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ANALYSIS OF A COMPOSITIONAL MODEL 
FOR FLUID FLOW IN POROUS MEDIA* 

ZHANGXIN CHENt, GUAN QINt, AND RICHARD E. EWING? 

Abstract. In this paper we consider a compositional model for three-phase multicomponent 
fluid flow in porous media. This model consists of Darcy's law for volumetric flow velocities, mass 
conservation for hydrocarbon components, thermodynamic equilibrium for mass interchange between 
phases, and an equation of state for saturations. These differential equations and algebraic constraints 
are rewritten in terms of various formulations of the pressure and component-conservation equations. 
Phase, weighted fluid, global, and pseudoglobal pressure and component-conservation formulations 
are analyzed. A numerical scheme based on the mixed finite element method for the pressure equation 
and the Eulerian-Lagrangian localized adjoint method for the component-conservation equations is 
developed. Numerical results are reported to show the behavior of the solution to the compositional 
model and to investigate the performance of the proposed numerical scheme. 

Key words. compositional model, porous medium simulation, finite elements 

AMS subject classifications. 35K60, 35K65, 76S05, 76T05 

PII. S0036139998333427 

1. Introduction. This paper deals with a three-phase multicomponent composi- 
tional model often used in petroleum porous medium simulation. This model incorpo- 
rates compressibility, compositional effects, and mass interchange between phases. It 
consists of Darcy's law for volumetric flow velocities, mass conservation for hydrocar- 
bon components, thermodynamic equilibrium for mass interchange between phases, 
and an equation of state for saturations. It models important enhanced oil recovery 
procedures such as condensing gas drive and miscible gas injection. To understand the 
complex chemical and physical phenomena of fluid flow in petroleum porous media, 
it has become increasingly important to study such a realistic model. 

In this paper we give a qualitative analysis of the compositional model. The 
mathematical structure of a simplified, one-dimensional multicomponent two-phase 
compositional model was analyzed in [28], where capillary pressure effects were not 
considered. Here we analyze multidimensional, three-phase multicomponent fluid flow 
with the capillary effects. First, we manipulate the differential equations and algebraic 
constraints of this model to derive a pressure equation and modified component- 
conservation equations. Various formulations of the pressure equation, including 
phase, weighted fluid (with saturations as weights), global, and pseudoglobal ones, 
are described. These formulations have been developed for immiscible fluid flow in 
[11]; here we extend them to the complex compositional model. 

We then analyze the mathematical structure of the differential system of these 
formulations. This system is of mixed parabolic-hyperbolic type, typical for fluid 
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748 ZHANGXIN CHEN, GUAN QIN, AND RICHARD E. EWING 

flow equations in porous media. We prove that the pressure equation is a standard 
parabolic problem and the modified component-conservation equations are advection- 
dominated problems in the presence of capillary diffusive forces; they are purely hy- 
perbolic in the absence of these diffusive forces. For simplicity, we neglect hydraulic 
dispersion and molecular diffusion effects in this paper. We discuss the nonlinearity 
and coupling of the differential system as well. We show that the pressure equation 
is weakly nonlinear and less dependent on the conservation equations; these conser- 
vation equations are strongly nonlinear and heavily dependent on the pressure, and 
they are strongly coupled to the thermodynamic equilibrium constraints. 

We also develop a numerical scheme for the solution of the compositional model 
under consideration. Finite difference and finite element methods have been used to 
solve compositional models under various assumptions on physical data (see, e.g., [1, 
2, 15, 29, 30]). The numerical scheme proposed here is based on the mixed finite 
element method for the pressure equation and the Eulerian-Lagrangian localized ad- 
joint method (ELLAM) for the component-conservation equations. The combination 
of the mixed and ELLAM methods has been considered for a compositional model in 
[22, 23], where phase pressure and pseudo total velocity were employed. First, it is 
known that accurate numerical simulation requires accurate approximations to flow 
velocities. However, standard finite difference and finite element methods do not lead 
to accurate velocities. On the other hand, the mixed method has a very satisfactory 
property in both this aspect and the treatment of the geometrically complex geological 
structure of porous media (see the references in [12]). Second, due to their advection- 
dominated features, more suitable methods than the standard finite difference and 
finite element methods must be exploited for the component-conservation equations. 
The ELLAM method has been shown to be efficient in handling this type of problem 
in a mass-conservative manner [8]. Third, to handle the strong coupling of the system 
of the pressure and component-conservation equations, we utilize a sequential solution 
procedure in this scheme to decouple it. The sequential procedure has been chosen 
based on the analysis of the nonlinearity of the compositional system and the choice 
of primary variables [22, 23]. The numerical scheme considered here utilizes various 
pressure forms with the usual total velocity. 

