pressure is defined by the mixed method for a pair of maps
{unh, pnh} ∈ Vh ×Wh, n = 1, 2, . . . , nT , such that

(α(sn−1
h )unh, v)− (∇ · v, pnh) = (G(sn−1

h , pn−1
h ), v)− 〈pnD, v · ν〉Γ1

∀v ∈ Vh,(4.5a)

(c(sn−1
h , pn−1

h )∂pnh, ψ) + (∇ · unh, ψ) = (A(sn−1
h , pn−1

h )(un−1
h )2(4.5b)

+B(sn−1
h , pn−1

h ) · un−1
h + f(sn−1

h , pn−1
h ), ψ) ∀ψ ∈Wh,

and the finite element method for the saturation is given for snh ∈ Mh + snD, n =
1, 2, . . . , nT , satisfying(

φ∂snh, v
)

+
(
D(sn−1

h )∇snh − qw(sn−1
h )unh − b(sn−1

h , pnh),∇v
)

=
(
f̃nw − snh

∂φn

∂t
, v

)
− 〈dnw, v〉Γ2

∀v ∈Mh.
(4.6)

The initial conditions satisfy

p0
h = 0, s0

h = 0, u0
h = 0.(4.7)

After startup, for n = 1, 2, . . . , nT , equations (4.5) and (4.6) are computed as
follows. First, using sn−1

h , pn−1
h , and (4.5), evaluate {unh, pnh}. Since it is linear, (4.5)

has a unique solution for each n [10], [28]. Next, using sn−1
h , {unh, pnh}, and (4.6),

calculate snh. Again, (4.6) has a unique solution for ∆tn sufficiently small for each n
[40].

We end this section with two remarks. First, while the backward Euler scheme
is used for the time discretization terms in (4.5b) and (4.6), the Crank–Nicolson
scheme and more accurate time stepping procedures (see, e.g., [22]) can be used,
and the present analysis applies to these schemes. Second, the nonlinearities in the
pressure and saturation equations are handled by lagging in time. Consequently, a
linear system of algebraic equations is solved at each time step instead of a nonlinear
system. We point out that the analysis below extends to the nonlinear version where
we use snh, pnh, and unh in the coefficients of equations (4.5) and (4.6) instead of sn−1

h ,
pn−1
h , and un−1

h (see the scheme (6.7) in section 6). In this case the time step ∆t in
the condition (5.28) below would disappear.

5. An error analysis for the fully discrete scheme. In this section we give a
convergence analysis for the finite element procedure (4.5) and (4.6) under assumption
(2.21). As usual, it is convenient to use an elliptic projection of the solution of (2.11)
into the finite element space Mh. Let s̃ = s̃h : J →Mh + sD be defined by(

D(s)∇(s− s̃),∇v
)

+ (s− s̃, v) = 0 ∀v ∈Mh, t ∈ J.(5.1)

Set

ζ = s− s̃, ξ = s̃− sh.(5.2)
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2236 ZHANGXIN CHEN AND RICHARD E. EWING

Then it follows from standard results of the finite element method [16], [31], [38] that

‖ζ‖+ h‖ζ‖1 ≤ C
(∑

K

h
2(k+1)
K ‖s‖2k+1,K

)1/2

,(5.3a)

‖ζ‖0,∞ ≤ Chk+1( log h−1)γ‖s‖k+1,∞,(5.3b)

where γ = 1 for k = 1 and γ = 0 for k > 1. The same result applies to the time-
differentiated forms of (5.1) [41]:∥∥∥∥∂ζ∂t

∥∥∥∥+ h

∥∥∥∥∂ζ∂t
∥∥∥∥

1
≤ C

(∑
K

h
2(k+1)
K

(
‖s‖2k+1,K +

∥∥∥∥∂s∂t
∥∥∥∥2

k+1,K

))1/2

.(5.4)

As for the analysis of the mixed finite element method, we use the following
two projections instead of the elliptic projections introduced in [15] and [19]. So the
present analysis is different from and in fact simpler than those in [15] and [19]. Each
of our mixed finite element spaces [4]–[6], [11], [30], [35] has the property that there
are projection operators Πh : H1(Ω) → Vh and Ph = L2-projection: L2(Ω) → Wh

such that

‖v −Πhv‖ ≤ C
(∑

K

h2r
p,K‖v‖2r,K

)1/2

, 0 ≤ r ≤ k∗ + 1,(5.5)

‖∇ · (v −Πhv)‖ ≤ C
(∑

K

h2r
p,K‖∇ · v‖2r,K

)1/2

, 0 ≤ r ≤ k∗∗,(5.6)

‖w − Phw‖ ≤ C
(∑

K

h2r
p,K‖w‖2r,K

)1/2

, 0 ≤ r ≤ k∗∗,(5.7)

and (see, e.g., [9], [20])

(∇ · (v −Πhv), w) = 0 ∀w ∈Wh,(5.8)
(∇ · v, w − Phw) = 0 ∀v ∈ Vh.(5.9)

Set p̃ = Php, ũ = Πhu, and

σ = u− ũ, β = ũ− uh,(5.10)
η = p− p̃, θ = p̃− ph.(5.11)

Note that, by (3.3) and (4.7),

θ0 = 0, ξ0 = 0, β0 = 0.(5.12)

Finally, we prove some bounds of the projections s̃ and p̃. Let s = sh be the
interpolant of s in Mh. Then we see, by (4.1), (5.3b), the approximation property of
s, and an inverse inequality in Mh, that

‖s̃‖1,∞ ≤‖s− s̃‖1,∞ + ‖s‖1,∞
≤‖s− s̃‖1,∞ + ‖s− s‖1,∞ + ‖s‖1,∞
≤Ch−1‖s− s̃‖0,∞ + ‖s− s‖1,∞ + ‖s‖1,∞
≤Ch−1(‖s̃− s‖0,∞ + ‖s− s‖0,∞

)
+ ‖s− s‖1,∞ + ‖s‖1,∞

≤Chk(log h−1)γ‖s‖k+1,∞ + ‖s‖1,∞,
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FINITE ELEMENT ANALYSIS OF MULTIPHASE FLOW 2237

where γ is given as in (5.3b). This implies that ‖s̃‖1,∞ is bounded for sufficiently
smooth solutions since k ≥ 1. The same argument applies to ‖∂s̃/∂t‖1,∞. Next, note
that, by the approximation property of the projection Ph [28],

‖p̃t‖0,∞ ≤ C‖pt‖0,∞.
These bounds on p̃t, ∇s̃, and ∇(∂s̃/∂t) are used below.

We are now ready to prove some results. Below ε is a generic positive constant
as small as we please.

