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MULTIGRID AND MULTILEVEL METHODS FOR

NONCONFORMING Q1 ELEMENTS

ZHANGXIN CHEN AND PETER OSWALD

Abstract. In this paper we study theoretical properties of multigrid algo-
rithms and multilevel preconditioners for discretizations of second-order elliptic
problems using nonconforming rotated Q1 finite elements in two space dimen-
sions. In particular, for the case of square partitions and the Laplacian we
derive properties of the associated intergrid transfer operators which allow us
to prove convergence of the W-cycle with any number of smoothing steps and
close-to-optimal condition number estimates for V-cycle preconditioners. This
is in contrast to most of the other nonconforming finite element discretizations
where only results for W-cycles with a sufficiently large number of smoothing
steps and variable V-cycle multigrid preconditioners are available. Some nu-
merical tests, including also a comparison with a preconditioner obtained by
switching from the nonconforming rotated Q1 discretization to a discretization
by conforming bilinear elements on the same partition, illustrate the theory.

1. Introduction

In recent years there have been analyses and applications of the nonconforming
rotated (NR) Q1 finite elements for the numerical solution of partial differential
problems. These nonconforming elements were first proposed and analyzed in [24]
for numerically solving the Stokes problem; they provide the simplest example of
discretely divergence-free nonconforming elements on quadrilaterals. More results
on these Stokes elements can be found in [26]. There also exist n-dimensional
counterparts of these elements, with analogous properties [25]. Then the NR Q1

elements were used to simulate the deformation of martensitic crystals with mi-
crostructure [18] due to their simplicity. Conforming finite element methods can be
used to approximate the microstructure with layers which are oriented with respect
to meshes, while nonconforming finite element methods allow the microstructure
to be approximated on meshes which are not aligned with the microstructure (see,
e.g., [18] for the references).

Independently, the NR Q1 elements have been derived within the framework
of mixed finite element methods [11, 1]. It has been shown that the nonconform-
ing method using these elements is equivalent to the mixed method utilizing the
lowest-order Raviart-Thomas mixed elements on rectangles (respectively, rectangu-
lar parallelepipeds) [25]. Based on this equivalence theory, both the NR Q1 and the
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Raviart-Thomas mixed methods have been applied to model semiconductor devices
[11]; they have been effectively employed to compute the electric potential equation
with a doping profile which has a sharp junction.

Error estimates of the NR Q1 elements can be derived by the classical finite
element analysis [24, 17]. They can also be obtained from the known results on
the mixed method based on the equivalence between these two methods [1]. It
has been shown that the so-called “nonparametric” rotated Q1 elements produce
optimal-order error estimates. As a special case of the nonparametric families, the
optimal-order error estimates can be obtained for partitions into rectangles (re-
spectively, rectangular parallelepipeds) oriented along the coordinate axes. Finally,
superconvergence results have been obtained in [1, 17].

Unlike the simplest triangular nonconforming elements, i.e., the nonconforming
P1 elements, the NR Q1 elements do not have any reasonable conforming subspace.
Consequently, there are differences between these two types of nonconforming el-
ements. The NR Q1 elements can be defined on quadrilaterals with degrees of
freedom given by the values at the midpoints of edges of the quadrilaterals, or by
the averages over the edges of the quadrilaterals. While these two versions lead
to the same definition for the nonconforming P1 elements, they produce different
results in terms of implementation for the NR Q1 elements. With the second ver-
sion of the NR Q1 elements, we are able to prove all the theoretical results for the
multigrid algorithms and multilevel additive and multiplicative Schwarz methods
considered in this paper. However, we are unable to obtain these results with their
first version. In particular, as numerical tests in [23] indicate, the energy norm of
the iterates of the usual intergrid transfer operators, which enters both upper and
lower bounds for the condition number of preconditioned systems, deteriorates with
the number of grid levels for the first version. But it is bounded independently of
the number of grid levels for the second version, as shown here for square partitions.

Since the nonconforming P1 finite element space contains the conforming P1

elements (with respect to the same triangulation), the convergence of the standard
V-cycle algorithm for the nonconforming P1 elements can be shown when the coarse-
grid correction steps of this algorithm are established on the conforming P1 spaces
[29, 19, 12]. Such an approach to establishing V-cycle results fails for the NR Q1

elements. On the other hand, within the context of the nonconforming methods,
i.e., when the coarse-grid correction steps are defined on the nonconforming P1

spaces themselves, the convergence of the V-cycle algorithm has not been shown,
and the W-cycle algorithm has been proven to converge only under the assumption
that the number of smoothing steps is sufficiently large [7, 8, 3, 4, 27, 1, 12, 15].

Multigrid algorithms for the NR Q1 discretizations of a second-order elliptic
boundary value problem were first developed and analyzed in [1], and further dis-
cussed in [12] and [9]. The second version of these elements was used in [1] and
[12], while their first version was exploited in [9]. Moreover, the analysis in [9]
was given for elliptic boundary value problems which are not required to have full
elliptic regularity. However, in all these three papers, only the W-cycle algorithm
with a sufficiently large number of smoothing steps was shown to converge using
the standard proof of convergence of multigrid algorithms for conforming finite el-
ement methods [2]. We finally mention that the study of the NR Q1 elements in
the context of domain decomposition methods has been given in [13, 14].

This paper should be viewed mainly as a contribution to the theory of multigrid
methods for nonconforming finite element discretizations. In Section 2, we derive
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some new properties of intergrid transfer operators associated with the second ver-
sion of the NR Q1 elements. The crucial estimates (2.13) (second inequality) and
(2.15) are shown for the Laplace operator with Dirichlet boundary conditions on
the unit square in R2, and for sequences of uniform square partitions for (2.15).
Consequently, most of the new results on multigrid methods and multilevel pre-
conditioners proved in the subsequent sections are restricted to this model case.
Throughout the paper, we make some comments on extending the results to more
general elliptic problems, domains, and partition types.

In Section 3, we show optimal, level-independent convergence rates for the W-
cycle algorithm to hold with any number of smoothing steps. The NR Q1 elements
have so far been the first type of nonconforming elements which are shown to possess
this feature. The question of establishing level-independent convergence rates for
the standard V-cycle still remains open.

Multilevel preconditioners of hierarchical basis and BPX type for the NR Q1

elements are studied in Section 4. Following [23], we develop a convergence theory
for the multilevel additive Schwarz methods and their related multiplicative V-cycle
algorithms. A key ingredient in the analysis is to control the energy norm growth
of the iterated coarse-to-fine grid operators, which enters both upper and lower
bounds for the condition number of preconditioned systems. So far, the energy
norm of the iterated intergrid transfer operators has been shown to be bounded
independently of grid levels solely for the nonconforming P1 elements [20]. In this
paper, we prove this property for the NR Q1 elements (see Lemma 2.4). As a
consequence, we obtain a suboptimality result for the multilevel preconditioners of
hierarchical basis and BPX type for the NR Q1 elements.

In Section 5, we apply ideas of [22] and study the problem of switching the NR
Q1 discretization to a spectrally equivalent discretization for which optimal precon-
ditioners are already available. For square partitions, the conforming bilinear finite
element space is a suitable candidate. The switching approach leads to optimal
preconditioning results for the NR Q1 elements.

Thanks to the equivalence between the rotated Q1 nonconforming method and
the lowest-order Raviart-Thomas mixed rectangular method, all the results derived
here carry over directly to the latter method [1, 12]. An extension to the cor-
responding discretely divergence-free NR Q1 Stokes discretization is not straight-
forward since the standard intergrid transfer operators for the scalar case do not
preserve the solenoidality constraint (see [26] for intergrid transfer operators for the
Stokes case and related multigrid results).

Finally, in Section 6 we present some numerical results on convergence rates and
condition numbers which confirm the theoretical findings.

2. Preliminary results

Let Hs(Ω) and L2(Ω) = H0(Ω) be the usual Sobolev spaces with the norm

||v||s =

∫
Ω

∑
|α|≤s

|Dαv|2 dx

1/2

,

where s is a nonnegative integer, and Ω is a two-dimensional domain. Also, let (·, ·)
denote the L2(Ω) or (L2(Ω))2 inner product, as appropriate. The L2(Ω) norm is
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indicated by || · ||. Finally,

H1
0 (Ω) = {v ∈ H1(Ω) : v|Γ = 0},

where Γ = ∂Ω.
From now on, let Ω be the unit square (0, 1)2 (extensions will be mentioned

separately). Let h1 and Eh1 = E1 be given, where Eh1 is a partition of Ω into
uniform squares with length h1 and oriented along the coordinate axes (in the
simplest dyadic case, one would take h1 = 1/2). For each integer 2 ≤ k ≤ K, let
hk = 21−kh1 and Ehk = Ek be constructed by connecting the midpoints of the edges
of the squares in Ek−1, and let Eh = EK be the finest grid. Also, let ∂Ek be the set
of all interior edges in Ek. In this and the following sections, we replace subscript
hk simply by subscript k.

