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SIAM J. NUMER. ANAL. ? 2000 Society for Industrial and Applied Mathematics 
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FORMULATIONS AND NUMERICAL METHODS OF 
THE BLACK OIL MODEL IN POROUS MEDIA* 

ZHANGXIN CHENt 

Abstract. The black oil model for describing the hydrocarbon equilibrium in porous media 
is considered in this paper. Various formulations of the governing equations that describe this 
model, including phase, weighted fluid, global, and pseudoglobal pressure-saturation formulations 
with the total velocity and flux, are first constructed. These formulations are more suitable for their 
mathematical and numerical analysis. Finite element approximate procedures are then analyzed. 
These procedures are based on the use of mixed finite element methods for the pressure equations 
and Galerkin finite element methods for the saturation equations. Error estimates are stated first for 
the case where capillary diffusion coefficients are assumed to be uniformly positive. Then an error 
analysis is carried out in detail for a degenerate case where these coefficients can be zero. 

Key words. mixed methods, finite elements, the black oil model, porous media, error estimate, 
mass transfer, degeneracy 

AMS subject classifications. 65N30, 65N10, 76S05, 76T05 

PII. S0036142999304263 

1. Introduction. There has been extensive literature on numerical methods for 
solving the equations that describe fluid flow in porous media (see, e.g., [6, 13, 30, 
39] and the references therein). In conjunction with this literature, there has been 
intensive research into the analysis of these methods (see, e.g., [5, 22, 25, 26, 27, 28, 
29, 30, 32, 33, 34, 40]). However, most of the models analyzed in these papers dealt 
with incompressible flow. A slightly compressible miscible displacement problem was 
treated in [22, 28, 34, 40], but the single phase only was handled, gravitational terms 
were omitted, and quadratic terms in velocity were ignored. While finite difference and 
finite element methods were considered for the black oil model in the past years (see, 
e.g., [8, 9, 46] and the references therein), no analysis was given. Only recently has an 
initial attempt been made to analyze a compressible air-water model in groundwater 
hydrology using finite element methods [17, 19], where two-phase fluid flow has been 
considered and the gravitational and quadratic terms in velocity included, but no 
mass transfer effects have been considered. 

In this paper we analyze the black oil model often exploited for petroleum reservoir 
simulation. This model is a simplified compositional model for describing multiphase 
flow with mass interchange between phases in a porous medium. It consists of three 
phases (gas, oil, and water), can predict compressibility and mass transfer effects, and 
can be used to model a low-volatility oil system, consisting mainly of methane and 
heavy components, using data from a conventional differential vaporization test on 
reservoir oil samples (see, e.g., [7, 39]). 

We first derive various formulations of the governing equations that describe the 
black oil model in porous media. A phase formulation, which involves a phase pres- 
sure, a total velocity (respectively, a total flux), and two saturations, can be easily 

*Received by the editors April 21, 1999; accepted for publication (in revised form) March 14, 
2000; published electronically July 19, 2000. This research is supported in part by National Science 
Foundation grants DMS-9626179, DMS-9972147, and INT-9901498, and by a gift grant from the 
Mobil Technology Company. 

http://www.siam.org/journals/sinum/38-2/30426.html 
tDepartment of Mathematics, Box 750156, Southern Methodist University, Dallas, TX 75275-0156 

(zchen@dragon.math.smu.edu). 

489 

This content downloaded from 136.159.119.111 on Mon, 1 Dec 2014 15:04:32 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


ZHANGXIN CHEN 

obtained by manipulating these governing equations under physically reasonable con- 
ditions. The drawback of this formulation is a strong coupling between the pressure 
and saturation equations. On the other hand, a global formulation, which involves a 
global pressure, a total velocity (respectively, a total flux), and two saturations, can 
be derived under a so-called total differential condition on the shape of three-phase 
relative permeability and capillary pressure functions. The advantage of this global 
formulation is that much less coupling occurs between the pressure and saturation 
equations as in the two-phase flow [3, 13, 17, 19, 21]. Thus, this global approach 
is more efficient than the phase approach from the mathematical and computational 
point of view. In the two-phase flow, the governing equations can be manipulated 
to have the global form under physically reasonable assumptions. The complexity of 
the three-phase relative permeability and capillary pressure curves complicates the 
derivation of the global form for the three-phase flow. In fact, the total differen- 
tial condition is necessary and sufficient for the governing equations to be written in 
terms of a global pressure and two saturations. Due to this, other formulations such 
as weighted fluid (with saturations as weights) and pseudoglobal formulations are also 
developed. A comparison between all these formulations is described. We mention 
that the global formulation with the total flux for the black oil model has been con- 
sidered in [13] and other formulations derived here seem new for this model. Also, 
the "volume discrepancy" approach has been utilized in numerical methods of this 
model [1, 46, 47]. In this approach, the volume balance equation for the saturations is 
satisfied approximately, while it is satisfied exactly in our approach. Furthermore, in 
their formulations the capillary pressures have been neglected, while they are included 
here. 

We then develop and analyze finite element approximate procedures for numeri- 
cally solving the pressure and saturation equations in the various formulations. It is 
known that the physical transport dominates the diffusive effects in incompressible 
flow. In the black oil model studied in this paper, the transport again dominates the 
entire process. Hence, it is important to obtain good approximate velocities. This mo- 
tivates the use of mixed finite element methods for the pressure equations [26]. Also, 
due to their convection-dominated feature, more efficient approximate methods should 
be used to solve the saturation equations (see, e.g., the references in [29, 18, 19]). 
However, since the black oil model is analyzed for the first time using finite element 
methods, it is of some importance to establish the standard finite element analysis. 
We mention that the mixed finite element method based on the Brezzi-Douglas- 
Marini space of degree one [12] has been recently used for the numerical solution of 
this model [9]. In the analysis in this paper, all existing mixed finite element spaces 
will be considered. 

Error estimates are stated first for the case where capillary diffusion coefficients 
are assumed to be uniformly positive. In this case, error estimates of optimal order in 
the L2-norm and almost optimal order in the L?-norm are obtained. The derivation 
of these error estimates follows from those obtained in [19] for two-phase immiscible 
flow. Then an error analysis is carried out in detail for a degenerate case where the 
diffusion coefficients can be zero. The error analysis does not use any regularization of 
the saturation equations. It is based directly on the fully degenerate equations, it does 
not impose any restriction on the nature of degeneracy in diffusivity, and it respects 
the minimal regularity on the solution of the differential systems. This is in strong 
contrast with the analysis given in [35, 42, 43] for much simpler flow problems, where 
a regularization of the saturation equations was utilized, the nature of degeneracy was 
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THE BLACK OIL MODEL IN POROUS MEDIA 

imposed, and strong regularity on the solution was assumed. Sharp error estimates 
in various norms are obtained here for the degenerate case. 

The rest of the paper is organized as follows. In section 2, we derive the formula- 
tions of the governing equations that describe the black oil model. Then, in section 3 
we develop the finite element approximate procedures in the uniformly positive case; 
both semidiscrete and fully discrete versions are considered. Finally, in section 4 the 
degenerate case is described. 