5.1. Analysis of the mixed method. We first analyze the mixed method
(4.5). We set s = p = u ≡ 0 and sh = ph = uh ≡ 0 when t ≤ 0. The following error
equation is obtained by subtracting (4.5) from (3.1) at t = tn and applying (5.8) and
(5.9):

(α(sn−1
h )βn, v)− (∇ · v, θn) =

(
(α(sn−1

h )− α(sn))un, v
)
− (α(sn−1

h )σn, v)(5.13)

+
(
G(sn, pn)−G(sn−1

h , pn−1
h ), v

)
∀v ∈ Vh,(

c(sn−1
h , pn−1

h )∂θn, ψ
)

+ (∇ · βn, ψ) =
(
f(sn, pn)− f(sn−1

h , pn−1
h ), ψ

)
+
(
A(sn, pn)(un)2 −A(sn−1

h , pn−1
h )(un−1

h )2, ψ
)(5.14)

+
(
B(sn, pn) · un −B(sn−1

h , pn−1
h ) · un−1

h , ψ
)

+
(

(c(sn−1
h , pn−1

h )− c(sn, pn))
∂pn

∂t
, ψ

)
− (c(sn−1

h , pn−1
h )

(
∂pn

∂t
− ∂p̃n

)
, ψ) ∀ψ ∈Wh.

Below Ci indicates a generic constant with the given dependencies.
LEMMA 5.1. Let (u, p) and (uh, ph) solve (3.1) and (4.5), respectively. Then

‖∂θ1‖2+∆t1‖∂β1‖2

≤ C0
{

∆t1(‖s1 − s0‖2 + ‖∂σ1‖2 + ‖∂G1‖2)

+ ‖p1 − p0‖2 + ‖s1 − s0‖2 +
∥∥∥∥∂p1

∂t
− ∂p̃1

∥∥∥∥2

+ ‖u1 − u0‖2
}
,

(5.15)

where ∂G1 = (G(s1, p1)−G(s0, p0))/∆t1 and

C0 = C0

(∥∥∥∥∂p∂t
∥∥∥∥
L∞(J×Ω)

,

∥∥∥∥∂u∂t
∥∥∥∥
L∞(J×Ω)

, ‖u‖L∞(J×Ω)

)
.

Proof. Set v = β1 in (5.13) and ψ = θ1 in (5.14), add the resulting equations at
n = 1, and use (3.3), (4.7), and (5.12) to see that

(c(s0, p0)∂θ1, ∂θ1) + ∆t1(α(s0)∂β1, ∂β1) =
8∑
i=1

T 1
i ,

where

T 1
1 =

(
(α(s0)− α(s1))(u1 − u0), ∂β1), T 1

2 = −
(
α(s0)(σ1 − σ0), ∂β1),

T 1
3 =

(
G(s1, p1)−G(s0, p0), ∂β1), T 1

4 =
(
A(s1, p1)(u1)2 −A(s0, p0)(u0)2, ∂θ1),

T 1
5 =

(
(c(s0, p0)− c(s1, p1))

∂p1

∂t
, ∂θ1

)
, T 1

6 = −
(
c(s0, p0)

(
∂p1

∂t
− ∂p̃1

)
, ∂θ1),

T 1
7 =

(
B(s1, p1) · u1 −B(s0, p0) · u0, ∂θ1), T 1

8 =
(
f(s1, p1)− f(s0, p0), ∂θ1).

Then (5.15) can be easily seen.
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2238 ZHANGXIN CHEN AND RICHARD E. EWING

LEMMA 5.2. Let (u, p) and (uh, ph) satisfy (3.1) and (4.5), respectively. Then

‖∂θγ‖2 +
γ∑
n=2

‖∂βn‖2∆tn

≤ C1

{
‖∂θ1‖2 +

γ∑
n=1

{
‖∂(∂ηn)‖2 + ‖∂ηn‖2 + ‖ηn−1‖2 + ‖∂ζn−1‖2

+ ‖ζn−1‖2 + ‖∂σn‖2 +
∥∥∥∥∂ (∂pn∂t − ∂pn

)∥∥∥∥2

+ ‖∂θn‖2

+ ‖∂(pn − pn−1)‖2 + ‖pn − pn−1‖2 + ‖∂(sn − sn−1)‖2

+ ‖sn − sn−1‖2 + ‖θn−1‖2 + ‖∂ξn−1‖2 + ‖ξn−1‖2

+ ‖∂(un − un−1)‖2 + ‖un − un−1‖2

+ (‖∂ξn−1‖20,∞ + ‖∂θn−1‖20,∞)

[
‖∂θn−1‖2 +

∥∥∥∥∂pn∂t − ∂pn
∥∥∥∥2

+ ‖ηn‖2 + (1 + ‖∂βn−1‖20,∞)‖∂βn−1‖2
]

+ (1 + ‖∂ξn−1‖20,∞ + ‖∂βn−1‖20,∞)(‖βn−1‖2 + ‖βn−2‖2 + ‖σn‖2)
}

∆tn
}

for 2 ≤ γ ≤ nT , where

C1 = C1

(∥∥∥∥∂s∂t
∥∥∥∥
L∞(J×Ω)

,

∥∥∥∥∂p∂t
∥∥∥∥
L∞(J×Ω)

,

∥∥∥∥∂2p

∂t2

∥∥∥∥
L∞(J×Ω)

, ‖u‖L∞(J×Ω),

∥∥∥∥∂u∂t
∥∥∥∥
L∞(J×Ω)

)
.

Proof. Using difference equations (5.13) and (5.14) with respect to n, set v = ∂βn

and ψ = ∂θn in the resulting equations, divide by ∆tn, and add to obtain

(α(sn−1
h )∂βn, ∂βn) + (c(sn−1

h , pn−1
h )∂(∂θn), ∂θn) =

10∑
i=1

Tni ,(5.16)

where

Tn1 =
1

∆tn
(
(f(sn, pn)− f(sn−1

h , pn−1
h ))− (f(sn−1, pn−1)− f(sn−2

h , pn−2
h )), ∂θn

)
,

Tn2 =
1

∆tn
(
[A(sn, pn)(un)2 −A(sn−1

h , pn−1
h )(un−1

h )2]

− [A(sn−1, pn−1)(un−1)2 −A(sn−2
h , pn−2

h )(un−2
h )2], ∂θn

)
,

Tn3 =
1

∆tn
(
[B(sn, pn) · un −B(sn−1

h , pn−1
h ) · un−1

h ]

− [B(sn−1, pn−1) · un−1 −B(sn−2
h , pn−2

h ) · un−2
h ], ∂θn

)
,

Tn4 =
1

∆tn

(
(c(sn−1

h , pn−1
h )− c(sn, pn))

∂pn

∂t

−(c(sn−2
h , pn−2

h )− c(sn−1, pn−1))
∂pn−1

∂t
, ∂θn

)
,
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Tn5 =− 1
∆tn

(
c(sn−1

h , pn−1
h )

(
∂pn

∂t
− ∂p̃n

)
− c(sn−2

h , pn−2
h )

(
∂pn−1

∂t
− ∂p̃n−1

)
, ∂θn

)
,

Tn6 =
1

∆tn
(
(c(sn−2

h , pn−2
h )− c(sn−1

h , pn−1
h ))∂θn−1, ∂θn

)
,

Tn7 =
1

∆tn
(
(α(sn−2

h )− α(sn−1
h ))βn−1, ∂βn

)
,

Tn8 =− 1
∆tn

(
α(sn−1

h )σn − α(sn−2
h )σn−1, ∂βn

)
,

Tn9 =
1

∆tn
(
(α(sn−1

h )− α(sn))un − (α(sn−2
h )− α(sn−1))un−1, ∂βn

)
,

Tn10 =
1

∆tn
(
(G(sn, pn)−G(sn−1

h , pn−1
h ))

− (G(sn−1, pn−1)−G(sn−2
h , pn−2

h )), ∂βn
)
.