For each k, we introduce the NR Q1 space

Vk =

{
v ∈ L2(Ω) : v|E = a1

E + a2
Ex+ a3

Ey + a4
E(x2 − y2), aiE ∈ R, ∀E ∈ Ek;

if E1 and E2 share an edge e, then

∫
e

ξ|∂E1 ds =

∫
e

ξ|∂E2 ds;

and
∫
∂E∩Γ ξ|Γ ds = 0

}
.

Note that Vk 6⊂ H1
0 (Ω) and Vk−1 6⊂ Vk, k ≥ 2. We introduce the space

V̂k =

k∑
l=1

Vl ⊃ Vk,

the discrete energy scalar product on V̂k ⊕H1
0 (Ω) by

(v, w)E,k =
∑
E∈Ek

(∇v,∇w)E , v, w ∈ V̂k ⊕H1
0 (Ω),

and the discrete norm on V̂k ⊕H1
0 (Ω) by

||v||E,k =
√

(v, v)E,k , v ∈ V̂k ⊕H1
0 (Ω).

We introduce two sets of intergrid transfer operators Ik : Vk−1 → Vk and Pk−1 :
Vk → Vk−1 as follows. Following [1, 12], if v ∈ Vk−1 and e is an edge of a square in
Ek, then Ikv ∈ Vk is defined by

1

|e|

∫
e

Ikv ds =



0 if e ⊂ ∂Ω,

1

|e|

∫
e

v ds if e is interior to some E ∈ Ek−1,

1

2|e|

∫
e

(v|E1 + v|E2) ds if e ⊂ ∂E1 ∩ ∂E2

for some E1, E2 ∈ Ek−1.

If v ∈ Vk and e is an edge of an element in ∂Ek−1, then Pk−1v ∈ Vk−1 is given by

1

|e|

∫
e

Pk−1v ds =
1

2

{
1

|e1|

∫
e1

v ds+
1

|e2|

∫
e2

v ds

}
,

where e1 and e2 in ∂Ek form the edge e ∈ ∂Ek−1. Note that the definition of Pk−1

automatically preserves the zero average values on boundary edges. Also, it can be
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seen that

Pk−1Ikv = v, v ∈ Vk−1, k ≥ 1.(2.1)

That is, Pk−1Ik is the identity operator Idk−1 on Vk−1. This relation is not satisfied
when the NR Q1 elements are defined with degrees of freedom given by the values
at the midpoints of edges of elements.

For future use, note that Ik (as well as Pk−1) can be extended to the larger

spaces V̂k in a natural way. For example, the definition of Îkv ∈ Vk by

1

|e|

∫
e

Îkv ds =


0 if e ⊂ ∂Ω,

1

2|e|

∫
e

(v|E1 + v|E2) ds if e = ∂E1 ∩ ∂E2

for some E1, E2 ∈ Ek,

is meaningful for any v ∈ V̂k, and satisfies Îk|Vk−1
= Ik as well as Îk|Vk = Idk.

We also define the iterates of Ik and Pk−1 by

RK
k = IK · · · Ik+1 : Vk → VK ,

QK
k = Pk · · ·PK−1 : VK → Vk.

Finally, the discrete energy scalar product on the space V̂K is defined by restriction:

(v, w)E = (v, w)E,K , v, w ∈ V̂K .
Obviously, we have the inverse inequality

||v||E ≤ C2k||v||, v ∈ V̂k, 1 ≤ k ≤ K,(2.2)

(here and later, by C, c,... we denote generic positive constants which are indepen-
dent of k, K, and the functions involved).

In this section we collect some basic properties of the intergrid transfer operators
Pk−1 (respectively, Ik) and their iterates QK

k (respectively, RK
k ). The crucial results

are the boundedness of the operators Ik with constant
√

2 (Lemma 2.3) and the
uniform boundedness of the operators RK

k with respect to the discrete energy norm
|| · ||E (Lemma 2.4).

Lemma 2.1. It holds that Pk−1 (2 ≤ k ≤ K) is an orthogonal projection with
respect to the energy scalar product, i.e., for any v ∈ Vk,

(v − Pk−1v, w)E = 0, ∀w ∈ Vk−1,

||v||2E = ||v − Pk−1v||2E + ||Pk−1v||2E .
(2.3)

Moreover, there are constants C and c, independent of v, such that the difference
v̂ = v − Pk−1v ∈ V̂k satisfies

c2k||v̂|| ≤ ||v̂||E ≤ C2k||v̂||.(2.4)

Proof. For any E ∈ Ek−1 with the four subsquares Ei ∈ Ek (i = 1, . . . , 4, see
Figure 1), an application of Green’s formula implies that

(∇[v − Pk−1v],∇w)E =
∑4

i=1(∇[v − Pk−1v],∇w)Ei

=
∑4

i=1

∑4
j=1

∂w
∂νjEi

∣∣
ejEi

∫
ejEi

(v − Pk−1v)|Ei ds,
(2.5)

where ejEi are the four edges of Ei with the outer unit normals νjEi , i = 1, . . . , 4.

Note that in (2.5) the line integrals over edges interior to E ∈ Ek−1 cancel by
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e1E

e3E

e2E e4E

E1

E2 E3

E4

Figure 1. Edges and subsquares of E ∈ Ek−1.

continuity of Pk−1v in the interior of E. Also, if ejEi and eĵEî
form an edge of E, it

follows by the definition of Pk−1 that∫
ejEi

(v − Pk−1v)|Ei ds+

∫
eĵE

î

(v − Pk−1v)|Eî ds = 0,

and that

∂w

∂νjEi

∣∣
ejEi

=
∂w

∂ν ĵEî

∣∣
eĵE

î

is constant. Then, by (2.5), we see that

(∇[v − Pk−1v],∇w)E = 0.

Now, sum over all E ∈ Ek−1 to derive the orthogonality relations in (2.3).
The upper estimate in (2.4) directly follows from (2.2). The lower bound can be

easily obtained from a direct calculation of the energy norms of v − PK−1v on all
E ∈ Ek−1. This completes the proof.

Before we start with the investigation of the prolongations Ik, it will be useful
to collect some formulas. For E ∈ Ek−1 and any v ∈ Vk−1, define

biE =
1

|eiE |

∫
eiE

v ds,

(see Figure 1 for the notation), and set

sE = b1E + b2E + b3E + b4E, 41
E = b3E − b1E ,

θ0E = b1E + b3E − b2E − b4E, 42
E = b4E − b2E .

Then, with the subscript E omitted, we have the next lemma.

Lemma 2.2. It holds that

||v||2L2(E) = h2
k−1

(
1
16s

2 + 1
12{(41)2 + (42)2}+ 1

40 (θ0)2
)
,

||∇v||2L2(E) = (41)2 + (42)2 + 3
2 (θ0)2,

(2.6)
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Eβ−e1 Eβ

e2β

e1β−e1 β

e1β−e1+e2

e2β−e1

e1β

e1β+e2

e2β+e1 ẽ12β+e2

ẽ22β ẽ22β+e1Ẽ2β

2β ẽ12β

Figure 2. An illustration for Lemma 2.3.

and

h2
k−1

10

{
(b1)2 + (b2)2 + (b3)2 + (b4)2

}
≤ ||v||2L2(E)

≤ h2
k−1

4

{
(b1)2 + (b2)2 + (b3)2 + (b4)2

}
.

(2.7)

Proof. Using the affine invariance of the local interpolation problem connecting v
with its edge averages bi, it suffices to prove (2.6) and (2.7) for the master square
E = (−1, 1)2. A straightforward calculation gives

v = v(x, y) =
1

4
s+

42

2
x+

41

2
y − 3

8
θ0(x2 − y2).(2.8)

Now direct integration yields the desired results in (2.6). Also, (2.7) follows from the
first equation of (2.6) by computing the eigenvalues of the symmetric 4× 4 matrix
T tDT , where D =diag(1/16, 1/12, 1/12, 1/40), T stands for the transformation
matrix from the vector (b1, b3, b2, b4) to (s,41,42, θ0), and T t is the transpose of
T . These eigenvalues are 1/10, 1/6, 1/6, and 1/4, which implies (2.7).

Lemma 2.2 is the basis for computing all the discrete energy and L2 norms
needed in the sequel. The formula (2.8) valid for the master square can be used to
derive explicit expressions for the edge averages of Ikv and Ikv − v. Toward this
end, we first compute the corresponding values for the master square, and then use
the invariance of the local interpolation problem for v under affine transformations
(for the square triangulations under consideration, these transformations are just
dilation and translation) to return to the notation on each E ∈ Ek−1.

Note that for the square partitions under consideration, vertices, subsquares,
and horizontal/vertical edges can be labeled by multi-indices β ∈ Z2 in a natural
way. The origin and the square attached to it are labeled by β = (0, 0), for all
k. See Figure 2 for the further conventions. The left picture shows two squares
Eβ−e1 , Eβ from Ek−1, and the right the same two squares (together with their
subsquares) as part of Ek. We use the notation e1 = (1, 0), and e2 = (0, 1) for the
unit vectors. Horizontal and vertical edges are distinguished by the superscripts
1 and 2, respectively; e.g., e1β in the left picture is the horizontal edge in ∂Ek−1

emanating from the vertex with index β and belonging to the element with index
Eβ of Ek−1. The same vertex is labeled by 2β if considered as vertex in Ek, and so
on.