We end this section with three remarks. First, the derivation and analysis of 
the various formulations of the black oil model in this paper provide a mathematical 
background for the numerical solution of fluid flows exploiting this model in porous 
media. Second, the error analysis shows that optimal estimates can be obtained 
for the finite element procedure proposed here for this model in the case where the 
capillary diffusion coefficients are uniformly positive and the solutions are sufficiently 
smooth. However, in real applications, these coefficients can be zero and the solutions 
typically lack in regularity. Hence, these error estimates become useless in the realistic 
case since the constants appearing in them depend on the coefficients and solution 
regularity. It is for this reason that a technique is developed here, which respects 
the degeneracy and minimal regularity. Also, it leads to error estimates useful in 
practical computations. Third, it would be interesting to compare all the formulations 
developed from the computational point of view. This would involve tremendous work 
and will be a future investigation. 

2. Formulations. In this section we formulate the black oil model in such a way 
that main physical properties inherent in the governing equations and constraints are 
preserved, the nonlinearity and coupling among the equations are weakened, and 
efficient numerical methods for the solution of the resulting system can be devised. 
In this model it is assumed that no mass transfer occurs between the water phase 
and the other two phases (gas and oil). In the hydrocarbon (gas-oil) system, only two 
components are considered. The "oil" component (also called stock-tank oil) is the 
residual liquid at atmospheric pressure left after a differential vaporization, while the 
"gas" component is the remaining fluid in a porous medium Q C Rd, d = 2 or 3. 

Let 0 and k denote the porosity and absolute permeability of the porous system, 
s, , pLa, Pl, pcu, a, ba, kra, and q, the a-phase saturation, viscosity, density, pressure, 
volumetric velocity, formation factor, relative permeability, and external source term, 
respectively, a = g, o, w, rso the gas solubility, g the gravitational, downward-pointing, 
constant vector, and J = (0, T] (T > 0) the time interval of interest. Set QT = Q x J. 
Then the black oil model is described by (see, e.g., [7, 39]) 

09 ( roSo (1 rs TO = 
(x,t)E QT, 

ot b bo 
+V. Ug+o -q, 

(2.1) t () + V( o q= , (X,t) E QT, 

SW( +V bU) = qw, (x,t) E QT, 
Ot Vbw / bw J 

where the volumetric velocity of the a-phase is given by 

kk 
(2.2) Ua = (Vpsa - Pac), (x, t) E QT, a = , o, W. 

[La 
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The equations in (2.1) do not represent mass balances but, rather, balances on "stan- 
dard volumes" [39]. In addition to (2.1) and (2.2), we have also the customary prop- 
erty for the saturations, 

(2.3) E 3 = 1, 
/3 

where Z, = -=g9 o,w, and we define, for notational convenience, the capillary pres- 
sure functions, 

(2.4) Pco = Pa - Po, a = g,o, w, 

where Pcoo - 0, pcgo represents the gas phase capillary pressure and Pcwo is the 
negative water phase capillary pressure. 

2.1. Phase formulation. 

2.1.1. Phase formulation with the total velocity. For expositional conve- 
nience, we introduce the phase mobility functions 

Aa = kra/iia, ag = 9, o, W, 

and the total mobility 

A= ZA3. 

Also, we define the fractional flow functions 

fa = A,/A, a = g,o,w, 

so that ZY f = 1. 
Oil being a continuous phase implies that po is well behaved, so we use the oil 

phase pressure as the pressure variable in this subsection: 

(2.5) p = po 

We now define the total velocity: 

(2.6) u = U0. 

Then, we use (2.5) and (2.6), carry out the differentiation indicated in (2.1), and 
apply (2.2)-(2.4) to obtain the differential equations with (x, t) E QT: 

u =-kA (Vp - GA + f3Vpc3o) , 

(2.7) v.U=b (q,-d ( )- ) 

(bg, ( S0 + b, At +Orsbo 1 ) 
-b'g rsoqo +-] ? + r?urso ) bo at b0-So o 
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THE BLACK OIL MODEL IN POROUS MEDIA 

and 

0s, 
0 8 --+V- u,=b, q,-(s -us.V(- , 

(2.8)) aba 
ua = fau + kfa E Ad (V(pcoo - Pcco) - (P3 - Pa)9) 

for a = o, w, where 

GA = g E fOp, 
(3 

The equations in (2.7) and (2.8) are, respectively, the pressure and saturation equa- 
tions. 

2.1.2. Phase formulation with the total flux. In the right-hand sides of the 
second equation of (2.7) and the first equation of (2.8) appear the quadratic terms 
in the velocities. To get rid of these terms, we now introduce the total flux. Toward 
that end, set 

A9 -krg Ab o i- kroo Aw 
_ k r A - Z A3 

bg1Ig - bo/lo bw/ w 

and 

fe = Ac,/A, a = g,o,w. 

The pressure variable is defined as in (2.5) and the total flux is now given by 

(2.9) = E bU3 + -SOu 

Then with the same manipulation on (2.1) as above, we have the pressure and satu- 
ration equations with (x, t) E Q?T: 

u = -kX Vp - Gx + E f3Vpc3o , 

(2.10) V3 
9 b-~ S,+ sorso + 

V .u- qz, 

at ( b;3 bo ) 4p 

and 

(2.11) lo S,I +V . b U) =qa, a = o,w, 

where 

uo= rSo { fou + kfo 3 p(VPC3 - (P3 - Po)) U 1 r so 
(2.12) 

Uw = bw fw + kfw A(V(pco-Pcwo) - (P - Pw)) 
[ J ) 
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2.2. Weighted fluid formulation. We now define a smoother pressure than 
the phase pressure given in (2.5). Namely, we define the weighted fluid pressure 

(2.13) p=Z sp. 

Note that even if some saturation is zero (i.e., some phase disappears), we still have 
a nonzero smooth variable p. By (2.3) and (2.4), the phase pressures are given by 

P, = P + Pcc oo - spo, a = s, o, w. 

As an example, we develop the weighted fluid formulation with the total flux only; 
the total velocity formulation is similarly obtained as in section 2.1.1. Then we define 
the phase and total mobilities, the fractional flow functions, and the total flux as in 
section 2.1.2. Now, apply (2.1) and (2.2) to see that 

u = -kA (Vp - Gx + X, fo3Vpcoo - 3 V('s3pc3o)) 

(2.14) / / / 

Ot b+ bo + V.u qP 

The saturation equations and the relationships between the phase velocities and the 
total flux are the same as in (2.11) and (2.12). 

2.3. Global formulation. 

2.3.1. Global formulation with the total velocity. The phase and total 
mobilities and the fractional flow functions are defined in the same manner as in sec- 
tion 2.1.1. To introduce a global pressure, we assume that the fractional flow functions 
f, depend solely on the saturations sw and sg (for pressure-dependent functions f, 
see the next subsection) and there exists a function (s,, Sg) > pc(Sw, sg) such that 

(2.15) Vpc = fwVpcwo + fgVpcgo. 