Observe that the left-hand side of (5.16) is larger than the quantity

1
2∆tn

{
(c(sn−1

h , pn−1
h )∂θn, ∂θn)− (c(sn−2

h , pn−2
h )∂θn−1, ∂θn−1)

}
+ (α(sn−1

h )∂βn, ∂βn) + Tn11,
(5.17)

where

Tn11 =
1

2∆tn
(
(c(sn−2

h , pn−2
h )− c(sn−1

h , pn−1
h ))∂θn−1, ∂θn−1).

We estimate the new term Tn2 in detail. Other terms can be bounded by a simpler
argument. To estimate Tn2 , we write

Tn2 =
1

∆tn
({

[A(sn, pn)−A(sn−1, pn−1)]

− [A(sn−1
h , pn−1

h )−A(sn−2
h , pn−2

h )]
}

(un)2, ∂θn
)

+
1

∆tn
(
[A(sn−1

h , pn−1
h )−A(sn−2

h , pn−2
h )]((un)2 − (un−1

h )2), ∂θn
)

+
1

∆tn
(
[A(sn−1, pn−1)−A(sn−2

h , pn−2
h )]((un)2 − (un−1)2), ∂θn

)
+

1
∆tn

(
A(sn−2

h , pn−2
h )

{
[(un)2 − (un−1)2]− [(un−1

h )2 − (un−2
h )2]

}
, ∂θn

)
≡

4∑
i=1

Tn2,i.

Note that

[A(sn−1
h , pn−1

h )−A(sn−2
h , pn−2

h )]− [A(sn, pn)−A(sn−1, pn−1)]

=
∂A

∂s
(ŝn−1
h , pn−1

h )(sn−1
h − sn−2

h ) +
∂A

∂p
(sn−1
h , p̂n−1

h )(pn−1
h − pn−2

h )

− ∂A

∂s
(ŝn, pn)(sn − sn−1)− ∂A

∂p
(sn−1, p̂n)(pn − pn−1),
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2240 ZHANGXIN CHEN AND RICHARD E. EWING

where

min{pn−1
h , pn−2

h } ≤ p̂n−1
h ≤ max{pn−1

h , pn−2
h },

min{pn, pn−1} ≤ p̂n ≤ max{pn, pn−1},

and similar inequalities hold for ŝn−1
h , ŝn. Consequently, with λn = ∆tn−1/∆tn we

see that

Tn2,1 =−
(
∂A

∂s
{λn[∂ζn−1 + ∂ξn−1]− ∂(sn − sn−1)}(un)2, ∂θn

)
−
([

∂2A

∂s2 (ŝn−1
h − ŝn) +

∂2A

∂p∂s
(pn−1
h − pn)

]
(un)2 s

n − sn−1

∆tn
, ∂θn

)
−
(
∂A

∂p
{λn[∂ηn−1 + ∂θn−1]− ∂(pn − pn−1)}(un)2, ∂θn

)
−
([

∂2A

∂p2 (p̂n−1
h − p̂n) +

∂2A

∂s∂p
(sn−2
h − sn−1)

]
(un)2 p

n − pn−1

∆tn
, ∂θn

)
,

so that

|Tn2,1| ≤ C1
(
‖∂ζn−1‖2 + ‖∂ξn−1‖2 + ‖∂(sn − sn−1)‖2 + ‖ŝn−1

h − ŝn‖2

+ ‖pn−1
h − pn‖2 + ‖∂ηn−1‖2 + ‖∂θn−1‖2 + ‖∂(pn − pn−1)‖2

+ ‖p̂n−1
h − p̂n‖2 + ‖sn−2

h − sn−1‖2 + ‖∂θn‖2
)
,

(5.18)

where

‖p̂n−1
h − p̂n‖ ≤ C1

(
‖pn − pn−1

h ‖+ ‖pn − pn−2
h ‖

+ ‖pn−1 − pn−1
h ‖+ ‖pn−1 − pn−2

h ‖),
(5.19)

and an analogous inequality holds for ŝn−1
h − ŝn. Also, we see that

[A(sn−1
h , pn−1

h )−A(sn−2
h , pn−2

h )]((un)2 − (un−1
h )2)

=
{
∂A

∂s
(sn−1
h − sn−2

h ) +
∂A

∂p
(pn−1
h − pn−2

h )
}

(un − un−1
h ) · (un + un−1

h ),

which implies that

|Tn2,2| ≤ C1
(
(1 + ‖∂ξn−1‖20,∞ + ‖∂θn−1‖20,∞)(1 + ‖βn−1‖20,∞)‖βn−1‖2

+ ‖sn−1
h − sn−2

h ‖2 + ‖pn−1
h − pn−2

h ‖2 + ‖∂θn‖2
)
.

Next, it can be easily seen that

|Tn2,3| ≤ C1
(
‖sn−1 − sn−2

h ‖2 + ‖pn−1 − pn−2
h ‖2 + ‖∂θn‖2

)
.

Finally, since

[(un−1
h )2 − (un−2

h )2]− [(un)2 − (un−1)2]

= ([un−1
h − un−2

h ]− [un−1 − un−2])(un−1
h + un−1)

+ (un−2 − un−2
h )([un−2

h − un−1
h ] + [un−2 − un−1])

+ ([un−1 − un−2]− [un − un−1])(un−1 + un−2)

+ (un − un−1)(un − un−2),

D
ow

nl
oa

de
d 

12
/0

1/
14

 to
 1

36
.1

59
.1

19
.1

11
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



FINITE ELEMENT ANALYSIS OF MULTIPHASE FLOW 2241

we find that

|Tn2,4| ≤ C1
(
(1 + ‖∂βn−1‖20,∞)(‖βn−1‖2 + ‖βn−2‖2)

+ ‖∂σn−1‖2 + ‖∂(un − un−1)‖2 + ‖un − un−1‖2

+ ‖σn−2‖2 + ‖∂θn‖2
)

+ ε‖∂βn−1‖2.