Given an arbitrary v ∈ Vk−1, let b1β and b2β denote its averages over the horizontal

and vertical edges e1β and e2β in ∂Ek−1, respectively. The corresponding quantities
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for Ikv ∈ Vk are indicated by ajα, j = 1, 2. Now, introduce the auxiliary quantities

θ̂1β = b1β + b1β−e1 − b1β+e2 − b1β+e2−e1 ,

θ̂2β = b2β + b2β−e2 − b2β+e1 − b2β+e1−e2 .

With this notation at hand, it follows from the definition of Ik that the edge
averages of Ikv can be written as follows:

a1
2β = b1β + 1

8 θ̂
2
β ,

a1
2β+e1 = b1β − 1

8 θ̂
2
β ,

a1
2β+e2 = 5

8b
2
β + 1

8b
2
β+e1 + 1

8b
1
β + 1

8b
1
β+e2 ,

a1
2β+e2+e1 = 5

8b
2
β+e1 + 1

8b
2
β + 1

8b
1
β + 1

8b
1
β+e2 ,

(2.9)

and

a2
2β = b2β + 1

8 θ̂
1
β ,

a2
2β+e2 = b2β − 1

8 θ̂
1
β ,

a2
2β+e1 = 5

8b
1
β + 1

8b
1
β+e2 + 1

8b
2
β + 1

8b
2
β+e1 ,

a2
2β+e2+e1 = 5

8b
1
β+e2 + 1

8b
1
β + 1

8b
2
β + 1

8b
2
β+e1 .

(2.10)

These formulas are valid for interior edges. Whenever the edge average ajα is as-
sociated with a boundary edge of Ek, this value has to be replaced by zero. We
give the elementary argument for the first and third formulas in (2.9); the others
follow by symmetry arguments. Let us start with the edge ẽ12β+e2 in ∂Ek. Since it

is interior to Eβ (see Figure 2), we have

a1
2β+e2 =

1

|ẽ12β+e2 |

∫
ẽ1
2β+e2

v ds .

Using the dilation invariance, this integral can be computed by transferring Eβ

to the master square and using (2.8). This leads us to integrating the expression
in (2.8) along the path −1 ≤ x ≤ 0, y = 0, and substituting the values for the
parameters obtained from the corresponding edge averages of v:

s = b1β + b1β+e2 + b2β + b2β+e1 , ∆1 = b1β+e2 − b1β,

∆2 = b2β+e1 − b2β , θ0 = b1β + b1β+e2 − b2β − b2β+e1 .

As a result, we have

a1
2β+e2 =

s

4
− ∆2

4
− θ0

8
=

1

8
(5b2β + b2β+e1 + b1β + b1β+e2) ,

which is the third formula in (2.9).
Analogously, we integrate in (2.8) along −1 ≤ x ≤ 0, y = −1, and obtain

1
|ẽ12β |

∫
ẽ12β

v|Eβ ds= s
4 −

∆1

2 − ∆2

4 + θ0

4

= b1β + 1
4 (b2β − b2β+e1) .

To obtain the average of v|Eβ−e2 along the same edge, we integrate in (2.8) along

the path −1 ≤ x ≤ 0, y = 1, and apply an index shift by −e2. This yields that

1

|ẽ12β |

∫
ẽ12β

v|Eβ−e2 ds = b1β +
1

4
(b2β−e2 − b2β+e1−e2) .
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Combining the last two formulas results in the first formula in (2.9) since according
to the definition of Ikv

a1
2β =

1

2|ẽ12β|

∫
ẽ12β

(v|Eβ + v|Eβ−e2 ) ds .

To obtain the main results of this section which concern the behavior of Ik and
its iterates with respect to the energy norm, we need to deal with the difference
Ikv − v which is an element of V̂k for any v ∈ Vk. This is particularly useful since
we have

||Ikv||2E − ||v||2E = ||Ikv − v||2E , v ∈ Vk−1.(2.11)

The relation (2.11) follows from Lemma 2.1 (replace there v by Ikv and w by v and
use Pk−1Ik = Idk−1). It shows that Ik is expanding in the energy norm, and that
the energy norm growth is intimately connected with the energy norm of Ikv − v.

The edge averages related to Ikv− v have simple expressions if we introduce the
following notation. Set

θ1β = b1β+e2 − b1β + b1β−e1 − b1β+e2−e1 ,

θ2β = b2β+e1 − b2β + b2β−e2 − b2β+e1−e2 ,

if e1β resp. e2β are interior edges in ∂Ek−1. For boundary edges, they need to be

modified. For example, if e1β is a boundary edge in ∂Ek−1, we define

θ2β = 2(b2β+e1 − b2β),

analogously for vertical boundary edges.
Denote temporarily w = Ikv − v. We have essentially two cases. If an edge

e ∈ ∂Ek belongs to the interior of some square in Ek−1, then the edge averages of
w (taken from the restrictions to either of the two squares in Ek attached to e)
vanish by definition of Ik. What remains are edges e that belong to a (boundary or
interior) edge of the partition Ek−1. We give the result for the case that e coincides
with ẽ12β or ẽ12β+e1 , i.e., belongs to the edge e1β ∈ ∂Ek−1 (see Figure 2 for the

notation):
1

|ẽ12β |
∫
ẽ12β

w|Ẽ2β
ds = 1

|ẽ1
2β+e1

|
∫
ẽ1
2β+e1

w|Ẽ2β+e1−e2
ds = 1

8θ
2
β ,

1
|ẽ12β |

∫
ẽ12β

w|Ẽ2β−e2
ds = 1

|ẽ1
2β+e1

|
∫
ẽ1
2β+e1

w|Ẽ2β+e1
ds = − 1

8θ
2
β .

(2.12)

The averages of w = Ikv − v on other edges (including those on the boundary of
Ω) are given similarly. The derivation of (2.12) is left upon the reader (just recall
the above calculations which led to the proof of the first inequality in (2.9)).

From (2.9)–(2.12) and Lemma 2.2, we immediately have the next lemma. Below
the notation ≈ stands for two-sided inequalities with constants independent of k.

Lemma 2.3. It holds that

||Îkv|| ≤
√

5
2 ||v||, ∀v ∈ V̂k,

||Ikv||E ≤
√

2||v||E , ∀v ∈ Vk−1,
(2.13)

and

2k||Ikv − v|| ≈ ||Ikv − v||E ≈

∑
β

{(θ1β)2 + (θ2β)2}

1/2

, ∀v ∈ Vk−1.(2.14)
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Proof. Relation (2.14) is obvious from (2.12) and Lemma 2.2 (note that, for any
element E in Ek, the values ∆1

E resp. ∆2
E coincide with ± 1

8θ
2
β resp. ± 1

8θ
2
β′ for

the corresponding β, β′). The first estimate in (2.13) follows from a purely local
argument and holds for any function v which is piecewise (on each square E ∈ Ek)
in the rotated Q1 space span{1, x, y, x2 − y2}. Indeed, if the two edge averages
corresponding to an edge e ∈ ∂Ek of such a function are denoted by be and b′e, then

Îkv has edge average (be + b′e)/2 for this e (and 0 for boundary edges). Thus, by
(2.7),

‖Îk(v)‖2 ≤
h2
k

4

∑
e∈∂Ek

2

(
be + b′e

2

)2

≤ h2
k

4

∑
E∈Ek

∑
e⊂∂E

b̃2e ≤ 5/2‖v‖2 ;

in the last summation b̃e is either be or b′e depending on E.
The most important result is the second inequality in (2.13). According to (2.11),

it is enough to establish that

‖Ikv − v‖2E ≤ ‖v‖2E , ∀ v ∈ Vk−1 .

Going back to the above description of the edge averages of Ikv− v, we see that for
each square in Ek two of them are zero, and the other two equal ± 1

8θ
1
β resp. ± 1

8θ
2
β′

for appropriate multi-indices β, β′. Using the second equality in (2.6) gives

‖Ikv − v‖2L2(E) =
1

64
((θ1β)2 + (θ2β′)

2 +
3

2
(θ1β − θ2β′)

2) ≤ 1

16
((θ1β)2 + (θ2β′)

2) ,

and carefully adding all local estimates, we arrive at

‖Ikv − v‖2E ≤
1

4

∑
interior

((θ1β)2 + (θ2β′)
2) +

1

8

∑
boundary

((θ1β)2 + (θ2β′)
2),

(note that terms corresponding to interior edges occur four times while terms cor-
responding to boundary edges only twice). Now, recall that θ1β = ∆1

β − ∆1
β−e2

for interior e1β (analogously for interior e2β) while θ1β = 2∆1
β for a e1β on the lower

boundary edge of the unit square (analogously for other boundary edges). Thus,
by using again the crude estimate (a+ b)2 ≤ 2(a2 + b2) and regrouping the (∆1

β)2

and (∆1
β)2 terms with respect to the squares in Ek−1, we obtain

‖Ikv − v‖2E ≤
∑

E∈Ek−1

((∆1
E)2 + (∆2

E)2) .