We report numerical experiments to show the behavior of the solution to the 
compositional model and to investigate the performance of the proposed numerical 
scheme. The experiments involve a three-phase fluid process. 

The rest of the paper is organized as follows. In the next section, we review 
compositional flow equations. Then in section 3, we analyze an equation of state 
and thermodynamic equilibrium conditions. In section 4, we derive and analyze the 
pressure and modified component-conservation equations. In section 5, we develop 
our numerical scheme. In section 6, we report numerical experiments. Finally, we 
give some remarks in section 7. 

2. Governing equations. A compositional flow involves mass interchange be- 
tween phases and compressibility. In a model for this type of flow, a finite number 
of hydrocarbon components is used to represent the composition of porous medium 
fluids. These components associate as phases in the porous medium. In this paper, 
we describe a compositional model under the assumptions that the flow process is 
isothermal (i.e., the constant temperature), the components form at most three phases 
(e.g., gas, oil, and water), there is no mass interchange between the water phase and 
the hydrocarbon phases (i.e., the oil and gas phases), and the porous medium is 
rigid. 
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ANALYSIS OF A COMPOSITIONAL MODEL FOR FLUID FLOW 749 

Because of mass interchange between phases, mass is not conserved within each 
phase; the total mass of each component must be conserved: 

(2.1) &t(qmw) + V * ((wuw) = qw) 

at(4mi) + V * (Cigegug + cioeouo) = qi, iN 

where at denotes time differentiation; X is the porosity of the porous medium; g, o, 
and w refer to gas, oil, and water phases; i is the component index; N is the number 
of hydrocarbon components; mw and mi denote the number of overall moles per 
pore volume of the water and ith hydrocarbon component; cig and cio are the mole 
fraction of the ith component in gas and oil phases; (,, and u, are the molar density 
and volumetric flow velocity of the a phase; and qw and qi stand for the molar flow 
rate of the water and the ith component, respectively, a = g, o, w. In (2.1), the 
volumetric velocity u, in multiphase flow is given by Darcy's law: 

(2.2) u,, =-k kr, (Vpc - Pgc), Ol = 9, 0, W) 

where k is the effective permeability of the porous medium; kr, ,u,,, p,, and p, are 
the relative permeability, viscosity, pressure, and mass density, respectively, of the 
a-phase; and gc is the gravitational constant vector. 

In addition to the differential equations (2.1) and (2.2), we also need algebraic 
constraints for some quantities. The mass balance implies that 

(2.3) mi = mig + mio, i = 1, ... N 

where mig and mio represent the number of moles per pore volume of the ith hydro- 
carbon component in the oil and gas phases, respectively. Also, the mole fractions cig 
and cio are given by 

(2.4) Cic = ,...,N, a = 9 . 
Ej=l mice 

In the transport process, the porous medium is fully filled with fluids: 

(2.5) ST -sg +sO +Sw = 1, 

where s,, is the saturation of the a-phase, a = g, o, w. By their definition, the 
saturations are expressed in terms of the phase compositions: 

N 

(2.6) SW = a,: ==g, . 

The phase pressures are related by capillary pressures, 

(2.7) Pcao = Pax-Po) a = g, o, w, 

where Pcoo = 0, Pcgo represents the gas phase capillary pressure, and Pcwo is the 
negative water phase capillary pressure, which are assumed to be known functions 
of the saturations. The relative permeabilities krc, are also assumed to be known in 
terms of the saturations. The viscosities ,u,,, molar densities i,,, and mass densities 
p,, are functions of their respective phase pressure and compositions. 
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750 ZHANGXIN CHEN, GUAN QIN, AND RICHARD E. EWING 

It should be noted that there are more dependent variables than there are differ- 
ential and algebraic relations; there are formally 5N + 10 dependent variables: m", 
mi, ~ mica , cice uc,p, , and s,, a =- g, o, i = 1, ... , N. It is then necessary to have 
5N+ 10 independent relations to determine a solution of the system. Equations (2.1)- 
(2.7) provide 4N + 10 independent relations, differential or algebraic; the additional 
N relations are provided by the equilibrium relations needed to relate the numbers of 
moles. 