Hence Tn2 can be bounded in terms of Tn2,i, i = 1, . . . , 4. Other terms are bounded as
follows:

|Tn1 | ≤ C1
(
‖∂ζn−1‖2 + ‖∂ξn−1‖2 + ‖∂(sn − sn−1)‖2 + ‖ŝn−1

1,h − ŝn1‖2

+ ‖pn−1
h − pn‖2 + ‖∂ηn−1‖2 + ‖∂θn−1‖2 + ‖∂(pn − pn−1)‖2

+ ‖p̂n−1
1,h − p̂n1‖2 + ‖sn−2

h − sn−1‖2 + ‖∂θn‖2
)
,

|Tn3 | ≤ C1
(
‖∂ζn−1‖2 + ‖∂ξn−1‖2 + ‖∂(sn − sn−1)‖2 + ‖ŝn−1

2,h − ŝn2‖2

+ ‖pn−1
h − pn‖2 + ‖∂ηn−1‖2 + ‖∂θn−1‖2 + ‖∂(pn − pn−1)‖2

+ ‖p̂n−1
2,h − p̂n2‖2 + ‖sn−2

h − sn−1‖2 + ‖∂θn‖2

+ (1 + ‖∂ξn−1‖20,∞ + ‖∂θn−1‖20,∞)‖βn−1‖2

+ ‖sn−1 − sn−2
h ‖2 + ‖pn−1 − pn−2

h ‖2 + ‖∂σn−1‖2

+ ‖∂(un − un−1)‖2
)

+ ε‖∂βn−1‖2,
|Tn4 | ≤ C1

(
‖sn − sn−1

h ‖2 + ‖pn − pn−1
h ‖2 + ‖∂θn‖2 + ‖∂ζn−1‖2

+ ‖∂ηn−1‖2 + ‖∂(pn − pn−1)‖2 + ‖∂(sn − sn−1)‖2

+ ‖∂θn−1‖2 + ‖∂ξn−1‖2 + ‖p̂n−1
3,h − p̂n3‖2 + ‖ŝn−1

3,h − ŝn3‖2
)
,

|Tn5 | ≤ C1

((
‖∂ηn‖2 +

∥∥∥∥∂pn∂t − ∂pn
∥∥∥∥2
)

(‖∂ξn−1‖20,∞ + ‖∂θn−1‖20,∞)

+
∥∥∥∥∂ (∂pn∂t − ∂pn

)∥∥∥∥2

+ ‖∂(∂ηn)‖2 + ‖∂θn‖2
)
,

|Tn6 | ≤ C1
(
(1 + ‖∂ξn−1‖20,∞ + ‖∂θn−1‖20,∞)‖∂θn−1‖2 + ‖∂θn‖2

)
,

|Tn7 | ≤ C1
(
1 + ‖∂ξn−1‖20,∞

)
‖βn−1‖2 + ε‖∂βn‖2,

|Tn8 | ≤ C1
(
(1 + ‖∂ξn−1‖20,∞)‖σn‖2 + ‖∂σn‖2

)
+ ε‖∂βn‖2,

|Tn9 | ≤ C1
(
‖∂ζn−1‖2 + ‖∂ξn−1‖2 + ‖∂(sn − sn−1)‖2

+ ‖sn − sn−1
h ‖2 + ‖ŝn−1

4,h − ŝn4‖2
)

+ ε‖∂βn‖2,
|Tn10| ≤ C1

(
‖∂ζn−1‖2 + ‖∂ξn−1‖2 + ‖∂(sn − sn−1)‖2 + ‖sn−2

h − sn−1‖2

+ ‖∂ηn−1‖2 + ‖∂θn−1‖2 + ‖∂(pn − pn−1)‖2 + ‖pn−1
h − pn‖2

+ ‖p̂n−1
5,h − p̂n5‖2 + ‖ŝn−1

5,h − ŝn5‖2 + ε‖∂βn‖2,
|Tn11| ≤ C1

(
1 + ‖∂ξn−1‖20,∞ + ‖∂θn−1‖20,∞

)
‖∂θn−1‖2,

where ŝn−1
i,h − ŝni and p̂n−1

i,h − p̂ni (i = 1, . . . , 5) can be bounded as in (5.19), e.g.,

‖ŝn−1
i,h − ŝni ‖ ≤ C1

(
‖sn − sn−1

h ‖+ ‖sn − sn−2
h ‖

+ ‖sn−1 − sn−1
h ‖+ ‖sn−1 − sn−2

h ‖).
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2242 ZHANGXIN CHEN AND RICHARD E. EWING

Now, apply these inequalities and (5.17)–(5.20), multiply (5.16) by ∆tn, sum n, and
properly arrange terms to complete the proof of the lemma.

The three terms Tni , i = 1, 2, 3, take care of the quadratic terms in the velocities,
which require more regularity on u than those without these quadratic terms, as seen
from Lemma 5.2.

5.2. Analysis of the saturation equation. We now turn to analyzing the
finite element method (4.6).

LEMMA 5.3. Let s and sh solve (3.2) and (4.6), respectively. Then

‖∇ξγ‖2 +
γ∑
n=1

‖∂ξn‖2∆tn

≤ C2

{∥∥sγ − sγ−1
∥∥2

+ ‖ξγ−1‖2 + ‖ζγ−1‖2 + ‖θγ‖2 + ‖ηγ‖2 + ‖βγ‖2 + ‖σγ‖2

+
γ∑
n=0

(∥∥∥∥∂sn∂t − ∂sn
∥∥∥∥2

+ ‖∂(sn+1 − sn)‖2 + ‖sn+1 − sn‖2 + ‖pn+1 − pn‖2

+ ‖∂ζn‖2 + ‖ζn‖2 + ‖∂σn‖2 + ‖σn‖2 + ‖ηn‖2 + ‖ξn‖21 + ‖θn‖2

+ ‖βn‖2 + ‖∂θn‖2 + ‖∂ηn‖2
)

∆tn +
γ−1∑
n=1

‖∇ξn‖2‖∂ξn‖20,∞∆tn
}

+ ε

γ∑
n=1

‖∂βn‖2∆tn

for 1 ≤ γ ≤ nT , where

C2 = C2

(∥∥∥∥∂s∂t
∥∥∥∥
L∞(J×Ω)

,

∥∥∥∥∇∂s∂t
∥∥∥∥
L∞(J×Ω)

, ‖∇s‖L∞(J×Ω), ‖u‖L∞(J×Ω)

)
.

Proof. Subtract (4.6) from (3.2) at t = tn, use (5.1) at t = tn, and set the test
function v = ∂ξn to see that

(φ∂ξn, ∂ξn) + (D(sn−1
h )∇ξn,∇∂ξn) =

7∑
i=1

Bni ,(5.21)

where

Bn1 =−
(
φ

(
∂sn

∂t
− ∂s̃n

)
, ∂ξn

)
, Bn2 = (ζn, ∂ξn),

Bn3 =
(
(qw(sn)− qw(sn−1

h ))un,∇∂ξn
)
, Bn4 =

(
(un − unh)qw(sn−1

h ),∇∂ξn
)
,

Bn5 =(b(sn, pn)− b(sn−1
h , pnh),∇∂ξn

)
, Bn6 = −

(
∂φn

∂t
(sn − snh), ∂ξn

)
,

Bn7 =−
(
(D(sn)−D(sn−1

h ))∇s̃n,∇∂ξn).