A second application of (2.6) gives the desired result. Lemma 2.3 is established.

In the remainder of this section we prove the following property of the iterated
coarse-to-fine intergrid transfer operators RK

k .

Lemma 2.4. It holds that

||RK
k v||E ≤ C||v||E , ∀v ∈ Vk, 1 ≤ k ≤ K.(2.15)

Proof. The proof is technical; it follows the idea of the proof of an analogous state-
ment for the P1 nonconforming elements [20]. First, we consider the case of Ω = R2.
That is, we assume that all our definitions are extended to infinite square partitions
of R2; due to the local character of all constructions, this is easy to do. We keep
the same notation for the extended partitions Ek, edges ejα ∈ ∂Ek, squares E ∈ Ek,
etc. In order to guarantee the finiteness of all norm expressions, we restrict our
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attention to functions v ∈ Vk with finite support. By the construction of Ik, this
property is preserved when applying the operators Ik and RK

k .
After the extension to the shift-invariant setting of R2, it is clear that it suffices

to consider the case of k = 1. Set, for simplicity, R̃k = Rk
1 , k = 1, . . . , K. Our

main observation from numerical experiments [23] was that the sequence

{||R̃kv − R̃k−1v||2E , k = 2, . . . , K}

decays geometrically. What we want to prove next is the mathematical counterpart
to this observation. To formulate the technical result, introduce

σj =
∑
α∈Z2

(θjα)2, j = 0, 1, 2,

where the quantities θjα are determined from the edge averages of v ∈ V1 by the
same formulas as above. The corresponding quantities computed for ṽ = I2v ∈ V2

are denoted by θ̃jα and σ̃j , j = 0, 1, 2. From (2.14) in Lemma 2.3, we see that

σ1 + σ2 ≈ ||R̃2v − v‖2E and σ̃1 + σ̃2 ≈ ||R̃3v − R̃2v||2E ;

moreover, we can iterate this construction. Thus, if we can prove that

σ̃ ≡ c∗σ̃0 + σ̃1 + σ̃2 ≤ γ∗σ ≡ γ∗(c∗σ0 + σ1 + σ2),(2.16)

where 0 < γ∗ < 1 and c∗ > 0 are constants independent of v, then, by Lemmas 2.2
and 2.3,

||RK
1 v||E ≤ ||v||E +

∑K
k=2 ||R̃kv − R̃k−1v‖E

≤ ||v||E + C
∑K−1

k=1

√
(γ∗)k

√
σ

≤ C||v||E .

(2.17)

Since this gives the desired boundedness of RK
k (for R2) via dilation, we concentrate

on (2.16).

From (2.9) and (2.10) we find the following formulas for θ̃jα:

θ̃02β = − 1
8θ

1
β + 1

8θ
2
β + 1

4θ
0
β ,

θ̃02β+e1 = 1
8θ

1
β+e1 − 1

8θ
2
β + 1

4θ
0
β ,

θ̃02β+e2 = 1
8θ

1
β − 1

8θ
2
β+e2 + 1

4θ
0
β ,

θ̃02β+e1+e2 = − 1
8θ

1
β+e1 + 1

8θ
2
β+e2 + 1

4θ
0
β ,

θ̃12β = 1
2θ

1
β − 1

8 (θ2β + θ2β−e1)− 3
8 (θ0β − θ0β−e1),

θ̃12β+e1 = 1
4θ

2
β ,

θ̃12β+e2 = 1
2θ

1
β − 1

8 (θ2β+e2 + θ2β−e1+e2) + 3
8 (θ0β − θ0β−e1),

θ̃12β+e1+e2 = 1
4θ

2
β+e2 ,

θ̃22β = 1
2θ

2
β − 1

8 (θ1β + θ1β−e2) + 3
8 (θ0β − θ0β−e2),

θ̃22β+e2 = 1
4θ

1
β ,

θ̃22β+e1 = 1
2θ

2
β − 1

8 (θ1β+e1 + θ1β−e2+e1)− 3
8 (θ0β − θ0β−e2),

θ̃22β+e1+e2 = 1
4θ

1
β+e1 .

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



678 ZHANGXIN CHEN AND PETER OSWALD

It is elementary but tedious to verify all these expressions, we give details for the
first, fifth and sixth equations, and all others are similar and follow by some kind
of symmetry argument:

θ̃02β = a1
2β + a1

2β+e2 − a2
2β − a2

2β+e1

= b1β + 1
8 (b2β + b2β−e2 − b2β+e1 − b2β+e1−e2) + 1

8 (b1β + b1β+e2 + 5b2β + b2β+e1)

−b2β− 1
8 (b1β+b1β−e1−b1β+e2−b1β−e1+e2)+

1
8 (5b1β+b1β+e2+b2β + b2β+e1)

= 1
8 (3b1β − b1β−e1 + b1β+e2 + b1β−e1+e2)− 1

8 (3b2β − b2β−e2 + b2β+e1b
2
β+e1−e2)

= − 1
8θ

1
β + 1

8θ
2
β + 1

4θ
0
β ,

θ̃12β = a1
2β+e2 − a1

2β + a1
2β−e1 − a1

2β−e1+e2

= 1
8 (b1β + b1β+e2 + 5b2β + b2β+e1)− 1

8 (b1β−e1 + b1β−e1+e2 + 5b2β + b2β−e1)
+ b1β−e1 + 1

8 (b2β + b2β−e2 − b2β−e1 − b2β−e1−e2)
− b1β − 1

8 (b2β + b2β−e2 − b2β+e1 − b2β+e1−e2)

= 7
8 (b1β−e1 − b1β) + 1

8 (b1β+e2 − b1β−e1+e2)
+ 1

4 (b2β+e1 − b2β−e1) + 1
8 (b2β+e1−e2 − b2β−e1−e2)

= 1
2θ

1
β − 1

8 (θ2β + θ2β−e1)− 3
8 (θ0β − θ0β−e1) ,

and

θ̃12β+e1 = (a1
2β+e1+e2 − a1

2β+e2) + (a1
2β1 − a1

2β+e1)

= 1
2 (b2β+e1 − b2β) + 1

4 (b2β + b2β−e2 − b2β+e1 − b2β+e1−e2)

= 1
4 (−b2β + b2β−e2 + b2β+e1 − b2β+e1−e2) = 1

4θ
2
β .

These formulas are used to compute the quantities σ̃j . In order to present the
calculations in reasonably short form, we introduce the notation

σβ
∗

j =
∑
β∈Z2

θjβθ
j
β+β∗ , σβ

∗
jl =

∑
β∈Z2

θjβθ
l
β+β∗ , k, l = 0, 1, 2 (j 6= l);

if β∗ ∈ Z2 is the null vector, it is omitted in this notation. With them, we see, by
carefully evaluating all squares, that

σ̃0 =
∑

α(θ̃0α)2 =
∑

β

(
(θ̃02β)2 + (θ̃02β+e1)

2 + (θ̃02β+e2)
2 + (θ̃02β+e1+e2)

2
)

= 1
16σ0 + 1

64 (σ1 + σ2) + 1
16 (−σ01 + σ02)− 1

32σ12

+ 1
16σ0 + 1

64 (σ1 + σ2) + 1
16 (σe

1

01 − σ02)− 1
32σ

−e1
12

+ 1
16σ0 + 1

64 (σ1 + σ2) + 1
16 (σ01 − σe

2

02)− 1
32σ

e2

12

+ 1
16σ0 + 1

64 (σ1 + σ2) + 1
16 (−σe101 + σe

2

02)− 1
32σ

−e1+e2

12

= 1
4σ0 + 1

16 (σ1 + σ2)− 1
32 (σ12 + σe

2

12 + σ−e
1

12 + σe
2−e1

12 )︸ ︷︷ ︸
≡σ∗

.
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Analogously,

σ̃1 =
∑

β

(
(θ̃12β)2 + (θ̃12β+e1)

2 + (θ̃12β+e2)
2 + (θ̃12β+e1+e2)

2
)

=
(

9
32 (σ0 − σe

1

0 ) + 1
4σ1 + 1

32 (σ2 + σe
1

2 )− 3
8 (σ01 − σe

1

01)

+ 3
32 (σ−e

1

02 − σe
1

02)− 1
8 (σ12 + σ−e

1

12 )
)

+ 1
16σ2

+
(

9
32 (σ0 − σe

1

0 ) + 1
4σ1 + 1

32 (σ2 + σe
1

2 ) + 3
8 (σ01 − σe

1

01)

+ 3
32 (σe

1+e2

02 − σ−e
1+e2

02 )− 1
8 (σe

2

12 + σ−e
1+e2

12 )
)

+ 1
16σ2

= 9
16σ0 + 1

2σ1 + 3
16σ2 − 9

16σ
e1

0 + 1
16σ

e1

2 − 1
8σ

∗

− 3
32 (σe

1

02 + σ−e
1+e2

02 − σ−e
1

02 − σe
1+e2

02 ),

σ̃2 = 9
16σ0 + 3

16σ1 + 1
2σ2 − 9

16σ
e2

0 + 1
16σ

e2

1 − 1
8σ

∗

− 3
32 (σ−e

2

01 + σe
1+e2

01 − σe
2

01 − σe
1−e2

01 ).