Mass interchange between phases is characterized by the variation of mass dis- 
tribution of each component in the oil and gas phases. As usual, these two phases 
are assumed to be in the phase equilibrium state at every moment. This is physically 
reasonable since the mass interchange between phases occurs much faster than the 
flow of porous medium fluids. Consequently, the distribution of each hydrocarbon 
component into the two phases is subject to the condition of stable thermodynamic 
equilibrium, which is given by minimizing the Gibbs free energy of the compositional 
system (see the discussion in the next section). The closedness of this system in terms 
of the primary unknowns chosen in this paper will be discussed later in the fourth 
section. For physical aspects of the compositional flow presented here, consult [2, 3]. 

3. Thermodynamic equilibrium. Equations (2.1)-(2.7) form a strongly cou- 
pled system of time-dependent, nonlinear differential equations and algebraic con- 
straints. While there are formally 5N + 10 dependent variables, as mentioned before, 
it follows from the Gibbs phase rule that this system can be written in terms of N + 2 
primary variables and other variables can be expressed as functions of them. The pri- 
mary variables must be carefully chosen so that main physical properties inherent in 
the governing equations and constraints are preserved, the nonlinearity and coupling 
among the equations are weakened, and efficient numerical methods for the solution 
of the resulting system can be devised. In this paper we choose (p, mT, MI)... , iMN) 
as our primary variables for the reasons to be explained later, where p is some as yet 
unspecified pressure and mT = mw+ N mi (i.e., the total number of overall moles 
per pore volume of the fluids, see [22]). Toward that end, in this section we give a 
preliminary study on the thermodynamic equilibrium condition on the distribution of 
hydrocarbon components into phases, which will be needed in the next section. 

3.1. The Gibbs-Duhem condition. Though most of the results in Lemmas 
3.1 and 3.2 below might be known [25], we believe that a brief discussion is in order. 
Also, the arguments used in these two lemmas are different from the usual ones, and 
the results will be heavily exploited later in this section. 

As mentioned before, it is assumed that the oil and gas phases are in the stable 
phase equilibrium state at every moment, which is expressed in terms of a set of the 
potential functions fi,, of the ith component in the a-phase, i = 1,.. ., N, a = g, o. 
Since the potential functions are derived from thermodynamic principles, they have 
some important properties. One of these properties is the Gibbs-Duhem condition [25] 

(3.1) fia m v i=1, ... N, a= 

where -y,, indicates the total Gibbs free energy of the a-phase. Equation (3.1) says 
that the potentials are the partial derivatives of the energy with respect to the com- 
positions. From (3.1), we can deduce some other important properties. 
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ANALYSIS OF A COMPOSITIONAL MODEL FOR FLUID FLOW 751 

LEMMA 3.1. Under (3.1), we have 

(3.2) mia ,J a = O, j 1) ... . N, a = g, o, 

and 

(3.3) = , 
- 

j 1, ..., N, a=g,o. 
amj, Omia 

Proof. Recall that the energy t7c, is defined by 

N 

ya =Emiafia; 

i=l1 

therefore 

m3mjO fjN+Zmic 0 

This, together with (3.1), implies (3.2). Also, by (3.1), we see that 

13ficx _ t2tc _ 9 19a fja 
19mj,, 1mj,almi,, 1mi,almj, 19mi,,' 

which implies (3.3). This completes the proof. C 
We remark that the consequence of (3.3) is that the matrix (9fio/9mjo)NXN is 

symmetric, a = g, o. 

3.2. The Kuhn-Tucker conditions. The total Gibbs free energy is defined by 

(3.4) 7y = -Yg + 7O 

Now, the constrained minimization problem for the Gibbs free energy of the compo- 
sitional system under consideration is formulated as follows: 

(3.5) 
Given 0 < mi, find (mig, mio), i = 1,.. ., N, such that 

(35) ty(mig, mio) = inf{ y(vig, Vio) : 0 < vig, vio and vig + vio = mi} 

From this minimization problem, we easily derive the Kuhn-Tucker conditions [18, 27] 
under the assumption that both the gas and the oil phases are formed. 