This holds if and only if the following equations are satisfied: 

9pc Opcwo apcgo OPc f ?+ f C 

(2.16) Pc aPcw a_PW ap = fw 9PCWO + fg 9pcgo 
Osg =f g fg asg 

A necessary and sufficient condition for existence of a function pc satisfying (2.16) is 

( 17) afw apcwo + fg apcgo _ afw, Ocwo + afg apcgo 
(2.17) + Os 

Osg asW asg Osw OS, asg 9sw Osg 

This condition is referred to as the total differential condition [13, 20]. When the 
condition (2.17) is satisfied, the function Pc is determined by 

Pc(sWs,) fw(, O,) 
Pcwo 

(, O)+ fg,0) S 
f 

(O )Pd 
(2.18) J asW aw ) 

+J/s{f w(dw()s, (, +f) +p, f(s,})Ocg, + f{w(SW, O) asWO(SW,g)+fg(SW, as (SW,}d Os 
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THE BLACK OIL MODEL IN POROUS MEDIA 

where we assume that the above integrals are well-defined, which is always true in 
practical situations [13]. We now introduce the global pressure by 

(2.19) p =Po+Pc, 

and we introduce the total velocity as in (2.6). Now, use the condition (2.17), the 
definitions in (2.18) and (2.19), and the same calculations as in section 2.1.1 to obtain 
the pressure and saturation equations with (x, t) C QT: 

u = -kA(Vp - G), 

(2.20) V.U=Zb ( -S (b) - V( )) 0t b 0 bo 
/(T,o40 d)So drso ,1 

-bg rsoqo + ?-7 a + -Uo 
VrO) bo t bo . r) 

and 

asc V ( 9 (1)1 
(2.21) at q- st b, b))' 

u, = f,u + kA (V(pc - PcoO) - a,), 

for a = o, w, where 

a =(f (P, - Pa) + fy(Py - Pa)) 9, 

a, , 7 = g,o,w, a + /3,f3 - y,7 $ a. 

2.3.2. Global formulation with the total flux. As in the phase formulation, 
to get rid of the quadratic terms in the velocities in the second equation of (2.20) and 
the first equation of (2.21), we define the phase and total mobilities, the fractional 
flow functions, and the total flux as in section 2.1.2. In the present case we assume 
that the solubility factor rso, the formation factors b,, and the viscosity functions 
p/, depend only on their respective phase pressure. This assumption is physically 
reasonable [2, 13]. Furthermore, to derive a global pressure p, we assume that these 
functions essentially depend on p. The second assumption ignores the error caused by 
calculating them for the a-phase at p instead of pa. For details on this error, which 
introduces lower order terms in partial differential equations, the reader is referred 
to [17] for a similar treatment in the two-phase flow. With these, the fractional flow 
functions fa depend only on the saturations s, and sg and a global pressure p. 

We now assume that there exists a function (Sw, Sg, p) - p(sw, sg, p) satisfying 

(2.22) Vpc = fwVpcwo + fgVpcgo + ap Vp. 

With the same argument as in section 2.3.1, a necessary and sufficient condition for 
existence of a function pc satisfying (2.22) is (2.17), where p is treated as a parameter. 
Under this condition, the function Pc is described by 

[SW r aPcgo } 
Pc(sw,S g, ) -1 fw(, 0, p) aSw ( ,0)+ fg(, O, P) (,0) 

(2.23) jP 9a Psw a go 
S9 

9dpcul o apcgo + fws (Sw, ~, P) Osg(Sw, ) + fg(Sw, , p) (SWg<. 
JO gg 
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With the same global pressure as in (2.19), we can derive the pressure and saturation 
equations with (x, t) E QT: 

u = -IkA(Vp - G), 

(2.24) #9 _S_3 Sorso _ 
+ V 

<^ (E - +S0-o) + V * u q^ at b bo 

and 

(2.25) (y + V - ua)q, ea=o,w, 

where 

U bo fou + o ,(Vp, - o) - o 
-1 Gp } 

w= bw{-lfwU + kAw(V(pc-Pcwo) -w) --1 pcG } 
and 

0Pc 
W(Sw,Sg,p) =1- ap 

2.4. Pseudoglobal pressure formulation. The global pressure formulation in 
the previous subsection requires the total differential condition (2.17) on the shape of 
three-phase relative permeability and capillary pressure functions. In this subsection, 
as introduced in [20] for immiscible problems, we finally consider a pseudoglobal pres- 
sure formulation, which does not require this condition. As an example, we consider 
this formulation with the total velocity. The formulation with the total flux can be 
obtained as in section 2.3.2. 

Assume that the capillary pressures satisfy the usual condition 

(2.26) Pcwo = Pcwo(Sw), Pcgo = Pcgo(Sg). 

We then introduce the mean values 

1 ~1-sw 
fw(sw) = 1 _ SW f (sw, ()d( 

(2.27) 1 - s 

fg(sg) s 1 f( sg)sd , 

and the pseudoglobal pressure 

j-SW - dpF^ o 89 dpcgo(() 
P =Po + fw( ds d ds+ 

Wc gc g 

where swc and Sgc are such that pcwo(swc) = 0 and pcgo(Sgc) = 0. Now, apply these 
definitions to (2.7) to find that 

u =-kA {V - G + , (-fa) dpO V , 

V.U=Ebo (q- s^ ( ) -u.v(b)) -9r/s3 q b?A O*s 
/u=Chj ~mb d>S 9rso ,1 

-b'g rsoqo + + u rso 
bo at bo 
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Other equations are given as in (2.8). 

2.5. Remarks on the formulations. The four pressure formulations developed 
above have similar structures as those developed in [20] for the flow of immiscible 
fluids, where a numerical comparison was given. A similar comparison for the black 
oil model under consideration is beyond the scope of this paper (an error analysis is 
emphasized instead). Here we just make a few remarks from the above derivations 
and observations made in [20]. 

The global formulation is far more efficient than the phase and pseudoglobal 
formulations from the computational point of view and also more suitable for math- 
ematical analysis since the coupling between the pressure and saturation equations 
is much less. The weakness of the global formulation is the need of the satisfaction 
of the total differential condition (2.17) by the three-phase relative permeability and 
capillary pressure curves. In general, the phase (or the weighted fluid) formulation 
can be applied. However, if the fractional flow functions of the water and gas phases 
are close to their respective mean values as defined in (2.27), the pseudoglobal formu- 
lation is more useful. In the (unphysical) case where the capillary pressures Pcgo and 
Pcwo are zero, all the formulations are the same. Finally, we remark, as mentioned 
in the introduction, that the global formulation with the total flux for the black oil 
model has been considered in [13], and other formulations derived in this paper seem 
new for this model. 

3. Finite elements in the positive case. In this and the next sections we 
develop finite element approximate procedures for numerically solving the partial dif- 
ferential equations developed in the previous section. As an example, we consider the 
global formulation with the total velocity, which is representative in that it involves 
the global concept so that the same analysis can be easily done for the global formu- 
lation with the total flux, and it contains the quadratic terms in velocity so that a 
similar analysis can be extended to other formulations. In this section we consider 
the case where capillary diffusion coefficients are assumed to be uniformly positive, 
and we indicate how to obtain error estimates from those in [17, 19]. 