The left-hand side of (5.21) is bigger than the quantity

(φ∂ξn, ∂ξn) +
1

2∆tn
(D(sn−1

h )∇ξn,∇ξn)

− 1
2∆tn

(D(sn−2
h )∇ξn−1,∇ξn−1) +Bn8 ,
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FINITE ELEMENT ANALYSIS OF MULTIPHASE FLOW 2243

where Bn8 is defined by

Bn8 =
1

2∆tn
(
(D(sn−2

h )−D(sn−1
h ))∇ξn−1,∇ξn−1)

and is bounded by

|Bn8 | ≤ C2
(
1 + ‖∂ξn−1‖20,∞

)
‖∇ξn−1‖2.(5.23)

Next, it can be easily seen that

|Bn1 |+ |Bn2 |+ |Bn6 | ≤ C2

(∥∥∥∥∂sn∂t − ∂sn
∥∥∥∥2

+ ‖∂ζn‖2 + ‖ζn‖2 + ‖ξn‖2
)

+ ε‖∂ξn‖2.

(5.24)

To avoid an apparent loss of a factor h in Bni , i = 3, 4, 5, 7, we use summation by
parts on these items. We work on Bn3 in detail, and other quantities can be estimated
similarly. Applying summation by parts in n and the fact that ξ0 = 0, we see that

γ∑
n=1

(
(qw(sn)− qw(sn−1

h ))un,∇∂ξn)∆tn

=
γ−1∑
n=1

({
(qw(sn)− qw(sn−1

h ))− ((qw(sn+1)− qw(snh))
}
un,∇ξn

)
+
γ−1∑
n=1

(
(qw(sn+1)− qw(snh))(un − un+1),∇ξn

)
+
(
(qw(sγ)− qw(sγ−1

h ))uγ ,∇ξγ
)
,

so that, using the same argument as for (5.18),∣∣∣∣∣
γ∑
n=1

Bn3 ∆tn
∣∣∣∣∣ ≤ C2

{γ−1∑
n=1

(
‖∂ζn‖2 + ‖∂(sn+1 − sn)‖2 + ‖ŝnh − ŝn+1‖2

+ ‖sn+1 − snh‖2 + ‖∇ξn‖2
)
∆tn + ‖sγ − sγ−1

h ‖2
}

+ ε

(
‖∇ξγ‖2 +

γ−1∑
n=1

‖∂ξn‖2
)
,

(5.25)

where ‖ŝnh − ŝn+1‖ can be estimated as in (5.20). The term
∑γ
n=1B

n
7 ∆tn has the

same bound as in (5.25). Also, we find that

∣∣∣∣∣
γ∑
n=1

Bn4 ∆tn
∣∣∣∣∣ ≤ C2

{γ−1∑
n=1

(
‖∂σn+1‖2 + ‖σn‖2 + ‖βn‖2

+ (1 + ‖∂ξn‖20,∞)‖∇ξn‖2
)
∆tn

+ ‖σγ‖2 + ‖βγ‖2
}

+ ε

(
‖∇ξγ‖2 +

γ−1∑
n=1

‖∂βn+1‖2
)
,

(5.26)
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2244 ZHANGXIN CHEN AND RICHARD E. EWING

and ∣∣∣∣∣
γ∑
n=1

Bn5 ∆tn
∣∣∣∣∣ ≤ C2

{γ−1∑
n=1

(
‖∂ζn‖2 + ‖∂(sn+1 − sn)‖2 + ‖ŝnh − ŝn+1‖2

+ ‖∂ηn‖2 + ‖∂θn‖2 + ‖p̂nh − p̂n‖2

+ ‖sn+1 − snh‖2 + ‖pn − pnh‖2 + ‖∇ξn‖2
)
∆tn

+ ‖sγ − sγ−1
h ‖2 + ‖pγ − pγh‖2

}
+ ε

(
‖∇ξγ‖2 +

γ−1∑
n=1

‖∂ξn‖2
)
.

(5.27)

Now, multiply (5.21) by ∆tn, sum n, and use (5.22)–(5.27) to complete the proof of
the lemma.

Note that in order to avoid an apparent loss of a fact h, summation by parts
(i.e., integration by parts) has been exploited to estimate the Bni (i = 3, 4, 5, 7) terms.
If the usual error equations (5.13) and (5.14) are used, a difficulty arises from the
combination of the Dirichlet boundary condition (1.3) and the nonlinearity of the
differential system (2.9)–(2.11) since the global pressure and the total velocity appear
in these terms and boundary integrals result from the integration by parts (see [19]
for treating a simpler problem with no flow boundary condition using the usual ar-
gument). To handle this difficulty we use the time-differentiated forms of these error
equations and the homogeneous initial conditions, as mentioned before.

5.3. L2-error estimates. We now prove the main result in this section. Define

E(t) =
∑

K∈Thp

hk
∗∗

p,K

(
‖p‖L∞(0,t;Hk∗∗ (K)) +

∥∥∥∥∂p∂t
∥∥∥∥
L∞(0,t;Hk∗∗ (K))

+
∥∥∥∥∂2p

∂t2

∥∥∥∥
L2(0,t;Hk∗∗ (K))

)

+
∑

K∈Thp

hk
∗+1
p,K

(
‖u‖L∞(0,t;Hk∗+1(K)) +

∥∥∥∥∂u∂t
∥∥∥∥
L2(0,t;Hk∗+1(K))

)

+
∑
K∈Th

hk+1
K

(
‖s‖L∞(0,t;Hk+1(K)) +

∥∥∥∥∂s∂t
∥∥∥∥
L2(0,t;Hk+1(K))

)

+ ∆t
2∑
i=1

(∥∥∥∥∂ip∂ti
∥∥∥∥
L2(J;L2(Ω))

+
∥∥∥∥∂is∂ti

∥∥∥∥
L2(J;L2(Ω))

+
∥∥∥∥∂iu∂ti

∥∥∥∥
L2(J;L2(Ω))

)

+ ∆t
∥∥∥∥∂3p

∂t3

∥∥∥∥
L2(J;L2(Ω))

, t ∈ J.

THEOREM 5.4. Let (u, p, s) and (uh, ph, sh) satisfy (3.1), (3.2) and (4.5), (4.6),
respectively. Then, if the parameters ∆t, hp, and h satisfy

(h−d/2 + h−d/2p )
(
∆t+ hk

∗+1
p + hk

∗∗

p + hk+1)→ 0 as ∆t, h→ 0,(5.28)
we have

max
0≤n≤nT

{
‖un − unh‖+ ‖pn − pnh‖+ ‖sn − snh‖+ h‖∇(sn − snh)‖+

∥∥∥∥∂pn∂t − ∂pnh
∥∥∥∥}

+

{
nT∑
n=1

∥∥∥∥∂sn∂t − ∂snh
∥∥∥∥2

∆tn
}1/2

≤ CE(T ),

where C = C(C1, C2, T ).
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Proof. Take a (C1 + 1)-multiple of the inequality in Lemma 5.3, add the resulting
inequality and the inequality in Lemma 5.2, and use (5.3)–(5.7), (5.15), and the
extension of the solution for t ≤ 0 to obtain