LEMMA 3.2. Let (mig, mio) be defined as in (3.5) and assume that both the gas 
and the oil phases are formed. Then 

(3.6) fig(P mlg, ... *, mNg) f(fio mi0,.M **, m.). i N1,.. , N, 

and the Hessian matrix (afig/amjg + afio1amjo)NxN is symmetric and positive- 
definite at (p, mig, mio), where p is treated as a parameter. 

Proof. From (2.3), (3.1), and (3.4), we see that 

a- 7 _0 ,g + 1a0 a0mj3 __ 1 _ a-'g - fg 
a - 1- mig 1 mjo amig -amig amiO - 
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752 ZHANGXIN CHEN, GUAN QIN, AND RICHARD E. EWING 

so (3.6) follows from (3.5) and the assumption of the present lemma. Similarly, we 
have that 

__ 2_ _ _ _ 3fig + &fio 

OmigOmjg - mj dmjo 

Consequently, we see that (&fig/lmjg +&fio/&mjo)NxN is positive-definite from (3.5) 
and the theorem of the second-derivative test in calculus; the symmetry is obvious. 
The proof is complete. C 

3.3. Some useful relations. We now exploit Lemmas 3.1 and 3.2 to derive 
some relations that will be useful in the next section. 

LEMMA 3.3. Under the assumption of Lemma 3.2, we have 

N Omif 
(3.7) EMice, ai 

= 0 ag, 3 g,o, ag + AJ. 
j=1 

Proof. It follows from (3.6) that 

3fio _ Ofig 

i.e., 

N 
Of 0 _mi0 

N Ofig amig 

1= mlo m3 - 1Omig 9mj> 

By (2.3) and (3.3), we thus see that 

(3.8) ( + Ofig) &miO Ofig -3fjg 

I mlo Omig &mj amjg Omig 

which, together with (3.2), implies that 

N N 
( _fio + fig )mlo N Ofjg 

nmj)gml mE mjg O. 
__ 1mg 9j j=1 O9mig 

That is, 

N 
1f 1fg 

N 
Ol 

(f + fig )E= 0E i=l,g. . ., N. 

1=1 mi0o O+mig j1 &m3jg 

Now, by Lemma 3.2 the only solution to this system is the null solution 

N 
OJ 

E ,)1?mjg = O, I=1,... N. 

With the same argument, we can show 

E aml9 mlo = 0, 11,...,N. 
j 1 j 
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Thus the proof is completed. C 

LEMMA 3.4. It holds that 

(3.9) mc l i=1 . ,0 E iamja 
j=1 

This directly comes from the definition of cic, in (2.4). 

PROPOSITION 3.5. Under the assumption of Lemma 3.2, for ae, 13 g, o we have 

N 
Z SmiJ SC{ if a 3, 

E: Mia 3mj O if av74 3. 

Proof. It follows from (2.6) that 

(3.10) &(mj3 1 ' __ ____ 

so that 

OSf- N aSo -mjd 1 (N am N N 04p &clo _m__ =v = v -Ssv 
m je amjB Omi ( j ami M 1=_1 a mcif & m 

j=1 ~~~~~~~~~~~~O j=1 ~~~~~~~~~~~~j=1 m= 0 3f 

Hence, we observe that 

N (90 1 N N (mo N N N 
003O13(M, ?s 1 (Am At OCt: Omj,Om 

ia 8-mj3 NNN mj7 O 

wich, togthr it (3 7 impis h caseoi ,B. Note that by (23.3)an (3.7) 
which, together with (3.7), implies the case ac~ 1 3. Note that, by (2.3) and (3.7), 

N 

(9mj, 
LTnia m =mjoa 

Therefore, for the case ae /3, we see that 

N 1 N N N 
06a 0aca 

,iaO - mi=ja-so,ZZm i3 },mj a), 

by (2.6) and (3.9). This yields the case a = /3. El 

4. The compositional system. As mentioned before, the system in (2.1)- 
(2.7) involves a large number of strongly coupled nonlinear differential equations and 
algebraic constraints. To alleviate the nonlinearity and coupling, we carefully choose 
our primary variables and derive a compositional system for them. This system 
consists of the (various) pressure and modified component-conservation equations. 
We shall use the usual total flow velocity 

(4.1) u = ug + UO + Uw. 
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754 ZHANGXIN CHEN, GUAN QIN, AND RICHARD E. EWING 

Several choices for p will be made later. For the time being, let us assume that 
p has been given. Also, for expositional convenience we assume that sC, essentially 
depends on p instead of p, a = g, o, w. This means that we neglect the errors (due 
to the capillary pressures) caused by calculating sc, at p instead of pO. These errors 
contribute to the lower-order terms in the pressure equations, which does not affect 
the properties of these equations. The technique for handling these errors for a simpler 
problem in [13] also applies here. 