3.1. The differential model. To adopt the numerical analysis used in the two- 
phase immiscible flow [17, 19], we now write the differential model in (2.20) and (2.21) 
in a slightly different form. For this, we introduce the following coefficients: 

q(p) = Sb bqf - bgrsoqo, 

(1 \ sob9 drso 
c(so,sW,p) = q , bd ( bg drso 

do(so, s, p) - b - I kA3 bg dr k - k 
dp \b3 bo dp 

dl (so, sw, p) b 
d ( 1 f + bg drso 

f, d1(so,sl,p) b'3dpr ?+ 

da(so, 
sw ,) = bokA3 -P - P ao + kA? d ', a = o,w, 

(s,sp)=dp \bo NsJ bo dp s,, 

O,so,sw, p) =b6,qa - c- q (p) a,=))? oa=wl 

497 

This content downloaded from 136.159.119.111 on Mon, 1 Dec 2014 15:04:32 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


ZHANGXIN CHEN 

ra(So,Sw,P) = (s)abuaCl d (b) 1 =0,w, 
dp gba- 

gao(sos w,p) = bc (s,c-ldo A+ ka8a) ( , = o,w, 

gal(so,sw,p) = ba (sc-1di - fa) d I( , a = o,W, 

9a 3(So,Sw, P) = bca P(sac- d - k (Pc - Pcao) ) d (1 a o,w, 
(\8aC1dii~ - kAa&(PC^jj0 / dp ba/ 

D,o(so sw) = -kA 0(Pc ~ Pcao) , D'ft(so,s^&(PcPcao) , ,/3=-o,w. 
OSf3 

Then (2.20) and (2.21) can be written as follows with (x, t) E QT: 

u =-kA(Vp - G), 

(3.1) Op 
c- + V . u = q(p) - (do + dlu + doVso + dwVsw) ' Vp, 

and 

9sa 

(3.2) X -a- V (DaoVSo + DawVsw - faU + kA,6,) 

= zO + 7aV ' u + (g90 o + gau + gSoVSo + gwVsW) . Vp, a = , w. 

The model is completed by specifying the boundary and initial conditions. For 

simplicity we consider no flow boundary conditions 

(3.3) U v = 0, (x,t) E Q x J, a=g,o,w, 

where v is the outer unit normal to OQ. Other types of boundary conditions can be 
handled similarly [17, 19, 21] (see how to handle the Dirichlet boundary condition in 
the next section, for example). From the definition of the total velocity (2.6), we have 

(3.4) . = 0, (x,t) E aQ x J, 

and from the second equation of (2.21) 

(3.5) (DaoVso + DwVsw - f,u + kAc,6) ? v = 0, 

(x,t) cQfxJ, a=o,w. 

The initial conditions are given by 

.p(x,O) =p?(x), x E Q, 

S,()x, 0) = s?,(x), x E f, a = o,w. 

The unknowns are so, sw, p, and u. 
The analysis for the nondegenerate case in this section is given under a number 

of assumptions. First, the solution is assumed smooth; i.e., the external source terms 
are smoothly distributed, the coefficients are smooth, the boundary and initial data 

satisfy the compatibility condition, and the domain has at least the regularity required 
for a standard elliptic problem to have H2(Q)-regularity and more if error estimates 
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of an order bigger than one are required. Second, the coefficients a(so, sw) = kX, q, 
and c(so, sw,p) are assumed to be bounded positively below: 

O < a, < a(So, Sw) < a* < oo, 

(3.7) 0 < * < (x) < O* < oo, 
O < c* < c(So, Sw,p) < c* < oo. 

While the phase mobilities can be zero, the total mobility is always positive [39, 44]. 
The assumptions in (3.7) are physically reasonable. In the case of k being a tensor, 
we assume that a(so, sw) is uniformly positive definite. Also, the present analysis 
obviously applies to the incompressible case where c(so,Sw,p) = 0 (c is the total 
compressibility). In this case, the analysis is simpler since we have an elliptic pressure 
equation instead of the parabolic equation (3.2). Thus we assume that the condition 
in the third equation of (3.7) holds for the compressible case under consideration. 
Next, with the definition 

t ) ( Do? Dow 
D(so, Sw) = D Dwo Dww 

we assume its uniform boundedness and positive definiteness, 

(3.8) D*(?t < (tD < D*tC, E R2 

with fixed constants D,, D* > 0, where (t denotes the transpose of the column vector 
(. As a final remark, we mention that for the case where point sources and sinks occur 
in a porous medium, an argument was given in [33] for the incompressible miscible 
displacement problem and can be extended to the present case. 

3.2. Semidiscrete version. Let 

H(div, Q) = {v E (L2(Q))d : V . v E L2(Q), d = 2 or 3}, 
V = {v E H(div, ) : v v = 0 on 9Q}. 

Below C denotes a generic positive constant. For 0 < hp < 1 and 0 < h < 1, let Thp 
and Th be quasi-uniform partitions into elements, say, simplexes, rectangular paral- 
lelepipeds, and/or prisms. In both partitions, we also need that adjacent elements 
completely share their common edge or face and that the boundary edge of a bound- 
ary element can be curved. Let Mh C W1'?(Q) be a standard Co-finite element space 
associated with Th such that 

,, 1/2 

OCEMh 
K 

Wk+l,. (K) fM || \wl <C ( h ||I||vk+,x(K)) , 
k> 

>, 1 <7r < oo, 

where hK =diam(K), K E Th, and I|V|Iwk,(K) is the norm in the Sobolev space 

Wk'(K) (we have Hk(K) = Wk,2(K) when 7r = 2). Also, let Vh x Wh = Vh x 

Whp C V x L2(Q) be the Raviart-Thomas-Nedelec [41, 37], the Brezzi-Douglas- 
Fortin-Marini [11], the Brezzi-Douglas-Marini [12] (if d = 2), the Brezzi-Douglas- 
Duran-Fortin [10] (if d = 3), or the Chen-Douglas [16] mixed finite element space 
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associated with the partition Thp of an index such that the approximation properties 
below are satisfied: 

inf Ilv - OiL2() < C h II 0 < r < k* + 1, 
'cEVh f p,KIIV_Hr(K) K 

1/2r 2 
K 

inf w -||L2() < C ( IIII(K O <r < k** 

where hp,K =diam(K), K E Thp, k** = k* + 1 for the first two spaces, k** = k* for 
the second two spaces, and both cases are included in the last space. 

The semidiscrete finite element approximate procedure is defined as follows. The 
approximation procedure for the pressure is defined by the mixed method for a pair 
of maps {uh,ph} : J -` Vh X Wh such that 

(alUh,v) - (V V,ph) (GX(So,h,Sw,h,Ph),v) Vv E Vh, 

(3-9) (ch t ) + (V. uh, ) ' = (q(Ph), ) 

-((do,h + dl,hUh + do,hVSo,h + dw,hVSw,h) 
' VPh, ) VO E Wh, 

where the discrete coefficients ah1, etc. are calculated at So,h, Sw,h, and Ph, 

(3.10) Vph = -a-(So,h, Sw,h)Uh + GAX(So,h, Sw,h,Ph), 

and So,h and sw,h : J -* Mh are given by 

at , v) + (Dao,hVSo,h + Daw,hVSw,h 
- 

f,hUh + kA,,h6,h, Vv) 

(3.11) = (0,h + a,,hV * Uh + (g90,h + gal,hUh + gao,hVSo,h 

+gc,w,h VS,h) . Vph, v) Vv E Mh, 

for a = o, w, where the discrete coefficients are again calculated at So,h, Sw,h, and Ph. 
The initial data ph(-, ) = ph and s,,h(-, 0) = s,h can be taken as their respective 

projections or interpolants of p0 and s? in Wh and Mh, for example. 