‖∇ξγ‖2 + ‖∂θγ‖2 +
γ∑
n=1

(‖∂ξn‖2 + ‖∂βn‖2)∆tn

≤ C3

{
E2(tγ) + ‖ξγ−1‖2 + ‖θγ‖2 + ‖βγ‖2

+
1
2

γ∑
n=1

(
‖ξn‖21 + ‖βn‖2 + ‖θn‖2 + ‖∂θn‖2

+ (‖∂θn−1‖2 + ‖βn−2‖2 + ‖∇ξn−1‖2

+ (1 + ‖βn−1‖20,∞)‖βn−1‖2 + E2(tγ))

× (‖∂ξn−1‖20,∞ + ‖∂θn−1‖20,∞ + ‖∂βn−1‖20,∞)
)
∆tn

}
,

(5.29)

where C3 = C3(C1, C2). In deriving (5.29), we required that the ε appearing in
Lemma 5.3 be sufficiently small that (C1 + 1)ε ≤ 1/2; this increases C2 but not C1.
Observe that, by (5.12),

‖θγ‖2 ≤ C
γ∑
n=1

‖θn‖2∆tn + ε

γ∑
n=1

‖∂θn‖2∆tn.(5.30)

The same result holds for ξγ and βγ . Combine (5.29), (5.30), and an inverse inequality
to see that

‖ξγ‖21 + ‖θγ‖2 + ‖∂θγ‖2 + ‖βγ‖2 +
γ∑
n=1

(‖∂ξn‖2 + ‖∂βn‖2)∆tn

≤C3

{
E2(tγ) +

1
2

γ∑
n=1

(
‖ξn‖21 + ‖βn‖2 + ‖θn‖2 + ‖∂θn‖2

+ (h−d + h−dp )(‖∂θn−1‖2 + ‖βn−2‖2 + ‖∇ξn−1‖2

+ (1 + h−dp ‖βn−1‖2)‖βn−1‖2 + E2(tγ))

× (‖∂ξn−1‖2) + ‖∂θn−1‖2 + ‖∂βn−1‖2)
)
∆tn

}
.

(5.31)

We now make the induction hypothesis that

max
n≤γ−1

(‖ξn‖21 + ‖θn‖2 + ‖∂θn‖2 + ‖βn‖2)

+
γ−1∑
n=1

(‖∂ξn‖2 + ‖∂βn‖2)∆tn ≤ C4E2(T ),
(5.32)
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2246 ZHANGXIN CHEN AND RICHARD E. EWING

where C4 = 2C3e
TC3 . Note that, by (5.12), (5.32) holds trivially for γ = 1. Then, by

(5.32), (5.31) becomes

‖ξγ‖21 + ‖θγ‖2 + ‖∂θγ‖2 + ‖βγ‖2 +
γ∑
n=1

(‖∂ξn‖2 + ‖∂βn‖2)∆tn

≤C3

{
E2(tγ) +

1
2

γ∑
n=1

(
‖ξn‖21 + ‖βn‖2 + ‖θn‖2 + ‖∂θn‖2

+ 2(h−d + h−dp )C4E2(T )(1 + C4h
−d
p E2(T ))

× (‖∂ξn−1‖2 + ‖∂θn−1‖2 + ‖∂βn−1‖2)
)
∆tn

}
.

(5.33)

Using (5.28), we choose the discretization parameters so small that

2(h−d + h−dp )C3C4E2(T )(1 + C4h
−d
p E2(T )) ≤ 1/2.

Then it follows from (5.33) that

‖ξγ‖21 + ‖θγ‖2 + ‖∂θγ‖2 + ‖βγ‖2 +
γ∑
n=1

(‖∂ξn‖2 + ‖∂βn‖2)∆tn

≤ C3

{
E2(tγ) +

γ∑
n=1

(
‖ξn‖21 + ‖βn‖2 + ‖θn‖2 + ‖∂θn‖2

)
∆tn

}
,

which, together with Gronwall’s inequality, implies that

‖ξγ‖21 + ‖θγ‖2 + ‖∂θγ‖2 + ‖βγ‖2 +
γ∑
n=1

(‖∂ξn‖2 + ‖∂βn‖2)∆tn ≤ C5E2(T ),(5.34)

where

C5 = C3(1− C3∆t)−T/∆t ≤ 2C3e
TC3 ≡ C4,

for ∆t not too large. Consequently, the induction argument is completed and the
theorem follows.

We remark that, if h and hp are of the same order as they tend to zero, then

(h−d/2 + h−d/2p )
(
hk
∗+1
p + hk

∗∗

p + hk+1) ≤ Ch−d/2(hk∗∗ + hk+1),
since k∗∗ ≤ k∗ + 1. Since k ≥ 1,

h−d/2hk+1 → 0 as h→ 0, d = 2, 3.

Also, if k∗∗ ≥ 2, we see that

h−d/2hk
∗∗ → 0 as h→ 0, d = 2, 3.

Thus, for (5.28) to be satisfied, we assume that k∗∗ ≥ 2. This excludes the mixed
finite element spaces of lowest order, i.e., k∗∗ = 1. The lowest order case has to be
treated using different techniques. If the nonlinear coefficients α(s) and c(s, p) in (4.5)
are projected into the finite element space Wh, the technique developed in [10] can be
used to handle the lowest order case. We shall not pursue this here. Also, the time
step ∆t is required to satisfy the condition (5.28), which comes from the nonlinearity
of the pressure and saturation equations and the linearization scheme. It is clear from
(5.28) that this condition is not very restrictive for ∆t.
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5.4. L∞ -error estimates. The main objective of this paper is to establish the
L2-error estimates given in Theorem 5.4. For completeness, we end this section with
a statement of L∞-estimates for the errors s− sh and p− ph in the two-dimensional
case.

THEOREM 5.5. Assume that (p, s) and (ph, sh) satisfy (3.1), (3.2) and (4.5), (4.6),
respectively, and the parameters hp and h satisfy (5.28). Then

max
0≤n≤nT

‖pn − pnh‖0,∞ ≤ C log h−1
p

(
E(T ) + hk

∗∗

p ‖p‖L∞(J;Hk∗∗+1(Ω))
)
,(5.35)

max
0≤n≤nT

‖sn − snh‖0,∞ ≤ C
(

log h−1)γ(E(T ) + hk+1‖s‖L∞(J;Wk+1,∞(Ω))
)
,(5.36)

where C = C(C1, C2, T ), γ = 1 for k = 1, and γ = 1/2 for k > 1.
Proof. First, it follows from the approximation property of the projection Ph [28]

that

‖pn − p̃n‖0,∞ ≤ Chk
∗∗

p

(
log h−1

p

)1/2‖pn‖k∗∗+1.(5.37)

Also, from [28, Lemma 1.2] and (5.13), we see that

‖θn‖0,∞ ≤ C log h−1
p ‖α(sn−1

h )βn + (α(sn)− α(sn−1
h ))un

+ α(sn−1
h )σn + (G(sn−1

h , pn−1
h )−G(sn, pn))‖,

so that, by Theorem 5.4,

max
0≤n≤nT

‖θn‖0,∞ ≤ C log h−1
p E(T ).