4.1. The pressure equation. Note that ST = ST(p, mw, ml, ... imN), as given 
in (2.5), is a function of its arguments. Then it follows from the differentiation of 
(2.5) with respect to time that 

&9ST &ST 
N 

a9ST0 . 
0 atP+ amtTw + E amtTn = O. 

Op amw mji 1 

Apply (2.1) to see that 

&9ST N &S8T 
CT &tP + V V*w t ) UW)+ E V * (Ciggug + Ci4o0u0) 

(4.2) _ Nam 
aST q aST 

= qw + 7,(mqi) 

where CT is the total fluid and rock compressibility given by 

(4.3) CT aST +( aST +E aST aqs 

ap + mamw O~mj) ap' 

By (2.5), we see that 

(4.4) aST 
_ + aST asg as0 

*Omw amw' ami ami +90mrn 

and, by (2.4) and (2.6), 

(4.5) Cio<a = i, _( SW-() 
s c Oamnw 1 w ,mw 

Now, apply (4.1), (4.4), (4.5), and Proposition 3.5 to (4.2) to obtain 

CTa9tP + V U--wV 0 U _ EV ( )j (Cigsug + CioG0o0) 

-V. 
Wm 

uw- qw + / i Omas asw 
___ 

Normally, water is assumed to be incompressible or slightly compressible. In this case, 
we obtain 

N 
OST + N aST 

(4.6) CT&tP + V. tU - >? (PT. (cigG9ug + CiO&U0) + S V, 
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where, by (2.3) and (2.5), 

&ST &/ 
CT_ =-Q+_ 

Op (pap 

In the subsequent analysis, solely for notational convenience we shall utilize the as- 
sumption that water is incompressible; then t, is constant. It now remains to express 
u in terms of p. 

4.1.1. Phase pressure. We first review the phase pressure formulation. The 
oil phase pressure often has been used in petroleum porous medium simulation: 

(4.7) P = Po- 

For expositional convenience, we introduce the phase mobility functions 

A kroe AR = 
k 

=g,o,w 

and the total mobility function 

where (and later) Zc = EZ=w,o0g* Then it follows from (2.2), (2.7), and (4.7) that 

(4.8) u=-kA (VP GA +Z Aa 
VPcO) 

where GA =igc p,Ac/A. Substitution of (4.8) into (4.6) yields the equation for 
the phase pressure p. The analysis of the resulting equation will be described in 
subsection 4.1.5. The pressure equation as split in (4.6) and (4.8) into a first-order 
differential system is suitable to the application of the mixed finite element method 
presented in the next section. 

From (2.2) and (2.7), we see that the phase velocity is related to the total velocity 
by 

(4.9) A ( + kZAO{V(pco- Pcao) -(Po 
- 

Pac})g a g, o, 0w. 

4.1.2. Weighted fluid pressure. We now define a smoother pressure than the 
phase pressure given in (4.7). Namely, we define the weighted fluid pressure 

(4.10) P= ,sagpag 

Note that even if some saturation is zero (i.e., some phase disappears), we still have 
a nonzero smooth variable p. By (2.5) and (2.7), the phase pressures are given by 

Poe-P + Pcao - s/pc/o, a = g 0, W. 
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Then, apply (2.2) and (4.1) to see that 

(4.11 ) t U= -kA (VP-GA + Z+ VpccO V (Sapcao)) 

Finally, the relationships between the phase velocities and the total velocity are the 
same as in (4.9). 

Observe that the pressure is strongly coupled to the saturations or to the com- 
positions through the last term on the right-hand side of (4.8) (respectively, the last 
two terms of (4.11)). To have less coupling, next we introduce the so-called global 
pressure. 

