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DEVELOPMENT OF A RESTRICTED ADDITIVE SCHWARZ

PRECONDITIONER FOR SPARSE LINEAR SYSTEMS ON

NVIDIA GPU

HUI LIU, ZHANGXIN CHEN, SONG YU, BEN HSIEH AND LEI SHAO

Abstract. In this paper, we develop, study and implement a restricted additive Schwarz (RAS)
preconditioner for speedup of the solution of sparse linear systems on NVIDIA Tesla GPU. A
novel algorithm for constructing this preconditioner is proposed. This algorithm involves two
phases. In the first phase, the construction of the RAS preconditioner is transformed to an
incomplete-LU problem. In the second phase, a parallel triangular solver is developed and the
incomplete-LU problem is solved by this solver. Numerical experiments show that the speedup of
this preconditioner is sufficiently high.
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1. Introduction

A restricted additive Schwarz (RAS) preconditioner is a general parallel precon-
ditioner for speedup of the solution of sparse linear systems, which was developed
by Cai et al. [4]. This preconditioner is a cheaper variant of the classical additive
Schwarz preconditioner, and it is faster in terms of iteration counts and CPU time
[4, 5]. Nowadays, RAS is the default parallel preconditioner for the solution of
nonsymmetric sparse linear systems in PETSc [1, 4] and has been used in PHG
[20]. Our long-term goal is to develop and implement this type of preconditioners
for numerical reservoir simulation [7, 8].

GPU, which was used only for graphics processing in its earlier development, is
now much more powerful in float point calculation than conventional CPU. It has
been used in many scientific applications, such as FFT [16], BLAS [2, 3, 16], Krylov
subspace solvers [18, 13, 14, 15] and algebraic multigrid solvers [11]. Algorithms
for basic matrix and vector operations are well understood now. However, due
to the irregularity of sparse linear systems, the development of efficient parallel
preconditioners on GPU is still challenging. In this paper, we introduce, study and
implement a RAS preconditioner for speedup of the solution of sparse linear systems
on NVIDIA Tesla GPU. For a given matrix A whose size is n × n, a sub-problem
is constructed and written as a smaller i × i matrix, i ≤ n [4]. Following this
idea, combining all sub-problems together, the final problem becomes a diagonal
block matrix problem, diag(A1, A2, . . . , Ak), which can be solved by incomplete-LU
factorization, where k is the number of sub-problems. We have recently developed
a parallel triangular solver in [15], where a new matrix format, HEC (hybrid ELL
and CSR), and a modified level schedule method on GPU have been introduced.
This parallel triangular solver will be used in the current development and study of
the RAS preconditioner. Numerical experiments performed show that the speedup
of this preconditioner is sufficiently high.
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The layout is as follows: In §2, basic knowledge and our deduction of RAS are
introduced. In §3, our parallel triangular solver is described. In §4, numerical
experiments are employed to test our GPU version RAS preconditioner. In the
end, some conclusions are presented.

2. Restricted Additive Schwarz Preconditioner

We consider a linear system:

(1) Ax = b,

where A =
(

Aij

)

is an n × n nonsingular sparse matrix. Denote by L the lower

part of A. Then the non-zero pattern we use is L+LT , where LT is the transpose
of L. Also, we define an undirected graph G = {W,E}, where the set of vertices
W = {1, . . . , n} represents the n unknowns and the edge set E = {(i, j) : Aij 6=
0, Aij ∈ L+ LT } represents the pairs of vertices [4].

The graph G is partitioned into k non-overlapping subsets by METIS [12], de-
noted by W 0

1 ,W
0
2 , . . . ,W

0
k . We always assume that all subsets of W are sorted in

ascending order according to the column indices. For any subset W 0
i , a 1-overlap

subset W 1
i can be obtained by including all the immediate neighboring vertices

in W [4]. Repeating this process, a δ-overlap subset W δ
i can be defined, and the

resulting overlapping subsets are W δ
1 ,W

δ
2 , . . . ,W

δ
k .

For any nonempty subset V of W with N (N > 0) vertices, we define a mapping
m : V → W by

(2) m(p(j)) = j,

where p(j) is the position of vertex j in V . Then we introduce matrix B as follows:

(3) Bij = Am(p(i))m(p(j)).

In this case, B is an N ×N matrix.
Applying this definition, for any W δ

i with Ni vertices, we introduce the mappings
m1,m2, . . . ,mk. Using equation (3), we obtain submatrices, A1, A2, . . . , Ak. When
a RAS preconditioner is applied to the solution of linear systems, these submatrices
can be solved simultaneously. We now assemble these submatrices and solve an
enlarged system:

(4) M = diag(A1, A2, . . . , Ak),

where M is an (N1 +N2 + . . .+Nk)× (N1 +N2 + . . .+Nk) matrix. This matrix
can be solved by ILU(k) or ILUT. The structures of L and U are of the following
form:

(5) L = diag(L1, L2, . . . , Lk), U = diag(U1, U2, . . . , Uk).