This, together with (5.37), implies (5.35). Finally, apply the embedding inequality
[37]

‖ξn‖0,∞ ≤ C
(

log h−1)1/2‖ξn‖1,
(5.3b), and (5.34) to obtain (5.36).

6. Finite elements for a degenerate problem. In this section we consider a
degenerate case where the diffusion coefficient D(s) can be zero. Since the pressure
equation is the same as before, we here focus on the saturation equation. For simplicity
we neglect gravity. Then the saturation equation (2.11) can be written as

φ
∂s

∂t
−∇ · (D(s)∇s− qw(s)u) = f̃w − s

∂φ

∂t
, (x, t) ∈ Ω× J.(6.1)

For technical reasons we consider only the Neumann boundary condition (2.15)

(D(s)∇s− qw(s)u) · ν = −dw(x, t), (x, t) ∈ ∂Ω× J,(6.2a)

and the initial condition is given by

s(x, 0) = s0(x), x ∈ Ω,(6.2b)

where 0 ≤ s0(x) ≤ 1, x ∈ Ω. We impose the following conditions on the degeneracy
of D(s):

D(s) ≥


β1|s|µ1 , 0 ≤ s ≤ α1,

β2, α1 ≤ s ≤ α2,

β3|1− s|µ2 , α2 ≤ s ≤ 1,
(6.3)D
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2248 ZHANGXIN CHEN AND RICHARD E. EWING

where the βi are positive constants and αj and µj (j = 1, 2) satisfy the conditions

0 < α1 < 1/2 < α2 < 1, 0 < µj ≤ 2.

Difficulties arise when trying to derive error estimates for the approximate solution
of (6.1) and (6.2) with D(s) satisfying the condition (6.3). To get around this problem,
we consider the perturbed diffusion coefficient Dκ(s) defined by [12], [25], [36], [39],

Dκ(s) = max{D(s), κµ},

where κ > 0 and µ = max{µ1, µ2}. Since the coefficient Dκ(s) is bounded away from
zero, the previous error analysis applies to the perturbed problem:

φ
∂sκ
∂t
−∇ · (Dκ(sκ)∇sκ − qw(sκ)u) = f̃w − sκ

∂φ

∂t
, (x, t) ∈ Ω× J,(6.4a)

(Dκ(sκ)∇sκ − qw(sκ)u) · ν = −dw(x, t), (x, t) ∈ ∂Ω× J,(6.4b)

sκ(x, 0) = s0(x), x ∈ Ω.(6.4c)

We now state a result on the convergence of sκ to s as κ tends to zero. Its proof
is given in [25] for the case where dw ≡ 0 and the right-hand side of (6.1) is zero, and
can be easily extended to the present case.

THEOREM 6.1. Assume that D(s) satisfies (6.3) and there is a constant C∗ > 0
such that

C∗|qw(s1)− qw(s2)|2 ≤ (D(s1)−D(s2)) (s1 − s2), 0 ≤ s1, s2 ≤ 1,(6.5)

where

D(s) =
∫ s

0
D(ξ)dξ.

Then there is C independent of κ, s, and µ such that

||s− sκ||L2+µ(J;L2+µ(Ω)) ≤ Cκ.(6.6)

As shown in [25], the requirement (6.5) is reasonable. We now consider a fully
discrete finite element method for (6.4). Let Mh be the standard C0 piecewise linear
polynomial space associated with Th; due to the roughness of the solution to (6.1) and
(6.2), no improvements in the asymptotic convergence rates result from taking higher
order finite element spaces. Also, we extend the domain of Dκ and qw as follows:

Dκ(ξ) =

{
Dκ(1) if ξ ≥ 1,
Dκ(−ξ) if ξ ≤ 0,

and

qw(ξ) = 0 ∀ξ ∈ (−∞, 0) ∪ (1,∞).

Now the finite element solution snh : J →Mh, n = 1, 2, . . . , nT , to (6.4) is given by(
φ∂snh, v

)
+
(
Dκ(snh)∇snh − qw(snh)un,∇v

)
(6.7a)

=
(
f̃nw − snh

∂φn

∂t
, v

)
− 〈dnw, v〉∂Ω ∀v ∈Mh,

s0
h = Phs0,(6.7b)
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where Ph is the L2-projection onto Mh. The following theorem states the convergence
of sh to s. For (6.8) below to be satisfied, we see from (6.6) that the perturbation
parameter κ needs to satisfy the relation κ = O(hλ1), where λ1 is given by

λ1 = (4 + 2µ)/(2 + 4µ+ µ2).

THEOREM 6.2. Let s and sh solve (6.1), (6.2), and (6.7), respectively, and let the
hypotheses of Theorem 6.1 be satisfied. Then there is C independent of κ, s, and µ
such that

max
0≤n≤nT

||s(tn)− snh||2H−1(Ω) +
nT∑
n=0

||s(tn)− snh||
2+µ
L2+µ(Ω)∆t

n

≤ C
(
h(2+µ)λ1

(
log h−1) µ

1+µ + ∆t
λ2+2

2
)
,

(6.8)

where λ2 = (2 + µ)/(1 + µ).
The proof can be carried out as in [26], [36], and [39]; we omit the details.

7. Simulation with various boundary conditions. Let ∂Ω be a set of four
disjoint regions Γi, i = 1, . . . , 4, and let Γ3 = ∪jΓ3,j where each Γ3,j is connected. As
mentioned in the introduction, the most commonly encountered boundary conditions
for the two-pressure equations are of first type, second type, third type, and well type.
Then we consider for α = w, a

pα = pαD(x, t), x ∈ Γ1, t > 0,(7.1)
uα · ν + χα(x, t, s)pα = υα(x, t, s), x ∈ Γ2, t > 0,(7.2) ∫

Γ3,j

(uw + uα) · ν = υj(t), x ∈ Γ3,j , t > 0,(7.3a)

pα = pαD(x, t) + dj(t), x ∈ Γ3,j , t > 0,(7.3b)
pa = paD(x, t), x ∈ Γ4, t > 0,(7.4a)
uw · ν + χw(x, t, s)pw = υw(x, t, s), x ∈ Γ4, t > 0,(7.4b)

where pαD, χα, υα, and υj are given functions, dj is an arbitrary scaling constant,
and ν is the outer unit normal to ∂Ω. Note that Γ1 is of the first type, Γ2 is of the
third type (it reduces to the second type as χα ≡ 0), Γ3 is of the well type, and on Γ4
we have the Dirichlet condition for the air phase and the Neumann condition for the
water phase. Let Γp,i = Γi, i = 1, . . . , 4, Γs,1 = Γ1∪Γ3, and Γs,2 = Γ2∪Γ4. Then the
global boundary conditions for the pressure-saturation equations (2.9)–(2.11) become

p = pD(x, t), x ∈ Γp,1, t > 0,(7.5)
u · ν + χ(x, t, s)p = Υ(x, t, s), x ∈ Γp,2, t > 0,(7.6) ∫