3.3. Error estimates. To see that the error analysis for the two-phase immis- 
cible flow problem in [17] can be exploited for (3.9)-(3.11), we introduce the following 
vectors and matrix: 

ow ( do I I so I f 
fo ) ( 

AX060 

n f 8o, \l (0r0o \ -- oi gi0 woo gow Ow W ) 9wi ) 9 gwo gww ) 

for i = 0,1. Then (3.1) and (3.2) can be written as a nonlinear system for p and s: 

u = -kA(Vp-Gx), 

(3.12) cac -+ V - u = q(p) - (do + dlu + dtwVs) Vp, at 
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and 

Os 

(3.13) t-V(DVs- fu+ k6) 
= 0 + rV U + (Vp I)(go + giu + gVs), 

where I is the two-by-two identity matrix. Now, we see that (3.12) and (3.13) in 
form resemble those in (2.9)-(2.11) in [17] with minor changes in lower order terms. 
Therefore, by the assumptions (3.7) and (3.8) and using the analysis in [17] for the 
semidiscrete version, we have the next convergence results in Theorems 3.1 and 3.2 
below. Define 

kc** OP 2p 
hp,K (IPIIL(J-;Hk ()) t 

+ 
2 ) 

KETh (Ot L?(J;Hk** (K)) L2(J;Hk**(K)) K EThp 
(K)) + ) 

hk*+1 L2( J +1 (K)) + h 
p,K UUILL-(J;Hk*+l(K)) + t 

KE Th L2(J;Hk+1(K)) 

h k+1 ( Os 
K+ K TOt L2(J;HL+K(K)) 

THEOREM 3.1. Let (u,p,s) and (uh,ph, Sh) solve (3.1), (3.2), and (3.9)-(3.11), 
respectively, where Sh = (So,h, sw,h)t. Then, under the assumptions (3.7) and (3.8), if 
the parameters hp and h satisfy 

(3.14) (h-d/2 + h-d/2)(hk*+1 + hk + hk+l) 
- 0 as h --+ 0, d = 2 or 3, 

we have 

\lu - UhllL (J;L2()) + Hli - Ph ||(L(J;L2 (Q)) 

9p 9ph 
+ 

P aPh + js - 
ShlL-(J;L2(Q)) 

at Ot LL(J;L2(Q)) 

+hls- 5Sh||L?(J;H1(Q)) -+ O t C at at LL2(J;L2 (Q)) 

where C depends upon the following quantities: 

(Os Os 
C=C e , V | | C = C V , IIVSIILo(QOT), 

-O L-(QT ) L LO (QT) 

ap 02p au 
at at) 2 IIUIL(QT) 

o L (L^T) L c0 (Q T) L^C(r) 

In the two-dimensional case, we also have the L??-estimates for the errors s -Sh 
and p - Ph 

THEOREM 3.2. Under the assumptions of Theorem 3.1 with d = 2, we have 

IIP-Ph LC L-(QT) C log hp ( hpk IIplIL-(J;Hk** +i())), 

Is - Sh|lLOO(QT) < C( log h-1) ( + hk+fls SIILoo(J;Wk+l, (Q))), 

where 7 = 1 for k = 1, 1/2 for k > 1, and C has the same dependence as in 
Theorem 3.1. 
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As remarked in [21], the assumption (3.14) can be easily satisfied by the definition 
of k*, k**, and k. As a final remark, let us mention the existence and uniqueness of 
the approximate solution to the nonlinear system in (3.9)-(3.11). Introducing bases 
in Vh, Wh, and Mh, (3.9) and (3.10) can be written in matrix form as follows: 

A(S)U - BP = G(S, P), 
(3.15) dP 

5C(S, P) + BtU = F(S,P), dt 

with P(0) given, where A(S) and C(S, P) are positive definite by the first and third 
equations of (3.7); S, U, and P are the respective degrees of freedom of Sh, Uh, and ph; 
and F(S, P) denotes the right-hand side of the second equation of (3.9). Substituting 
the relation 

(3.16) U = A(S)-1BP + A(S)-1G(S, P) 

into the second equation of (3.15), we see that 

IP B 
C(S, P)d + BtA(S)-lBP + BtA(S)-Gx(S, P) = F(S, P), dt 

which, in turn, produces the system 

dP 
(3.17) = F1 (P, S). dt 

Also, using the discrete counterpart of (3.13) and the same argument, it follows 
from (3.11) that 

(3.18) d _ (3.18) = F2(P, S), 

with S(0) given. Now, (3.17) and (3.18) can be regarded as a nonlinear system of ordi- 
nary differential equations for (P, S), which has a unique solution, at least locally and 
for h small enough. In fact, since we assumed that the coefficients in (3.1) and (3.2) 
are smooth, the vector valued function (F1, F2) is globally Lipschitz continuous, and 
the solution (P(t), S(t)) exists for all positive time t. 

3.4. Fully discrete version. In this subsection we consider a fully discrete 
version of the finite element approximate procedure in (3.9)-(3.11). For this, let 

{tn}l=o be a quasi-uniform partition of J, with to = 0 and tnT = T, and set At 
tn - tn-1 At = max{Atn, 1 < n < nT}, and 

= _(tn), 0 n = (n _- n-l)/Atn. 

The approximation procedure for the pressure is again defined by the mixed 
method for a pair of maps {un,ph} E Vh x Wh, n = 1, 2,..., n r, such that 

(a 1'n-1U,n) - (V * V,) = ,(G ,\v(s,n- , - ),v) Vv V h, 

(3.19) (c n-1p,n ) + (V .* U ) =(q(pn1), ) - ((dn1 + d rU1- 

+dn-lvsn-1 + d7n-1 VSn-) Vpn-1 ) V Wh, o, h o,h w,h wk,h h ~ , 
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where the discrete coefficients c- , etc. are calculated at the previous time level 
n-1 n-1 d n-1 
o,h , Sw,h an Ph 

(3.20) VP n-1 a- ( n-nls)U1 +G(s , Pl) (6h .\,h wv,h +)U -Gx(o,h w,h,h 

and sh and sW h: J Mh (n = 1, 2,..., nT) satisfy 

(Oan n n-1 VSn cn-I nn' n-lIn kn-16n-I1VV) (as,h v) + (D Vs + D Vs, - f"I kAh 1Vv) ((/,)n V+ (, D?ceo,h Vo,h + aw h w h -fcxh Uh + w)h ceh 

(3.21) /n-1 n--l7 ? un r n-1 n--1 n n--1 vn-I (3.21) = ( ,h1 + h h V * O,h + ( g h+ Uh + - 
Vo,hVSo,h 

+gVn--1 Vn-l . ) VV C Mh, gaw,h w,h h p 

where the coefficients are calculated at snl, Sn-1 and pn (i.e., the previous satura- 
tions and current pressure, e.g., 6, 1 

= , (So ,nl s-,hi )) and the initial data po and 

S0 h can again be their respective projections or interpolants of p? and s7 in Wh and 

Mh. Moreover, Uh, which is needed in (3.19) and (3.21), can be initially computed 
via the first equation of (3.1), for example. 