The final problem is how to solve the lower and upper triangular problems. The
whole assembling procedure is described in Algorithm 1.

Algorithm 1 Assembling a RAS preconditioner

1: Constructing the undirected graph G using pattern L+ LT ;
2: Partitioning G using METIS;
3: Constructing subgraph W δ

i and the corresponding mapping mi;
4: Assembling submatrix Ai;
5: Factorizing Ai and obtaining the lower and upper triangular matrices Li and

Ui, respectively.
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3. Parallel Triangular Solver

For the sake of completeness, we will describe our triangular solver in this section.
Problem (1) is factorized into the lower triangular problem

(6) Ly = b

and the upper triangular problem

(7) Ux = y;

i.e.,

(8) LUx = b ⇔ Ly = b, Ux = y,

where L and U are the lower and upper triangular matrices, respectively, b is the
right-hand side and x is the unknown to be solved for. Since these two problems
are similar to each other, we will only focus on the lower triangular problem (6).
We always assume that each row of L is sorted in ascending order according to their
column indices; in this case, the last element of each row is always the diagonal
element.

3.1. Matrix Format. The matrix format we design is HEC (hybrid ELL and
CSR). Its basic structure is demonstrated in Figure 1. An HEC matrix contains
two submatrices: an ELL matrix, which was introduced in ELLPACK [10], and a
CSR matrix (Compressed Sparse Row). The ELL matrix is stored in column-major
order and is aligned when being stored in GPU. The CSR matrix is restricted in that
each row has at least one element, which is a diagonal element for the triangular
matrix L.

ELL CSR

Ap

Aj

Ax

Aj Ax

Figure 1. HEC matrix format.

When we split L, the row length of the ELL matrix is obtained by solving a
minimum problem [3]:

(9) Find l (l ≥ 0) such that w(i) = i ∗ n+ pr ∗ nz(i) is minimized,

where pr is the relative performance of the ELL and CSR matrices and nz(i) is the
number of non-zeros in the CSR part when the row length of the ELL part is i. A
typical value for pr is 20 [3].
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3.2. Modified Level Schedule Algorithm. The parallel triangular solver al-
gorithm we develop is based on the level schedule method [19, 14]. The idea is
to group unknowns x(i) into different levels so that all unknowns within the same
level can be computed simultaneously [19, 14]. For the lower triangular problem,
the level of x(i) is defined as

(10) l(i) = 1 +max
j

l(j) for all j such that Lij 6= 0,

where Lij is the (i, j)th entry of L and l(i) is zero initially.
Define Si = {x(j) : l(j) = i}, which is the union of all unknowns whose level is

i. Here we also assume that set Si is sorted in ascending order according to the
indices of the unknowns that belong to Si. Define by Ni the number of unknowns
in set Si and nlev the number of levels. Now, a mapping m(i) can be defined as
follows:

(11) m(i) =

k−1
∑

j=1

Nj + pk(x(i)), x(i) ∈ Sk,

where pk(x(i)) is the position x(i) in the set Sk when x(i) belongs to Sk.
Now, we reorder the triangular matrix L to L′, where Lij in L is transformed

to L′
m(i)m(j) in L′. L′ is still a lower triangular matrix. From the mapping m(i),

we see that if x(i) is next to x(j) in the set Sk, then the ith and jth rows of L
are next to each other in L′ after reordering. It means that L is reordered level by
level, which implies that memory access in matrix L′ is less irregular than that in
matrix L.

The parallel triangular solver algorithm is described in two steps, a preprocess-
ing step and a solution step, respectively. The preprocessing step is described in
Algorithm 2. In this step, the level of each unknown is calculated first. According
to these levels, a mapping between L and L′ can be set up according to equation
(11). Then the matrix L is reordered and converted to the HEC format.

Algorithm 2 Preprocessing a lower triangular problem

1: Calculating the level of each unknown x(i) using equation (10);
2: Calculating the mapping m(i) using equation (11);
3: Reordering matrix L to L′ using mapping m(i);
4: Converting L′ to the HEC format.

The second step is to solve the lower triangular problem. This step is described in
Algorithm 3, where level(i) is the start row position of level i. First, the right-hand
side vector b is permutated according to the mapping m(i) we have just computed.
Then the triangular problem is solved level by level and the solution in the same
level is simultaneous. Each thread is responsible for one row. In the end, the final
solution is obtained by another permutation.