Γp,3,j
u · ν = υj(t), x ∈ Γp,3,j , t > 0,(7.7a)

p = pD(x, t) + dj(t), x ∈ Γp,3,j , t > 0,(7.7b)
p = paD(x, t) + ϕ(s), x ∈ Γp,4, t > 0,(7.8)
s = sD(x, t), x ∈ Γs,1, t > 0,(7.9)
(qwu+ kλaqw(∇pc − ρ̃)) · ν(7.10)

+ χw(x, t, s)p = Υw(x, t, s), x ∈ Γs,2, t > 0,
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2250 ZHANGXIN CHEN AND RICHARD E. EWING

where pD and sD are the transforms of pwD and paD by (2.2) and (2.3), and

χ = χw + χa,

Υ = υw + υa − χapc + χ

∫ pc(s)

0
qa
(
p−1
c (ξ)

)
dξ,

Υw = υw + χw

∫ pc(s)

0
qa
(
p−1
c (ξ)

)
dξ,

ϕ(s) = −
∫ pc(s)

0
qw
(
p−1
c (ξ)

)
dξ.

We now incorporate the boundary conditions (7.5)–(7.10) in the finite element
scheme given in (4.5) and (4.6). The constraint Vh ⊂ V says that the normal com-
ponents of the members of Vh are continuous across the interior boundaries in Thp .
Following [2], [9], we relax this constraint on Vh by introducing Lagrange multipliers
over interior boundaries. Since the mixed space Vh is finite dimensional and defined
locally on each element K in Thp , let Vh(K) = Vh|K . Then we define

Ṽh = {v ∈ (L2(Ω))d : v|K ∈ Vh(K) for each K ∈ Thp},

Lh,π1,{πj},π3 =
{
r ∈ L2

( ⋃
e∈∂Thp

e

)
: r|e ∈ Vh · ν|e for each e ∈ ∂Thp ;

(r − π1, r1)e = 0, r1 ∈ Vh · ν|e, ∀e ∈ Γp,1,
(r − πj , r2)e = 0, r2 ∈ Vh · ν|e, ∀e ∈ Γp,3,j , for each j,

(r − π3, r3)e = 0, r3 ∈ Vh · ν|e, ∀e ∈ Γp,4

}
,

and Wh and Mh are given as before. The mixed finite element solution of the pressure
equation is {unh, pnh, `nh} ∈ Ṽh×Wh×Lh,pnD,{pnD+dnj },pnaD+ϕn−1 , n = 1, 2, . . . , n, satisfying

(c(sn−1
h , pn−1

h )∂pnh, ψ) +
∑
K

(∇ · unh, ψ)K = (f(pn−1
h ), ψ) ∀ψ ∈Wh,

(α(sn−1
h )unh, v)−

∑
K

{
(∇ · v, pnh)K − (`nh, v · νK)∂K

}
= (G(sn−1

h , pn−1
h ), v) ∀v ∈ Ṽh,

∑
K

(unh · νK , r)∂K\(Γp,1∪Γp,4) = (Υ(sn−1
h )− χ(sn−1

h )`nh, r)Γp,2 +
∑
j

(υnj , r)Γp,3,j

|Γp,3,j |

∀r ∈ Lh,0,{0},0,

and the finite element method for the saturation is given for snh ∈Mh + snD satisfying(
φ∂snh, v

)
+
(
D(sn−1

h )∇snh − qw(sn−1
h )unh − b(sn−1

h , pnh),∇v
)

=
(
f̃nw − snh

∂φn

∂t
, v
)
− (Υw(sn−1

h )− χw(sn−1
h )`nh, v)Γ2 ∀v ∈Mh,

for n = 1, 2, . . . , nT . The computation of these equations can be carried out as in
(4.5) and (4.6). Note that the last equation in the unconstrained mixed formulation
above enforces the continuity requirement on uh, so in fact uh ∈ Vh. It is well known
[2], [9] that the linear system arising from this unconstrained mixed formulation leads
to a symmetric, positive definite system for the Lagrange multipliers, which can be
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TABLE 1
Convergence of ph at T = 1min.

1/h L∞-error L∞-order L2-error L2-order
10 0.0570 − 0.0501 −
20 0.0343 0.73 0.0245 1.02
40 0.0186 0.88 0.0122 1.00
80 0.0090 1.05 0.0059 1.02

TABLE 2
Convergence of sh at T = 1min.

1/h L∞-error L∞-order L2-error L2-order
10 0.0766 − 0.0695 −
20 0.0526 0.55 0.0482 0.53
40 0.0295 0.83 0.0271 0.83
80 0.0167 0.82 0.0152 0.84

easily solved. Also, the introduction of the Lagrange multipliers makes it easier to
incorporate the boundary conditions (7.5)–(7.10).

We now present a numerical example. The relative permeability functions are
taken as follows:

krw = s− srw, kra = 1− s− sra,

where srw and sra are the irreducible saturations of the water and air phases, respec-
tively. The capillary pressure function is of the form

pc(s) = (1− s){γ(s−1 − 1) + Θ},

where γ and Θ are functions of the irreducible saturations. The water and air vis-
cosities and densities are set to be 1cP and 0.8cP , and 100kg/m3 and 1.3kg/m3,
respectively. The permeability rate is 1× 10−12m2. A two-dimensional domain of 4m
width by 1m depth is simulated. Finally, the boundary of the domain is divided into
the following segments:

Γ1 = {(x, y) : x = 0, 0 < y < 1},
Γ2 = {(x, y) : x = 4, 0 ≤ y ≤ 1} ∪ {(x, y) : y = 0, 0 ≤ x < 4},
Γ3 = ∅,
Γ4 = {(x, y) : y = 1, 0 ≤ x < 4}.

A uniform partition of Ω into rectangles with h = ∆x = ∆y is taken, and the time
step ∆t is required to satisfy (5.28). The Raviart–Thomas space of lowest-order over
rectangles is chosen. Tables 1 and 2 describe the errors and convergence orders for
the pressure and saturation at time t = 1min, respectively. Experiments at other
times and on finer meshes are also carried out; similar results are observed and not
reported here.

From Table 1, we see that the scheme is first-order accurate both in L2 and L∞

norms for the pressure, i.e., optimal order. Table 2 shows that the scheme is almost
optimal order for the saturation. Thus the numerical experiments in the two tables
are in agreement with our earlier analytic results.
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[37] A. SCHATZ, V. THOMÉE, AND L. WAHLBIN, Maximum norm stability and error estimates in
parabolic finite element equations, Comm. Pure Appl. Math., 33 (1980), pp. 265–304.

[38] R. SCOTT, Optimal L∞ estimates for the finite element method on irregular meshes, Math.
Comp., 30 (1976), pp. 681–697.

[39] D. SMYLIE, A Near Optimal Order Approximation to a Class of Two Sided Nonlinear De-
generate Parabolic Partial Differential Equations, Ph.D. thesis, University of Wyoming,
Laramie, WY, 1989.
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