After startup, for n = 1, 2,..., nT, (3.19)-(3.21) are computed as follows. First, 
using sn, 

-1 
pn- n-1, (3.19), and (3.20), evaluate {uh ,p}. Since it is linear, they a ,h I h h h h 

have a unique solution for each n [15, 36]. Next, using 5n-h, {Uh,ph} and (3.21), 
calculate sn. Again, it has a unique solution for Atn sufficiently small for each n [45]. 

While the backward Euler scheme is used for the time discretization terms in (3.19) 
and (3.21), the Crank-Nicolson scheme and more accurate time stepping procedures 
(see, e.g., [31]) can be used and the present analysis applies to these schemes. Also, 
the nonlinearities in the pressure and saturation equations are handled by lagging in 
time. Consequently, a linear system of algebraic equations is solved at each time step 
instead of a nonlinear system. In this case a condition on the time step is needed; 
see (3.22) below. However, it turns out that this condition is not very restrictive. We 

point out that the analysis below extends to the nonlinear version where we calculate 
the coefficients fully at the current time level instead of the previous level (see the 
scheme in the next section). In the latter case the time step At in the condition (3.22) 
below would disappear. The drawback of this fully implicit scheme is that we have to 
solve a nonlinear system at each time step. 

Again, using the version given in (3.12) and (3.13) and applying the analysis 
in [19], we have the next error estimates for the fully discrete scheme in Theorems 3.3 
and 3.4 below. Set 

S1e Ql =A + = + 
A) uti L2(&T) ti L2(QT) Oti L2(2QT) 

03p +At 0+ +. 
t3 L2 (QT) 

THEOREM 3.3. Let (u,p,s) and (uh,ph, Sh) solve (3.1), (3.2), and (3.19)-(3.21), 
respectively. Then, if the parameters At, hp, and h satisfy 

(3.22) (h-d/2 + hpd/2)(At + hk*+l + h* + hk+l) 
- 0 as At, h - 0, d = 2 or 3, p p p, 
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we have 

max 
{||Tun 

-n U 
L2(Q) + lip -PhL||L2() + IS - ShL2(Q) O<n<nT 

h P'h II L2 ( ) h 

+h||V(s" - sh)||L2(Q) a+ t -h } 

n sT ) 2 1/2 

+ " 9sn Atn i < CsI1, Ot LCh 

where C has the same dependence as in Theorem 3.1. 
THEOREM 3.4. Under the assumptions of Theorem 3.3 with d = 2, we have 

max lIpn - PhIIL-() < Clog hp (1 + hp ||P||l (J;Hk*+l1())), 
O<n<nT 

max ||sn - SnILo~(Q) ? C(logh-1)'(?1 + hk+ l]Is|LO(J;Wk+l(O(Q))) O<n<nT ' 

where -y = 1 for k = 1, - = 1/2 for k > 1, and C has the same dependence as in 
Theorem 3.1. 

4. Finite elements in a degenerate case. In the previous section we assumed 
the uniform positiveness of D(s) in (3.8). In this section we analyze a realistic case 
where D(s) can be zero. As mentioned in section 3.1, the pressure equation is not 
degenerate, so we only analyze the saturation equation (3.2) or equivalently (3.13). 
To fix the idea, we write the saturation equation in the general form 

9s 
(4.1a) at - . (D(s)Vs - f()u + (s,))= qw(s,p), (x,t) C QT, 

where (u,p) is determined by the pressure equation. Also, to avoid unnecessary 
complications we treat s as a scalar function. Then, to analyze (4.1a), we introduce 
the Kirchhoff transformation 

s 

(4.2) = D()d, 0 < s < 1, 
Jo 

and let S(a) be the inverse of (4.2) for 0 < a < a* with 

<X* = J D(~)d. 
Jo 

It is assumed below that S is strictly monotone increasing in a. Moreover, it satisfies 
that 

(4.3) 1la1 - 22 (L2(Q) < /*(a1 - "2, s1 - 2), 0 < O1, 02 < a*, si = S(-i), i = 1, 2. 

A sufficient condition for (4.3) to hold is 

O < D(s) < /* < oo, < s <1. 

This is physically reasonable. It also says that the saturation equation can be de- 
generate. In practice, all the functions of s are normally defined on [0,1]. In the 
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numerical approximation here, the possibility that s , [0, 1] is allowed. All functions 
of s are extended constantly outside [0,1] except S, which is extended as follows: 

ra for < < 0, 
s = extended S(a) = S(a) for O < a < a*, 

a + 1 - * for a* < a. 

The reason behind this extension will become clear from the proof of Lemma 4.1 later. 
Also, this extension is a good choice in the theoretical analysis of simpler fluid flow 
problems [4, 14]. 

We conclude with the boundary and initial conditions 

a = CD, (x, t) c aQ x J, 
(4.1b) s(x, ) = s?(x), x e Q. 

As an example in this section, we indicate how to handle the Dirichlet boundary 
condition; an extension to other types of boundary conditions is possible. 

4.1. Preliminaries. Again, let Mh C H1(Q) be a standard Co-finite element 
space associated with Th such that 

(4.4) inf IV - VhlHl(Q) < ChllvllH2(Q). 
Vh EMh 

In this section we consider only lowest-order C?-finite elements such that (4.4) is sat- 
isfied; due to lacking in regularity on the solution, no improvement in the asymptotic 
convergence rate results from taking higher order finite element spaces. Finally, set 
Mh(O)= Mh n Ho (Q). 

We define the Green operator G: H-1(Q) - Ho(Q) by 

(4.5) (VGv, Vw) = (v, w) Vw E Ho (Q), v C H-1(Q). 

Assume that the regularity result holds 

(4.6) IlGVllH2(Q) < C||V|lL2(Q) for any v L2(Q). 

Also, we can define 

(4.7) IlvIH-I(Q) (v, Gv)= (VGv, VGv) v E H-1) 

which is equivalent to the usual norm on H-1(Q). 
The discrete Green operator Gh : H-1(Q) - Mh(0) is given by 

(4.8) (VGhv,Vw) = (Ov,w) Vw E Mh(O), v E H-1(Q). 

By the regularity of Th and G, we have the following approximation property [23]: 

(4.9) I|(G - Gh)vIHl(Q) < Ch -(+ r) VIB-(Q), 0 < 1 r < 1, 

where B-"(Q) = [L2(Q),H-1(Q)] is the interpolation space. Moreover, it follows 
from (4.7) that 

lIVGGhVI}L2(Q) < CIIVIIH-1(Q) Vv H-(Q). 
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To handle the Dirichlet boundary condition, we introduce the set 

M(g) = {v C H1() : v = g on oQ} 

for g C H1/2(oQ2). Also, for g E C?(2) define 

Mh(g) = {v E Mh: v = Ihg on OQ}, 

where Ihg indicates the interpolant of g in Mh. We now define the discrete operator 
Eh : M(g) - Mh(g) by 

(4.11) (V[v - Ehv], Vw) =0 Vw C Mh(O), v C M(g). 