4. Numerical Results

In this section, four examples will be tested, which are performed on our work-
station with Intel Xeon X5570 CPU and NVIDIA Tesla C2050/C2070 GPUs. The
operating system is Fedora 13 X86 64 with CUDA Toolkit 3.2 and GCC 4.4. All
CPU codes are compiled with -O3 option. The type of float point number is double.
The linear solver is GMRES(20).
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Algorithm 3 Parallel lower triangular solver on GPU, Lx = b

1: for i = 1: n do ⊲ Use one GPU kernel to deal with this loop
2: b′(m(i)) = b(i);
3: end for

4: for i = 1 : nlev do ⊲ Solve L′x′ = b′

5: start = level(i);
6: end = level(i + 1) - 1;
7: for j = start: end do ⊲ Use one GPU kernel to deal with this loop
8: solve the jth row;
9: end for

10: end for

11: for i = 1: n do ⊲ Use one GPU kernel to deal with this loop
12: x(i) = x′(m(i));
13: end for

Example 1. The matrix used in this example is from a three-dimensional
Poisson equation. The dimension is 1,728,000 and the number of non-zeros is
12,009,600. Performance data is collected in Table 1.

Table 1. Performance of the matrix from Poisson equation (C-
t=CPU time (s), G-t=GPU time (s))

Preconditioner Blocks Overlap C-t G-t Speedup Iterations
RAS + ILU(0) 16 1 34.99 4.24 8.19 11
RAS + ILU(0) 512 1 41.35 4.77 8.65 12
RAS + ILU(0) 2048 1 47.80 5.01 9.49 12
RAS + ILU(0) 16 2 35.44 4.38 8.03 11
RAS + ILU(0) 512 2 45.18 5.00 9.00 11
RAS + ILU(0) 2048 2 54.06 5.65 9.52 11
RAS + ILUT 16 1 26.85 3.18 8.39 6
RAS + ILUT 512 1 26.51 3.69 7.13 7
RAS + ILUT 2048 1 39.50 4.48 8.77 8
RAS + ILUT 16 2 19.05 2.80 6.75 5
RAS + ILUT 512 2 26.33 3.72 7.02 6
RAS + ILUT 2048 2 30.95 4.37 7.06 6

From Table 1 we can see that when ILU(0) is applied as a solver, the average
speedup of RAS is around 9. The number of iterations does not increase much when
the number of blocks increases. This means that RAS is not very sensitive to the
number of blocks in this example and we can obtain higher speedup by increasing
the number of blocks.

When ILUT is applied, the total running time and the number of iterations are
reduced compared to ILU(0), which coincides with theory [19]. ILUT is a better
choice than ILU(0) usually. However, the non-zero pattern of L and U from ILUT
is less regular than that of L and U from ILU(0) generally, and thus the speedup of
ILUT may not be as high as that of ILU(0). For this problem, the average speedup
of ILUT is over 7.

Example 2. Matrix atmosmodd is taken from the University of Florida sparse
matrix collection [9] and is derived from a computational fluid dynamics problem.
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The dimension of atmosmodd is 1,270,432 and it has 8,814,880 non-zeros. Perfor-
mance data is collected in Table 2.

Table 2. Performance of atmosmodd (C-t=CPU time (s), G-
t=GPU time (s))

Preconditioner Blocks Overlap C-t G-t Speedup Iterations
RAS + ILU(0) 16 1 20.39 2.50 7.95 8
RAS + ILU(0) 512 1 25.32 2.72 9.24 8
RAS + ILU(0) 2048 1 27.21 3.28 8.25 9
RAS + ILU(0) 16 2 21.02 2.69 7.77 8
RAS + ILU(0) 512 2 22.10 2.91 7.54 7
RAS + ILU(0) 2048 2 30.96 3.85 7.99 8
RAS + ILUT 16 1 19.80 2.46 8.00 6
RAS + ILUT 512 1 15.16 2.23 6.72 5
RAS + ILUT 2048 1 17.65 2.41 7.27 5
RAS + ILUT 16 2 16.59 2.28 7.23 5
RAS + ILUT 512 2 19.11 2.71 7.01 5
RAS + ILUT 2048 2 21.33 3.24 6.54 5

The data in Table 2 is similar to the data in Table 1. When ILU(0) is applied, the
average speedup of RAS is around 8 while the average speedup of RAS is around 7
when ILUT is used as the solver. ILUT is better than ILU(0) in terms of the total
running time and the number of iterations.

Example 3. Matrix atmosmodl is taken from the University of Florida sparse
matrix collection [9] and is derived from a computational fluid dynamics problem.
The dimension of atmosmodl is 1,489,752 and it has 10,319,760 non-zeros. Perfor-
mance data is collected in Table 3.