Thus, introducing A = σ1 + σ2 and Ã = σ̃1 + σ̃2, we have

σ̃0 = 1
4σ0 + 1

16A−
1
32σ

∗,

Ã = 9
8σ0 + 11

16A−
9
16 (σe

1

0 + σe
2

0 ) + 1
16 (σe

2

1 + σe
1

2 )− 1
4σ

∗ − 3
32σ

∗∗,
(2.18)

where

σ∗∗ = σ−e
2

01 + σe
1+e2

01 + σe
1

02 + σ−e
1+e2

02 − σe
2

01 − σe
1−e2

01 − σ−e
1

02 − σe
1+e2

02 .

Next, we simplify σ∗ and σ∗∗. Note that

σ∗ − 2σe
2

1 =
∑

β θ
1
β(θ2β + θ2β+e2 + θ2β−e1+e2 + θ2β−e1 − θ1β+e2 − θ1β−e2)

=
∑

β θ
1
β(θ0β+e2−e1 + θ0β−e2 − θ0β−e1−e2 − θ0β+e2 + 2θ1β),

σ∗ − 2σe
1

2 =
∑

β θ
2
β(θ1β + θ1β−e2 + θ1β+e1−e2 + θ1β+e1 − θ2β+e1 − θ2β−e1)

=
∑

β θ
2
β(θ0β−e2−e1 + θ0β+e1 − θ0β+e1−e2 − θ0β−e1 + 2θ2β),

so that

σ∗ = σe
2

1 + σe
1

2 +A− 1

2
σ∗∗.

Analogously, we can simplify σ∗∗ as follows:

σ∗∗ =
∑

β θ
0
β

(
(θ1β+e1+e2 + θ1β−e2 + θ2β+e1 + θ2β−e1+e2)

−(θ1β+e2 + θ1β+e1−e2 + θ2β−e1 + θ2β+e1+e2)
)

=
∑

β θ
0
β

(
(θ0β+e1+e2 + θ0β+e1−e2 + θ0β−e1−e2 + θ0β−e1+e2)

−2(θ0β+e1 + θ0β+e2 + θ0β−e1 + θ0β−e2) + 4θ0β)
)

= 2(σe
1+e2

0 + σe
1−e2

0 )− 4(σe
1

0 + σe
2

0 ) + 4σ0.

In these calculations, the identity

θ1β + θ1β−e2 − θ2β − θ2β−e1 = θ0β − θ0β−e2 − θ0β−e1 + θ0β−e1−e2

which is valid for arbitrary β ∈ Z2 and shows that the sequences {θjβ} are not
completely independent, has been used several times.
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Substitution of the expressions for σ∗ and σ∗∗ into (2.18) leads to

σ̃0 = 1
4σ0 + 1

32A−
1
32 (σe

2

1 + σe
2

2 ) + 1
64σ

∗∗

= 5
16σ0 + 1

32A+ 1
32

(
σe

1−e2
0 + σe

1+e2

0 − 2σe
1

0 − 2σe
2

0 − σe
2

1 − σe
1

2

)
≤ 1

2σ0 + 1
16A,

(2.19)

where we have used the fact that |σβ
∗

j | ≤ σj , j = 0, 1, 2, which is valid for arbitrary
β∗. With the same argument, we see that

Ã = 9
8σ0 + 7

16A−
9
16

(
σe

1

0 + σe
2

0

)
− 3

16

(
σe

2

1 + σe
2

2

)
+ 1

32σ
∗∗

= 5
4σ0 + 7

16A+ 1
16

(
σe

1−e2
0 + σe

1+e2

0

)
− 11

16

(
σe

1

0 + σe
2

0

)
− 3

16

(
σe

2

1 + σe
1

2

)
≤ 11

4 σ0 + 5
8A.

(2.20)

Now, set B = cσ0 and B̃ = cσ̃0. Then it follows from (2.18) and (2.19) that

Ã ≤ 5

8
+

11

4c
B, B̃ ≤ c

16
A+

1

2
B,

and

(Ã+ B̃) ≤ max

(
5

8
+

c

16
,
11

4c
+

1

2

)
(A+ B).

Let c = c∗ ≡ 3
√

5− 1, so we see that (2.16) holds with

γ∗ =
5

8
+
c∗

16
=

11

4c∗
+

1

2
=

3
√

5 + 9

16
< 1.

It remains to reduce the assertion of Lemma 2.4 to the shift-invariant situation
just considered. To this end, starting with any v ∈ Vk on the unit square, we
repeatedly use an odd extension. Namely, set v̂ = v on [0, 1]2 and

v̂(x, y) = −v̂(−x, y), (x, y) ∈ [−1, 0)× [0, 1];

after this, define

v̂(x, y) = −v̂(x,−y), (x, y) ∈ [−1, 1]× [−1, 0),

and continue this extension process with the unit square replaced by [−1, 1]2 such
that after the next two steps v̂ is defined on [−1, 3]2. Outside this larger square we
continue by zero. Clearly, ||v̂||2E = 16||v||2E , where the norms for v̂ and v are taken
with respect to <2 and the unit square, respectively.

It is not difficult to check by induction that on [0, 1]2 the functions RK
k v̂ (ob-

tained by the repeated application of the prolongations defined on <2) and RK
k v

(as defined above with respect to [0, 1]2) coincide. Also, the values of Ik+1v̂
on [−2−(k+1), 1 + 2−(k+1)]2 depend solely on the values of v̂ on the square
[−2−k, 1 + 2−k]2, and on this enlarged square Ik+1v̂ coincides with its odd ex-
tension from [0, 1]2. Finally, the zero edge averages are automatically reproduced
along the boundary of [0, 1]2 from the above extension procedure. Therefore, by
(2.17) and the dilation argument, we obtain

||RK
k v||2E ≤ ||RK

k v̂||2E ≤ C||v̂||2E = 16C||v||2E ,
which finishes the proof of Lemma 2.4.
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Let us conclude this section with the following remark. All proofs given so far
are valid for the unit square Ω = (0, 1)2 and sequences of uniform square parti-
tions Ek as indicated above. The energy norm is the one corresponding to the
Dirichlet problem for the Laplace equation. Since constants (such as in the second
estimate of (2.13)) are sometimes crucial for what follows, one has to be careful
with generalizations. For instance, the second relation in (2.13) is valid whenever
Ek−1 is a collection of equally sized squares. This covers certain L-shaped domains
Ω. However, replacing the H1

0 (Ω) norm by more general energy norms seems to be
problematic. Lemma 2.4 can be extended to polygonal domains if they are equipped
with an initial partition Ẽ1 (into quadrilaterals) which is topologically equivalent
to the above considered square partition E1 of the unit square. Then, the sequence
{Ẽk} can then be inherited from {Ek}. Using the parametric version of the NR Q1

elements [25], one easily sees that intergrid operators associated with {Ẽk} are just
copies of the Ik and RK

k considered above. The result of Lemma 2.4 then carries
over by spectral equivalence of the norms (note that (2.15) is insensitive to replac-
ing (·, ·)E by spectrally equivalent forms; i.e., the uniform boundedness assertion
remains valid for more general second-order uniformly elliptic problems than the
Poisson equation). We did not check any details for the n-dimensional counterparts
(n ≥ 3) of these elements as defined in [25].

We will not discuss any further the possible extensions of the above properties of
intergrid operators. Below we will indicate which of the algorithms can be justified
to converge for larger classes of domains, partition sequences and second-order
elliptic boundary value problems, respectively.

3. Multigrid algorithms

In this section and the next section we consider multigrid algorithms and multi-
level preconditioners for the numerical solution of the second-order elliptic problem

−∇ · (A∇u) = f in Ω,
u = 0 on Γ,

(3.1)

where Ω ⊂ <2 is a simply connected bounded polygonal domain with the boundary
Γ, f ∈ L2(Ω), and the symmetric coefficient matrix A ∈ (L∞(Ω))2×2 satisfies

α1ξ
tξ ≥ ξtA(x, y)ξ ≥ α0ξ

tξ, (x, y) ∈ Ω, ξ ∈ <2,(3.2)

with fixed constants α1, α0 > 0. This guarantees that the energy norm related to
(3.1) is spectrally equivalent to that for the homogeneous Dirichlet problem for the
Poisson equation, i.e., to the H1

0 (Ω) norm. The condition number of preconditioned
linear systems to be analyzed later depends on the ratio α1/α0. However, some of
the multigrid results below are only valid in the case of the Laplace operator, i.e.
if A(x, y) ≡ α0I.

Problem (3.1) is recast in weak form as follows. The bilinear form a(·, ·) is defined
by

a(v, w) = (A∇v,∇w), v, w ∈ H1(Ω).