By (4.9), we see that 

(4.12) I|v - EhVllHL(Q) < Ch2-(1+ )Ill IIH2-I(), 0 < I,r < 1, 

for v e M(g), with g E C0'(09Q). Finally, we denote by Ph the L2-projection into 
Mh, which satisfies that 

(4.13) Ilv - PhvlH-l(Q) < ChllvllL2(i) Vv C L2(). 

4.2. Finite element method. As an example, we analyze only a fully discrete 
approximation for problem (4.1). The semidiscrete version can be defined as in sec- 
tion 3.2 and can be analyzed similarly. 

We recall the notation in section 3.4; for each positive integer nT, let 0 = to < 
t1 < ... < tT = T be a partition of J into subintervals Jn = (tn-1, tn] with length 
Atn = tn - t-, 1 i < n < nT. Also, set vn = v(, tn). Finally, we indicate the time 
difference operator by 

vn _ n-1 

avn= 
- n I <n< nT. 

We extend CD to Q as the solution of the problem: Find if C M((D) such that 

(V', Vv) = 0 Vv E M(O); 

we still indicate this extension by (D. Also, we set aD,h = EhJD, where Eh is defined 
in (4.11). 

The fully discrete approximation is given as follows: For any 1 < n < nT, find 
ah E M Dh( , h) such that 

n 

(OSh, v) + Z(V - f (s h)ui + 6((si,pj), Vv)Atj 

(4.14) n =l 

= (qw(sh,)J^),v)Atj + (0s?,v) Vv E Mh(0), 
j=1 

where Sh = S((h). The numerical initial datum Sh(.,0) = sh is defined as the L2- 

projection of so in Mh: 

s = PhS0. 

In practical computations, we can use an equivalent form of (4.14). Take the 
difference of the equations at time levels n and n - 1 and divide by Atn to see that 

(4.1) ( v) + (Vah - f(sn)un 
+ 6(sh, p), V) 

(4.15) 
Vv E Mlh(U). 
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4.3. A priori estimates. We establish a priori estimates for (4.14), which will 
be used in the error analysis. Below we implicitly assume that u E L?(QT). Also, 
the functions of s, f, 6, and qw are assumed to be bounded in the following norms: 

IllflllL2(QT), II16IHIL2(QT), I IlqwIL2(J;H-1(Q)), 

where the norm 1[1 j ||| is defined by IlvIII = [supsE[0o,] [v(x,s)l [ for v = v(x,s) and 

any given norm 1 [|. Finally, the data so and aD are bounded in the norms: 

Is5 IIL2(Q), liaDIIL2(J;H1/2(&Q))- 

Below e is a positive constant, as small as we please. A similar stability and error 
analysis was given in [38] for free boundary problems. 

LEMMA 4.1. For the solution (sh, ah) of (4.14), there is a constant C independent 
of h and Atn, n = 1,... , nT, such that 

nT 

max {1s ns1L2(Q)+ ]II,n 22(Q)} + 1 
1V7h L2(2)At < C. 

n=l 

Proof. Take v = ah - cD,h C Mh(0) in (4.15) to see that 

(q5S, 
n_ - a, ) + (Van -f (sn)un + 6(sn pn), V[ -, D h]) 

-(q.(n pn) - n_ - (qw(h,p h), h -aD,h). 

Summing over n from 1 to nT, this equation can be written as follows: 

nT 

Z { ((s -h s )lh , -h D,h) + (vuh, V[h - aDh) An} 
n=1 

(4.16) nT 
(qw (Sn pn), n - ,n 

n=1 

+( f(s(n)u - 5(sn,pn), V[ahn - ,n,h])}Atn. 

Note that 

(V ,V h) ||V IL2(+) ?CVD L2(Q), 

(qw(shnpn), -n aDh) < ?|E|hIIHl(Q) +C (IIqlWnIIH-I(Q) + IIDnhH21(Q)) 

(f(sn)un, V[n- < E h]) ,n ||V I||2(Q) +C (fllnIi2(Q) + VD ,h 2 L2()), 

(6(sn,p), V [n- h]) < I Vn 22(Q) +c (I 2ini(Q) + l Dll2 ) ) . 

Also, define 

(TT)= we see th 
Jo 

Then we see that 
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so, 

nT nT 

shn _ -sh 
], 

nh ) > (0[hn(Sn) -_(sh 1)], 1) = ( t0[D(snT) - (S)]l I) 
n=l- n=l 

By (4.3), we have 

I(snT) > 2 (T)2 and 4(s?) < 2(sh)2 

Thus, by (3.7), we obtain 

Z([uh - Uh1] )h) > 
2 IlInhL2(Q) - 2 5hlL2()? 

n=l 

Also, by the extension of S, we have 

|(0(Sh -sh ) ,a) ,h) <? ll L2 h 1 L2( ))-2 +C (1+ IIh .IL2(Q)) 

Finally, substitute these inequalities into (4.16) and use the Gronwall inequality, the 
extension of (D, the definition of aD,h, and the Poincare inequality to yield the desired 
result. 0 

Set 

\t= max Atn. 
1<n<nT 

LEMMA 4.2. For the solution (sh, h) of (4.14), ifh O(At), there is a constant 
C independent of h and Atn, n= 1,..., nT, such that 

nT 

Il0Sgib- atn < C. 
n=l 

Proof. Choose v = Gh(0sn) in (4.15) to see that 

(4.) (oas, Gh(asn)) + (V,n - f(sn)un + 6(s, pn), VGh(asn)) 
(4.17) 

- (qw(sh, pn), Gh (as)). 

By (4.10), we see that 

I(V'~- f(sn)un + 6(Sn,pn), VGh(09Sn))l 

< E\C9sn Vnl2(Q) +C {If\{2() + If L2(Q) I+ 11Inll2()} 

and 

(qW (S,p p), Gh (0S)) | < EllaSn 2 - (Q) + Cl I | ll -n ( 12 

Note that 

(oash, Gh (ah)) = (oaSh, G(ash)) + (oas, Gh (shn) - G(0sh)), 

so that, by (4.7) and (4.9), 

|(0h, Gh (h)) | { - h2H -(R) - h I )} 

Substitute these inequalities into (4.17) and use Lemma 4.1 to finish the proof. 
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4.4. Error estimate I. For the result in this section we need the minimal reg- 
ularity on the solution and on the boundary datum: 

s c L2(Q2T) as- L 2(J; H -1 
()), 

(4.18) L ) 
o E L2(J; H1(Q)), OD H'(J; HI/2 a9)). 

Also, we assume that the coefficients satisfy 

Ilf(si) - f(s2)I1 2(Q) + 1b(Si, .) - 6(S2, ') 1 2 
L2s2 L2 (Q) 

(4.19) +lq1w(si,.) - qw(S2,.)112(_-( ) K C(si - S2, 1 - 02), 

0 ? _l, a2 ? cr*, Si = S(ai), i = 1,2, t c J. 

Note that if f satisfies that 

(4.20) 

If(Sl)-f(S2)I1 ? C(SI-S2)(1-u72), 0 ? Ol, 02<? o , almost everywhere (a.e.) on bT, 

assumption (4.19) is true for f. A necessary and sufficient condition for (4.20) to hold 
is that 

(4.21) IfS12 ? CSS-1 Vs C [0, 1], a.e. on QT. 