4.1.3. Global pressure. To introduce a global pressure, we assume that three- 
phase relative permeability and capillary pressure functions satisfy the condition 

(4.12) 

a Aw Apcwo a A9 A aPcgo a K(Aw APcwo a (AgA apcgo .. (_)& P w _ _ 
___ 

_ _ _ _ _ 

Asg 9 A 08W Asw s As9 A KA) &sy AK 089 + w \A} 0 

This condition is referred to as the total differential condition [9, 11], and it is a 
necessary and sufficient mathematical condition to write (2.2) and (2.7) in terms of 
(4.14) below (see the derivation of (4.14) and the reason that (4.12) is needed in [11] 
for a simpler problem). When it is satisfied, we can define a pressure 

Pc(Sw,Sg= f/ f (SiS ) (A,) OPCWO( + (Ag> 0 ) 

+jC {(Aw) (sw) PW Qsm, ) + ()) (SW0 ) 0C)O (sn, ) } dd 

We now introduce the global pressure 

(4.13) P=Po+Pc 

Apply (2.2), (2.7), (4.1), (4.12), and (4.13) to see that 

(4.14) u =-kA(Vp - GA). 

The phase velocity is determined by 

(4.15) u'i = Au+kA(V(PC-Pcaop)8) =g,o,)w, 

where 

8c >IE A (P - Pa )gcY 

While condition (4.12) is not always true, it has been shown [11] that it is satisfied 
for some simple three-phase relative permeability and capillary pressure functions. 
Also, a simple numerical procedure for constructing three-phase relative permeability 
and capillary pressure curves satisfying this condition has been given in [9]; some of 
the numerical examples have been compared with the classical Stone's model [26], 
which does not satisfy this condition, and similar results have been obtained. 
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ANALYSIS OF A COMPOSITIONAL MODEL FOR FLUID FLOW 757 

4.1.4. Pseudoglobal pressure. The global pressure formulation in the previ- 
ous subsection requires the total differential condition (4.12) on the shape of three- 
phase relative permeability and capillary pressure functions. In this subsection, as 
introduced in [11], we finally consider a pseudoglobal pressure formulation, which 
does not require this condition. For this, assume that the capillary pressures satisfy 
the usual condition 

(4.16) Pcwo = Pcwo(Sw)v Pcgo Pcgo (Sg) 

We then introduce the mean values 

(Aw)() -s 10 

w Aw 
d 

(4.17) (7) 0(sg,) 1 Sgjs( ( (%) ()d 
(4.17)S 

A I - 
lsW AS 

and the pseudoglobal pressure 

fSW 
(AJw dpcwo(4()d sgA dco( 

P =Po + (p)(0)Pd d( )+ t p9)( Pd (d(, P~~Po+ 
w A dsw Jgrck A dsg 

where swc and Sgc are such that pcwo(Swc) = 0 and pcgo(sgc) = 0. Now, apply these 
definitions to (4.8) to find that 

(4.18) u=-kA {VP-GA+ZE ( + - ( )) dpcco } 

The phase velocities in terms of the total velocity are expressed as in (4.9). A com- 
parison of all these formulations will be mentioned later. 

4.1.5. Analysis of the pressure equation. The pressure equation is given by 
(4.6) and (4.8) (respectively, (4.11), (4.14), or (4.18), depending upon the formulation 
used). We analyze the global formulation in detail. Substitution of (4.14) into (4.6) 
yields that 

CT&tP - V {kA(Vp - GA)} 

(4.19) =Ev (PT)T (CigfGug + CiOoo) + + Eamiq 

Since the porosity 0 is a nondecreasing function of pressure, 00/0p > 0. Also, the 
fluid compressibility means that -q(1ST/&p) > 0. Hence, the rock and fluid com- 
pressibility combines to see that 

CT - - +7- > O. 

Furthermore, although the individual phase mobilities Aa can be zero (a = g, o, w), 
the total mobility A is positive. Thus if the absolute permeability k of the porous 
medium is positive-definite, so is kA. Consequently, it follows from (4.19) that the 
pressure equation is parabolic. Typically, the rock and fluid compressibility is quite 
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small, and the pressure reaches a steady state very rapidly. The analysis for other 
formulations is exactly the same. 

Note that the relative permeabilities kr, (a = g, o, w) are strongly nonlinear 
functions of the saturations, and the viscosities ,uc, mainly depend on the temperature, 
which is constant here, and are not so sensitive to the pressure change. Thus it follows 
from their definitions that the phase mobilities Ac, are the functions of the saturations. 
However, since the total mobility A is a much smoother quantity than the phase ones, 
in general the coefficient in the second term of the left-hand side of (4.19) can be 
explicitly calculated. Also, the first term on the right-hand side of (4.19) is effectively 
quadratic in velocities, which is usually small in almost all of the porous medium, and 
can be explicitly treated. Therefore, according to the rule in [2] that the variables 
that are functions of the pressure only are considered to be weakly nonlinear and 
the variables that depend on the saturations are strongly nonlinear, the pressure 
equation is a weakly nonlinear parabolic equation. It is also less coupled to the mass 
conservation equations derived in the next subsection. 