Then the weak form of (3.1) for the solution u ∈ H1
0 (Ω) is

a(u, v) = (f, v), ∀ v ∈ H1
0 (Ω).(3.3)
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Associated with each Vk, we introduce a bilinear form on Vk ⊕H1
0 (Ω) by

ak(v, w) =
∑
E∈Ek

(A∇v,∇w)E , v, w ∈ Vk ⊕H1
0 (Ω).

The NR Q1 finite element discretization of (3.1) is to find uK ∈ VK such that

aK(uK , v) = (f, v), ∀ v ∈ VK .(3.4)

Let Ak : Vk → Vk be the discretization operator on level k given by

(Akv, w) = ak(v, w), ∀ w ∈ Vk.(3.5)

The operator Ak is clearly symmetric (in both the ak(·, ·) and (·, ·) inner products)
and positive definite. Also, we define the operators Rk−1 : Vk → Vk−1 and R0

k−1 :
Vk → Vk−1 by

ak−1(Rk−1v, w) = ak(v, Ikw), ∀ w ∈ Vk−1,

and (
R0
k−1v, w

)
= (v, Ikw), ∀ w ∈ Vk−1.

It is easy to see that IkRk−1 is a symmetric operator with respect to the ak form.
Note that neither R0

k nor Rk is a projection in the nonconforming case. Finally, let
Λk dominate the spectral radius of Ak.

The multigrid processes below result in a linear iterative scheme with a reduction
operator equal to IdK −BKAK , where BK : VK → VK is the multigrid operator to
be defined below.

Multigrid Algorithm 3.1. Let 2 ≤ k ≤ K and p be a positive integer. Set
B1 = A−1

1 . Assume that Bk−1 has been defined and define Bkg for g ∈ Vk as
follows:

1. Set x0 = 0 and q0 = 0.
2. Define xl for l = 1, . . . ,m(k) by

xl = xl−1 + Sk(g −Akx
l−1).

3. Define ym(k) = xm(k) + Ikq
p, where qi for i = 1, . . . , p is defined by

qi = qi−1 +Bk−1

[
R0
k−1

(
g −Akx

m(k)
)
−Ak−1q

i−1
]
.

4. Define yl for l = m(k) + 1, . . . , 2m(k) by

yl = yl−1 + Sk
(
g −Aky

l−1
)
.

5. Set Bkg = y2m(k).

In Algorithm 3.1, m(k) gives the number of pre- and post-smoothing iterations
and can vary as a function of k. In this section, we set Sk = (Λk)

−1Idk in the
pre- and post-smoothing steps. If p = 1, we have a V-cycle multigrid algorithm. If
p = 2, we have a W-cycle algorithm. A variable V-cycle algorithm is one in which
the number of smoothings m(k) increase exponentially as k decreases (i.e., p = 1
and m(k) = 2K−k).

We now follow the methodology developed in [6] to state convergence results
for Algorithm 3.1. The two ingredients in their analysis are the regularity and
approximation property and the boundedness of the intergrid transfer operator:

|ak (v − IkRk−1v, v)| ≤ C
||Akv||√

λk

√
ak(v, v), ∀ v ∈ Vk,(3.6)
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and

ak(Ikv, Ikv) ≤ Cak−1(v, v), ∀ v ∈ Vk−1,(3.7)

for k = 2, . . . , K, where λk is the largest eigenvalue of Ak. The proof of (3.6) is
standard under the full elliptic regularity assumption on the solution of (3.1); see
the proof of a similar result for the P1 nonconforming elements in [15]. Inequality
(3.7) has been shown in [1] using the approximation property of the operator Ik.
However, here we see that if A = α0I is a scalar multiple of the two-by-two identity
matrix I, by the second inequality in (2.13) in Lemma 2.3, we actually have

ak(Ikv, Ikv) ≤ 2ak−1(v, v), ∀ v ∈ Vk−1.(3.8)

This leads to the following main result of this section. Let the convergence rate for
Algorithm 3.1 on the kth level be measured by the convergence factor δk satisfying

|ak (v −BkAkv, v)| ≤ δkak(v, v), ∀ v ∈ Vk.

Theorem 3.2. Define Bk by p = 2 and m(k) = m for all k in Algorithm 3.1.
Then, for Ω = (0, 1)2, if A = α0I is constant, there exists C > 0, independent of
k, such that

δk ≤ δ ≡ C

C +
√
m
.

The proof of this theorem follows from (3.6), (3.8), and Theorem 7 in [6]. From
Theorem 3.2, we have an optimal convergence property of the W-cycle with one
smoothing. While a uniform preconditioner result for the variable V-cycle has been
given for the first version of the NR Q1 elements in [9], we see from (3.6) and (3.7)
that the same result also holds for the second version even in the case of the variable
coefficient A. That is, defining Bk by p = 1 and m(k) = 2K−k for k = 2, . . . , K,
there are η0, η1 > 0, independent of k, such that

η0ak(v, v) ≤ ak(BkAkv, v) ≤ η1ak(v, v), ∀v ∈ Vk,
with

η0 ≥
√
m(k)/(C +

√
m(k)) and η1 ≤ (C +

√
m(k))/

√
m(k).

Finally, we mention that for a general A the convergence result for the W-cycle can
be theoretically established (e.g., by the theory of [6]) only for sufficiently many
smoothing steps on each level, and that Theorem 3.2 is a first improvement for the
model problem under consideration.

4. Multilevel preconditioners

In this section we discuss additive multilevel preconditioners of hierarchical basis
and BPX type for (3.4). We assume that the reader is familiar with the theory of
additive Schwarz methods as outlined in [16]; see also [21], [30], or [28]. Below we
use the notation

{V ; a(·, ·)} =
∑
k

Rk{Vk; bk(·, ·)},

which briefly expresses the following assumptions: V , Vk are finite-dimensional
Hilbert spaces, equipped with their respective symmetric positive definite bilinear
forms a(·, ·), bk(·, ·), Rk : Vk → V are linear mappings such that the space V is
the (not necessarily direct) sum of its subspaces RkVk. Since in our applications
Vk 6⊂ V , the Rk are not just natural embeddings, their choice is a crucial ingredient
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of the algorithms which are associated with the above space splitting. Roughly
speaking, these algorithms aim at iteratively solving a variational problem on V
governed by the bilinear form a(·, ·), by solving subproblems in Vk associated with
the form bk(·, ·). The transfer of information between V and the Vk is performed
by the operators Rk and their adjoints. A small condition number of the space
splitting (which is expressed by certain two-sided norm equivalencies; see below)
guarantees good convergence rates of these algorithms. For details, see the above
references.

We start with a theoretical result which follows from the material in Section 2
along the lines of [23]. Since we rely on Lemma 2.4, we assume that Ω is the unit
square, and that {Ek} is a sequence of uniform square partitions (compare, however,
the remark at the end of Section 2 about extensions of Lemma 2.4). More precisely,
we derive the condition numbers of the additive space splittings

{VK ; (·, ·)E} = RK
1 {V1; (·, ·)E}+

K∑
k=2

RK
k {Vk; 22k(·, ·)},(4.1)

and

{VK ; (·, ·)E} = RK
1 {V1; (·, ·)E}+

K∑
k=2

RK
k {(Idk − IkPk−1)Vk; 2

2k(·, ·)}.(4.2)

The condition number of (4.1) is given by [21]

κ =
λmax

λmin
, λmax = sup

v∈VK

||v||2E
|||v|||2 , λmin = inf

v∈VK
||v||2E
|||v|||2 ,(4.3)

where

|||v|||2 = inf
vk∈Vk

{
||v1||2E +

K∑
k=2

22k||vk||2
}
,

with v =
∑

kR
K
k vk. A similar definition can be given for (4.2).

Theorem 4.1. Under the above assumptions on Ω and {Ek}, there are positive
constants c and C, independent of K, such that

c ≤ ||v||2E
|||v|||2 ≤ CK, ∀v ∈ VK ,(4.4)

and

c ≤ ||v||2E
‖‖v‖‖2 ≤ CK, ∀v ∈ VK ,(4.5)

where

‖‖v‖‖2 = ||QK
1 v||2E +

K∑
k=2

22k||(Idk − IkPk−1)Q
K
k v||2.

That is, the condition numbers of the additive space splittings (4.1) and (4.2) are
bounded by O(K) as K →∞.
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Proof. For k = 2, . . . , K, it follows from the definitions of Ik, Îk, and QK
k , (2.4),

and the first inequality of (2.13) that

22k||(Idk − IkPk−1)Q
K
k v||2 = 22k||Îk(Idk − Pk−1)Q

K
k v||2

≤ 5
2 22k||(Idk − Pk−1)Q

K
k v||2

≤ C||(Idk − Pk−1)Q
K
k v||2E

= C||QK
k v −QK

k−1v||2E .

Summing on j and using the orthogonality relations in (2.3), we see that

infvk∈Vk
{
||v1||2E +

∑K
k=2 22k||vk||2

}
≤ ||QK

1 v‖2E +
∑K

k=2 22k||(Idk − IkPk−1)Q
K
k v||2

≤ C||v||2E ,

with v =
∑

kR
K
k vk, which implies the lower bounds in (4.4) and (4.5).