Table 3. Performance of atmosmodl (C-t=CPU time (s), G-
t=GPU time (s))

Preconditioner Blocks Overlap C-t G-t Speedup Iterations
RAS + ILU(0) 16 1 12.85 1.54 8.23 4
RAS + ILU(0) 512 1 15.88 1.60 9.81 4
RAS + ILU(0) 2048 1 15.19 1.70 8.82 4
RAS + ILU(0) 16 2 12.89 1.59 8.02 4
RAS + ILU(0) 512 2 14.95 1.83 8.09 4
RAS + ILU(0) 2048 2 16.84 2.08 8.00 4
RAS + ILUT 16 1 9.03 1.20 7.41 2
RAS + ILUT 512 1 14.08 1.56 8.87 3
RAS + ILUT 2048 1 15.44 1.71 8.90 3
RAS + ILUT 16 2 8.35 1.22 6.71 2
RAS + ILUT 512 2 9.94 1.35 7.23 2
RAS + ILUT 2048 2 13.62 1.61 8.36 2

For atmosmodl, when ILU(0) is applied and the number of blocks is set to 512,
we have a maximal speedup of 9.8. When ILUT is applied, we have a maximal
speedup of 8.9. The data shows that RAS is very stable in terms of the number of
blocks. The ILUT solver is still slightly better than ILU(0). The average speedups
for ILU(0) and ILUT are around 8.3 and 8, respectively.
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Example 4. A matrix from SPE10 is applied. SPE10 is a standard benchmark
for the black oil simulator [6]. The problem is highly heterogenous and it has been
designed to be difficult to solve. The grid size for SPE10 is 60x220x85. The number
of unknowns is 2,188,851 and the number of non-zeros is 29,915,573. Performance
data is collected in Table 4.

Table 4. Performance of SPE10 (C-t=CPU time (s), G-t=GPU
time (s))

Preconditioner Blocks Overlap C-t G-t Speedup Iterations
RAS + ILU(0) 8 0 102.17 15.75 6.48 23
RAS + ILU(0) 16 0 184.28 19.52 9.42 29
RAS + ILU(0) 512 0 123.02 17.81 6.90 28
RAS + ILU(0) 2048 0 188.04 27.28 6.89 44
RAS + ILU(0) 8 1 102.14 15.66 6.51 21
RAS + ILU(0) 16 1 123.20 16.65 7.39 22
RAS + ILU(0) 512 1 145.36 20.06 7.23 22
RAS + ILU(0) 2048 1 151.01 24.74 6.09 23
RAS + ILU(0) 8 2 106.02 17.07 6.20 21
RAS + ILU(0) 16 2 115.95 18.18 6.37 21
RAS + ILU(0) 512 2 146.16 24.87 5.87 21
RAS + ILU(0) 2048 2 220.73 34.04 6.48 23
RAS + ILUT 8 0 37.20 10.72 3.46 7
RAS + ILUT 16 0 51.83 13.49 3.84 10
RAS + ILUT 512 0 76.97 14.98 5.13 16
RAS + ILUT 2048 0 98.59 17.36 5.67 21
RAS + ILUT 8 1 28.84 8.42 3.41 5
RAS + ILUT 16 1 36.97 9.38 3.93 6
RAS + ILUT 512 1 56.93 11.65 4.88 8
RAS + ILUT 2048 1 72.39 16.00 4.52 10
RAS + ILUT 8 2 30.54 8.94 3.40 5
RAS + ILUT 16 2 30.87 8.67 3.55 5
RAS + ILUT 512 2 85.60 15.35 5.56 8
RAS + ILUT 2048 2 69.15 17.26 4.00 7

More calculations are performed in this example to test the effects of overlap
and the number of blocks. We find that if we keep the overlap fixed and increase
the number of blocks, the number of iterations increases. For example, when ILUT
is applied and the overlap is set to 0, the number of iterations increases from 7 to
21 when the block number increases. In contrast, if the number of blocks is kept
fixed and the overlap increases, the number of iterations reduces. In this case, RAS
has better performance. For example, when ILU(0) is applied and the number of
blocks is 2048, the numbers of iterations for 0-overlapping RAS and 1-overlapping
RAS are 44 and 23, respectively.

For ILU(0), it still has better speedup than ILUT, where the average speedups
for ILU(0) and ILUT are about 6.8 and 4, respectively. However, ILUT has better
overall performance in terms of the total running time and the number of iterations.

5. Conclusion

In this paper, we have developed and tested a RAS preconditioner for the solution
of triangular problems. Based on our parallel triangular solver, a parallel RAS
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preconditioner on GPU is implemented. From the numerical experiments, we can
see that our GPU-based RAS preconditioner has high parallel performance and it
can achieve a maximum speedup of about 10.
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