The same remark can be made for other functions in (4.19). Essentially, (4.21) implies 
that f, vanishes with S'1, which is physically reasonable. 

Introduce the notation 

;U = jI~ v(-, t)dt, -n tn n 1 <n <nT. 

Also, set 

Sh (', t) = S'h), Oh(-, t) o Qn for t E Jn, n 1, , nT. 

Note that (4.1) can be written in the weak form: Find a E Hol (Q) ? OD such that 

(sat iv) ?(V -f(s)u?6(s,p),Vv)= (qw(s,p),v), v cH Q 

Integrate this equation over J' to see that 

(4.22) (friisO, v) + (Van _ fUn + 6, Vv) = ( , v), v E 

for n = 1,... , nT, where 6 =(s,p)'> etc. To fix the ideas, the errors ~U' - u' and 
-n _ pn are omitted below. 

THEOREM 4.3. For the solution (sh, uh) of (4.14), under assumptions (4.3), (4.18), 
and (4.19), we have 

IIS - ShIIL-O(J;H-1(Q)) + II - UhhIL2(fT) < C(h'/2 + At1l2). 

Proof. Set en =-Sn and en - n for any I < n nT. Choose 
V AtnGhen E Mh(0) in (4.15) and v =At'Ge n C Hl(Q) in (4.22), subtract the . S \ LI/ UCIQL,Clt 
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resulting two equations, apply the definition of G, Gh, rD, and aD,h, and sum over n 
from 1 to nT to see that 

nT nT 

E(0[s n- Sh], Ge) )Atn + E ,en e)At1 
n=l n=l 

nT 

= E {(qn, Gen) - (qw (su , p), Ghe)}Atn 
n=l 

nT 

(4.23) + E {(fu', VGen) - (f(sh)un, VGhen)}At1 
n=l 
nT 

- {(,VGen) - ()6(s,npn),VGhe))}Atn 
n=l 
nT nT 

+ 1:(? zn- _ 07n 1n)A\tn _ j:(( an Gen -Ghe_ n)Atn + CE(~~ 
- a7,hJ,e)^)A - h(Os, Ge, - h G )atG. 

n=l n=l 

Each of the terms in this equation is estimated as follows. 
First, note that 

nT 

E ((a[s" - Sn], Gen)A1tn 
n=l 

nT nT 

:= E( o[~ - sh], )Ge)[sAt , Ge)At + ( [~snG n II. 
n=1 n=l 

By elementary calculations, (4.5), and (4.13), we see that 
nT 

I= 5a(Gen - Gen-, Gen) 
n=1 

1 1 1 GT 
2 a(Ges , Ge -2a(eGe, Ge) ?+ 2 ~ a(C? - Z - e -i ] 

n=-1 

> - lIe n 12 _1 ,) + -E lie n _ n- I 12 Ch2 > l12iC+ _ IIeS - 1-) - C2. 
n=l 

Also, apply summation by parts to have 
nT 

II= (O[SnT _ 3nT GenT )-o )n-1 - -n- ], G[en - 1]) 

= a(G[snT _ snT], GeT) -E a(G[sn- 
- n-1], G[en - e-1]) 

n=2 
nTr nT 

<CA\t5, I(dtSIIL2(Jn;H-1(Q)) n H2 E les es H 1(Q) < +e Cye I^H-^+e[ 
| | (n) +? T ||e - er1lH(Q) 

n=-1 n=2 

Second, observe that 
nT 

5fy(e,n e )At1 
n=l 

nT nT 

=E / ( [s(t,) -Sn] n- )dt + _ (n ns s(t)], (t)-An )dt 
n=. 

n n=l 
n 

nT r 

> ( 
/ ( t (_)-Sn], r(t)-_n)dt-CAt||9tsjjL2(J;H-1(Q))l|- h||L2(J;Hi(Q)). 

n_1 
n 
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Third, notice that 

nT 

E {(q,n Gen) - (qU(s,p), )Gne )} Atn 
n=l 

= 
E {(4 - 

qw(s,p ), Gesn) + (n, Gen - Ghen)}Atn 
= III + IV, 

n=l 

nT 

where, by (4.10), 

nT 

III= 5 j (qw(s,p) - qw(Sh,npn), Ghen)dt 
n=l1 

nT rn 

_ e 5 f llqw(s,p) - qw(s,pn)l-() + C 5 |e|-()Atn < nE h H-I(Q)+CE Ile, H-1(Q)/ 
n=1-J n=l 

and, by (4.9), 

IIVI < ChlllqwllL2(J;H-l(Q))lIesIIL2r(T)- 

Fourth, in a similar manner we have 

nT 

E {(fu ,V Geen) - (S()Un VGhe )}At 
n=l 

nT 

= 
5 {(fu - f(s )u,h VGhes) + (fT7, V[Ges - Ghe])}At - V + VI, 

n=l 

where 

nT nT 

IVI < e a |If(s) - f(s)IIL2(nQ)dt + C I |le |-1(,()Atn 
n=l 

n 
n=l 

and 

|VIl < ChlllfIIL2(QT)lIeSIIL2(T(). 

Fifth, the same argument also gives 

nT 

E {(6, VGes) - (6(S, p"), VGh ) }An 
n=l 

nT 

= {(6 - 6(s,pn), 'VGhen) + (r , V[Gen - Ghen])}IAtn VII + VIII, 
n=1 

where 

nT nT 

IVIII < E 5 J 16(s,p) - 6(sn,pn)2l 2(Q)dt + C E Ilen H112(Q)tn 
n=ln n=l 

and 

511 

|VIII\ | <Ch|l\6\\ I L2 (Q,) llesIIL2 (QT). 
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Sixth, by the extension of rD and the definition of rD,h, we have 

nT 

Sh )]D - D,h] es) /\} 
n=l 

nT 

\ -n -n n n \ i ( i \-n n n n jn = E {( D -[aD,h-], es) + (o[aD,h D,h] es ) t 
n=l 

< C (A/tl||, D IL2(J;H1/2(aQ)) |le llL2(J;H-1(Q)) + hllD IL2(J;H1/2(Oa)) 1les IL2(QT)) 

Seventh, by (4.9), we observe that 

nT nT 

y(q&, Ge4e - n Ghe )At < Ch I|l|Sh lH-1(Q) |1L2 (Q) Atn. 
n=l n=l 

Finally, substitute all these inequalities into (4.23) and use Lemmas 4.1 and 4.2, as- 

sumptions (4.3), (4.18), and (4.19), and the Gronwall inequality to obtain the desired 
result. O 

4.5. Error estimate II. In this subsection we consider an assumption different 
from (4.3): 

(4.24) Ilsi - s1122(Q) < 3*((-1 - 2, 81 - S2), 0 < o1, o-2 < O*, Si S(rai), i = 1, 2. 

THEOREM 4.4. For the solution (sh, (h) of (4.14), if (4.18) and (4.24) are satisfied 
and if the functions f, 6, and qw are Lipschitz continuous in s, then 

IIS - Shll-(J;H-1(Q)) + IS - ShlL2(QT) < C(h + Atl/2). 

This theorem can be proven analogously. We remark that (4.3) means that the 
diffusion coefficient in (4.1a) can be zero, while (4.24) says that the coefficient in the 
time differentiation term can be zero. 
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