For the upper bounds, we consider an arbitrary decomposition v =
∑K

k=1 R
K
k vk

with vk ∈ Vk. Then we see, by Lemma 2.4, that

||v||2E ≤
(

K∑
k=1

||RK
k vk||E

)2

≤ K

K∑
k=1

||RK
k vk||2E ≤ CK

K∑
k=1

||vk||2E .

Consequently, by (2.2), we have

||v||2E ≤ CK

(
||v1||2E +

K∑
k=2

22k||vk||2
)
.

Now, taking the infimum with respect to all decompositions, we obtain

||v||2E ≤ CK infvk∈Vk
{
||v1||2E +

∑K
k=2 22k||vk||2

}
≤ CK

(
||QK

1 v||2E +
∑K

k=2 22k||(Idk − IkPk−1)Q
K
k v||2

)
,

with v =
∑

kR
K
k vk, which finishes the proof of the theorem.

We now discuss the algorithmical consequences for the splittings (4.1) and (4.2).
Theoretically, Theorem 4.1 already produces suitable preconditioners for the matrix
AK using (4.1) and (4.2). However, they are still complicated since they involve
L2-projections onto Vk, 1 < k < K, which means to solve large linear systems
within each preconditioning step. To get more practicable algorithms, we replace
the L2 norms in Vk and Wk = (Idk − IkPk−1)Vk ⊂ Vk, k = 2, . . . , K, by their
suitable discrete counterparts. We first consider the splitting (4.1); (4.2) will be
discussed later.

Let {φjα,k} be the basis functions of Vk such that the edge average of φjα,k equals

one at ejα,k and zero at all other edges. Then each v ∈ Vk has the representation

v =

2∑
j=1

∑
α

ajαφ
j
α,k.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



686 ZHANGXIN CHEN AND PETER OSWALD

Thus, by the uniform L2-stability of the bases, which follows from (2.7) in Lemma
2.2, we see that

1

5
2−2k

2∑
j=1

∑
α

(ajα)2 ≤ ||v||2 ≤ 1

2
2−2k

2∑
j=1

∑
α

(ajα)2.(4.6)

Note that (with the same argument as in Lemma 2.2)

22k||φjα,k||2 =
41

120
, ak(φ

j
α,k, φ

j
α,k) ≈ ||φjα,k||2E = 5,(4.7)

so (4.6) can be interpreted as the two-sided inequality associated with the stability
of any of the splittings

{Vk; 22k(·, ·)} =

2∑
j=1

∑
α

{V j
α,k; 2

2k(·, ·)},(4.8)

{Vk; 22k(·, ·)} =

2∑
j=1

∑
α

{V j
α,k; (·, ·)E},(4.9)

and

{Vk; 22k(·, ·)} =

2∑
j=1

∑
α

{V j
α,k; ak(·, ·)},(4.10)

into the direct sum of one-dimensional subspaces V j
α,k spanned by the basis func-

tions φjα,k. Any of the splittings (4.8)–(4.10) can be used to refine (4.1). As we

will see below, the difference is just in a diagonal scaling (i.e., a multiplication by
a diagonal matrix) in the final algorithms. As example, we consider the splitting
(4.10) in detail; the other two cases can be analyzed in the same fashion.

With (4.1) and (4.10), we have the splitting

{VK ; aK(·, ·)} = RK
1 {V1; a1(·, ·)}+

K∑
k=2

2∑
j=1

∑
α

RK
k {V

j
α,k; ak(·, ·)}.(4.11)

It follows from (4.4), (4.6), and (4.7) that the condition number κ for (4.11) still
behaves like O(K). Now, associated with this splitting we can explicitly state the
additive Schwarz operator

PK = RK
1 T1 +

K∑
k=2

2∑
j=1

∑
α

RK
k T

j
α,k,(4.12)

where

T j
α,kv =

aK(v,RK
k φ

j
α,k)

ak(φ
j
α,k, φ

j
α,k)

φjα,k,

and T1v ∈ V1 solves the elliptic problem

a1(T1v, w) = aK(v,RK
1 w), ∀ w ∈ V1.
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Thus the matrix representations of all operators with respect to the bases of the
respective Vk are

Tk =

2∑
j=1

∑
α

T j
α,k = Sk(R

K
k )tAK , Sk = diag(aj(φ

j
α,k, φ

j
α,k)

−1),

for 2 ≤ k ≤ K, and

T1 = A−1
1 (RK

1 )tAK ,

where for convenience the same notation is used for operators and matrices. Hence
it follows from (4.12) that

PK =

(
RK

1 A
−1
1 (RK

1 )t +

K∑
k=2

RK
k Sk(R

K
k )t

)
AK ≡ CKAK ,

which, together with the definition of RK
k = IK · · · Ik+1, leads to the typical recur-

sive structure for the preconditioner CK

Ck = IkCk−1I
t
k + Sk, k = K, . . . , 2, S1 = C1 ≡ A−1

1 .(4.13)

Note that with these choices for Sk, the multiplication of a vector by CK is formally
a special case of Algorithm 3.1 if one sets m(k) = 1, p = 1, removes the post-
smoothing step, and replaces Ak by a zero matrix for all k ≥ 2.

From (4.13) and the definitions of Ik and Sk, we see that a multiplication by CK
only involves O(nK+. . .+n2+n

3
1) = O(nK) arithmetical operations, where nk ≈ 22k

is the dimension of Vk. This, together with (4.4), yields suboptimal work estimates
for a preconditioned conjugate gradient method for (3.4) with the preconditioner
CK . That is, an error reduction by a factor ε in the preconditioned conjugate
gradient algorithm can be achieved by O(nK

√
lognK log(ε−1)) operations.

We now turn to the discussion of the algorithmical consequences for the splitting
(4.2). To do this, we need to construct basis functions inWk, k = 2, . . . , K. Starting

with the bases {φjα,k} in Vk, to each interior edge ejβ,k−1 ∈ ∂Ek−1, we replace the

two associated basis functions φj2β,k, φ
j
2β+ej ,k with their linear combinations

ψj2β,k = φj2β,k + φj2β+ej ,k, ψj2β+ej ,k = φj2β,k − φj2β+ej ,k, j = 1, 2,

where ej2β,k and ej2β+ej ,k ∈ ∂Ek form the edge ejβ,k−1. For all other interior edges

ejα,k, which do not belong to any edge in ∂Ek−1, we set

ψjα,k = φjα,k.

The new bases {ψjα,k} in Vk are still L2-stable; i.e., they satisfy an inequality

analogous to (4.6). Moreover, if

v =

2∑
j=1

∑
α

bjαψ
j
α,k,

we have

Pk−1v =
2∑

j=1

∑
β

bj2βφ
j
β,k−1,
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and

(Idk − IkPk−1)v =

2∑
j=1

∑
α6=2β

cjαψ
j
α,k,

since ψj2β,k − Ikφ
j
β,k−1 can be completely expressed by the functions ψlα,k with

α 6= 2β only. More precisely, we have

c12β+e1 = b12β+e1 − 1
8 (b22β + b22(β−e2) − b22(β+e1) − b22(β+e1−e2)),

c12β+e2 = b12β+e2 − 1
8 (5b22β + b12β + b22(β+e1) + b12(β+e2)),

c12β+e1+e2 = b12β+e2 − 1
8 (5b22(β+e1) + b12β + b22β + b12(β+e2)),

and similar relations hold for j = 2. Hence any function from Wk has a unique
representation by linear combinations of {ψjα,k : α 6= 2β}, and this basis system is

L2-stable. With this basis system, as in (4.11), we have the corresponding splitting

{VK ; aK(·, ·)} = RK
1 {V1; a1(·, ·)} +

K∑
k=2

2∑
j=1

∑
α6=2β

RK
k {W

j
α,k; ak(·, ·)}(4.14)

into a direct sum of RK
1 V1 and one-dimensional spaces RK

k W
j
α,k induced by the

basis functions ψjα,k. Then, with the same argument as for (4.13), we derive an

additive preconditioner ĈK for AK recursively defined by

Ĉk = IkĈk−1I
t
k + ÎkŜk Î

t
k, k = K, . . . , 2, Ĉ1 = Ŝ1 ≡ A−1

1 ,(4.15)

where

Ŝk = diag
(
ak(ψ

j
α,k, ψ

j
α,k)

−1, α 6= 2β, j = 1, 2
)

are diagonal matrices and Îk is the rectangular matrix corresponding to the natural
embedding Wk ⊂ Vk with respect to the bases {ψjα,k} in Wk and {φjα,k} in Vk (one

may use the bases {ψjα,k} for all Vk, which would change the Ik representations, but

keep Îk maximally simple). (4.15) has the same arithmetical complexity as before.
We now summarize the results in Theorem 4.1 and the above discussion in the

next theorem.

Theorem 4.2. Let Ω and {Ek} satisfy the above assumptions. Then the symmetric

preconditioners CK and ĈK defined in (4.13) and (4.15) and associated with the
multilevel splittings (4.11) and (4.14), respectively, have an O(nK) operation count
per matrix-vector multiplication and produce the following condition numbers:

κ(CKAK) ≤ CK, κ(ĈKAK) ≤ CK, K ≥ 1.(4.16)

The splitting (4.11) can be viewed as the nodal basis preconditioner of BPX type
[5], while the splitting (4.14) is analogous to the hierarchical basis preconditioner.

We now consider multiplicative algorithms for (3.4). One iteration step of a
multiplicative algorithm corresponding to the splitting (4.11) takes the form

y0 = xjK ,

yl+1 = yl − ωRK
K−lSK−l(R

K
K−l)

t(AKy
l − fK), l = 0, . . . , K − 1,

xj+1
K = yK ,

(4.17)
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where ω is a suitable relaxation parameter (the range of relaxation parameters
for which the algorithm in (4.17) converges is determined mainly by the constant
in the inverse inequality (2.2) [30, 28, 16]. The method (4.17) corresponds to a

V-cycle algorithm in Algorithm 3.1 with Ak replaced by Ãk = (RK
k )tAKR

K
k , one

pre-smoothing and no post-smoothing steps.
The iteration matrix MK,ω in (4.17) is given by

MK,ω = (IdK − ωE1) · · · (IdK − ωEK−1)(IdK − ωEK) , Ek ≡ RK
k Sk(R

K
k )tAK .

An analogous multiplicative algorithm for (3.4) corresponding to the splitting (4.14)
can be defined.

From the general theory on multiplicative algorithms [30], [16], and by the same
argument as for Theorem 4.2, we can show the following result.

Theorem 4.3. Let Ω and {Ek} satisfy the above assumptions. For properly chosen
relaxation parameter ω the multiplicative schemes corresponding to the splittings
(4.11) and (4.14) possess the following upper bounds for the convergence rate:

inf
ω
||MK,ω||E ≤ 1− C

K
, inf

ω
||M̂K,ω||E ≤ 1− C

K
, K →∞,(4.18)

where MK,ω and M̂K,ω denote the iteration matrices associated with (4.11) and
(4.14), respectively.

We end with two remarks. First, one example for the choice of ω is that ω ≈ K−1,
which leads to the upper bounds in (4.18). Second, the diagonal matrices Sk and Ŝk
in (4.13) and (4.15) can be replaced by any other spectrally equivalent symmetric
matrices of their respective dimension.

5. Equivalent discretizations

As an alternative to the preconditioners described in Section 4 for which the
estimates in Theorems 4.2 and 4.3 guarantee only suboptimal convergence rates, we
propose now to switch from the NR Q1 discretization (3.4) to a spectrally equivalent
discretization for which optimal preconditioners are already available; see [22] for
references and examples for other conforming elements. The most natural candidate
for a switching procedure is the space of conforming bilinear elements

UK =
{
ξ ∈ C0(Ω) : ξ|E ∈ Q1(E), ∀E ∈ Ek and ξ|Γ = 0

}
,

on the same partition. For simplicity, we again assume that Ω is the unit square,
and that the Ek are uniform square partitions. However, it is easy to realize that a
switching procedure can be implemented also in the general case if, e.g., triangular
linear elements are used as reference elements.

We introduce two linear operators YK : UK → VK and ŶK : VK → UK as follows.
If ξ ∈ UK and e is an edge of an element in EK , then YKξ ∈ VK is given by∫

e

YKξds =

∫
e

ξds,(5.1)

which preserves the zero average values on the boundary edges. If v ∈ VK , we
define ŶKv ∈ UK by

(ŶKv)(z) = 0 for all boundary vertices z in EK ,

(ŶKv)(z) = average of vj(z) for all internal vertices z in EK ,
(5.2)

where vj = v|Ej and Ej ∈ EK contains z as a vertex.
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Another choice for UK is the space of conforming P1 elements

UK =
{
ξ ∈ C0(Ω) : ξ|E ∈ P1(E), ∀E ∈ ẼK and ξ|Γ = 0

}
,

where ẼK is the triangulation of Ω generated by connecting the two opposite vertices
of the squares in EK . The two linear operators YK : UK → VK and ŶK : VK → UK
are defined as in (5.1) and (5.2), respectively. Moreover, for both the conforming
bilinear elements and the conforming P1 elements, it can be easily shown that there
is a constant C, independent of K, such that

2K ||ξ − YKξ|| ≤ C||ξ||E , ∀ξ ∈ UK ,

2K ||v − ŶKv|| ≤ C||v||E , ∀v ∈ VK .
(5.3)

Since optimal preconditioners exist for the discretization system AK generated by
the conforming bilinear elements (respectively, the conforming P1 elements), the
next result follows from (5.3) and the general switching theory in [22].

Theorem 5.1. Let CK be any optimal symmetric preconditioner for AK ; i.e., we
assume that a matrix-vector multiplication by CK can be performed in O(nK) arith-
metical operations, and that κ(CKAK) ≤ C, with constant independent of K. Let
SK = 22KIdK (or SK = diag(AK) or any other spectrally equivalent symmetric
matrix). Then

C
∗
K = SK + YKCK(YK)t(5.4)

is an optimal symmetric preconditioner for AK .

6. Numerical experiments

In this section we present the results of numerical examples to illustrate the
theories developed in the earlier sections. These numerical examples deal with the
Laplace equation on the unit square:

−∆u = f in Ω = (0, 1)2,
u = 0 on Γ,

(6.1)

where f ∈ L2. The NR Q1 finite element method (3.4) is used to solve (6.1)
with {Ek}Kk=1 being a sequence of dyadically, uniformly refined partitions of Ω into
squares. The coarsest grid is of size h1 = 1/2.

The first test concerns the convergence of Algorithm 3.1. The analysis of the
third section guarantees the convergence of theW-cycle algorithm with any number
of smoothing steps and the uniform condition number property for the variable V-
cycle algorithm, but does not give any indication for the convergence of the standard
V-cycle algorithm, i.e., Algorithm 3.1 with p = 1 and m(k) = 1 for all k. The first
two rows of Table 1 show the results for levels K = 3, . . . , 7 for this symmetric
V-cycle, where (κv, δv) denote the condition number for the system BKAK and the
reduction factor for the system IdK −BKAK as a function of the mesh size on the
finest grid hK . While there is no complete theory for this V-cycle algorithm, it is of
practical interest that the condition numbers for this cycle remain relatively small.

For comparison, we run the same example by a symmetrized multilevel mul-
tiplicative Schwarz method corresponding to (4.17). One step of the symmetric
version consists of two substeps, the first coinciding with (4.17) and the second

repeating (4.17) in reverse order. The condition numbers κm for M̃K,ωAK with
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Table 1. Numerical results for the multiplicative V-cycles.

1/hK 8 16 32 64 128

κv 1.54 1.70 1.84 1.96 2.06

δv 0.23 0.27 0.32 0.33 0.35

κm 1.75 1.81 1.84 1.85 1.85

ω ≈ K−1 are presented in the third row of Table 1, where M̃K,ω = M t
K,ωMK,ω is

now symmetric. The results are better than expected from the upper bounds of
Theorem 4.3 which seem to be only suboptimal.

In the second test we treat the above multigrid algorithm and symmetrized mul-
tilevel multiplicative method as preconditioners for the conjugate gradient method.
In this test the problem (6.1) is assumed to have the exact solution

u(x, y) = x(1 − x)y(1− y)exy.

Table 2 shows the number of iterations required to achieve the error reduction
10−6, where the starting vector for the iteration is zero. The iteration numbers
(iterv, iterm) correspond to Algorithm 3.1 with p = 1 and m(k) = 1 for all k and
the symmetrized multiplicative algorithm (4.17), respectively. Note that iterv and
iterm remain almost constant when the step size increases.

Table 2. Iteration numbers for the pcg-iteration.

1/hK 8 16 32 64 128

iterv 8 8 9 9 10

iterm 9 9 9 10 10

In the final test we report analogous numerical results (condition numbers and
pcg-iteration count) for the additive preconditioner CK associated with the splitting

(4.11) (subscript a), and the preconditioner C
∗
K (subscript s) which uses the switch

from the system arising from (3.4) to the spectrally equivalent system generated
by the conforming bilinear elements via the operators in (5.1) and (5.2). We have
implemented the standard BPX-preconditioner [5], with diagonal scaling, as CK .
These results are shown in Table 3. The numbers show the slight growth, which
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Table 3. Results for the preconditioners CK and C
∗
K .

1/hK 8 16 32 64 128 256 512

κa 9.6 12.3 14.4 16.1 17.4 18.3 19.3

itera 18 22 24 26 27 28 28

κs 3.37 3.87 4.24 4.54 4.80 5.05 -

iters 10 11 13 13 14 15 -

is typical for most of the additive preconditioners and level numbers K < 10.
The condition numbers κs for the switching procedure are practically identical
to the condition numbers for CKAK characterizing the BPX-preconditioner [5] in
the conforming bilinear case. The switching procedure is clearly favorable as can
be expected from the theoretical bounds of Theorems 4.2 and 5.1; however, the
computations do not indicate whether the upper bound (4.16) is sharp or could be
further improved.
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