To analyze other pressure formulations, it suffices to notice that the capillary 
pressures are usually smaller compared to a porous medium pressure. Consequently, 
the capillary pressure effects in these pressure equations can be explicitly handled. 
Hence, the above discussion on the nonlinearity for the global formulation applies to 
them. 

4.1.6. Comparison of formulations. Since the four pressure formulations con- 
sidered above have the same structure as those developed in [11] for the flow of three 
immiscible fluids, we just mention a brief comparison of these formulations. For more 
details on both theoretical and numerical comparisons, consult [11]. 

The global formulation is far more efficient than the phase and pseudoglobal 
ones from the computational point of view and also more suitable for mathematical 
analysis since the coupling between the pressure equation and the transport equations 
derived in the next subsection is much less. The weakness of the global formulation 
is the need to satisfy the total differential condition (4.12) by the three-phase relative 
permeability and capillary pressure curves. In general, the phase formulation can be 
applied. However, if the fractional flow functions of the water and gas phases are close 
to their respective mean values as defined in (4.17), the pseudoglobal formulation is 
more useful. In the (probably unphysical) case where the capillary pressures Pcgo and 
Pcwo are zero, all the formulations are the same. 

4.2. The transport system. In this subsection, we derive the system of trans- 
port equations, i.e., modified component-conservation equations. Toward that end, 
first sum the second equation in (2.1) over i, use (2.4), and sum the resulting equation 
with the first equation in (2.1) to see that 

(4.20) Ot((qMT)+V (Z Ua) qT) 

where qT = qw +EN I qi. By its definition, note that mT is smoother than mw. Also, 
the total molar flux c, c,uzc, is a much smoother quantity than the individual flux 
wuw That is why we have chosen mT instead of mw as our primary variable. 

Next, observe that the second equation in (2.1) for mi and (4.20) for mT depend 
on the pressure p explicitly through the phase velocities. Thus we need to utilize (4.9) 
or (4.15) to eliminate these velocities. 

This content downloaded from 136.159.119.111 on Mon, 1 Dec 2014 15:02:45 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


ANALYSIS OF A COMPOSITIONAL MODEL FOR FLUID FLOW 759 

Notice that the relationships between the phase velocities and the total velocity for 
the phase pressure, weighted fluid pressure, and pseudoglobal pressure formulations 
are all the same. Also, apply (4.12) and the definition of Pc to see that 

&Pc _ Aw &Pcwo +A9 &Pcgo &Pc = Aw &Pcwo _ A9 &Pcgo 

&Sw A &sw A &sw 089 A &s9 A sg- 

Then it follows from (4.15) that 

UO = - +Ack ( PVpcwo+ A Vpcgo -oVPcao - a I =9, o WI A A A c YIOW 

which reduces to (4.9). In terms of Vpcwo and Vpcgo, the component-conservation 
equations are thus the same for all pressure formulations. Therefore, it suffices to 
derive the modified conservation equations for one of them. 

Substitution of (4.9) into (4.20) and the use of algebraic manipulations yields 
(4.21) 

Ot (qMT) + . (z Aa) - v* a Aa 
AO3k(po - Pc)9c 

+V { (EA(cS - WAw) +kVpcwo + (EZ aAa- g9A) AgkVPcgo} =qT 

Similarly, substitute (4.9) into the second equation in (2.1) to have 
(4.22) 

Ot(,Tmi) +V ( E ciaaAa) -cVA ( E EoA )k(p - a)gC 

+V {-CiggAgkVPcgo + ( ciacaAa) (Z A kvpco)}= qi 
oe=glo e=:glw 

for i=1,..., N. 
We now write Vpcwo and Vpc9o in terms of the overall compositions mT and mi. 

For notational simplicity, let Pcwo and Pcgo satisfy the usual assumption (4.16). Then 
it follows from (2.3), (2.6), (4.16), and the definition of mT that 

1 dpcwo (NY~ 
-pw VMT-LVmi I 

~w dsw . 
(4.23) 

dpcgo (Vsm N )s8 m9 

ds9g -VP + &mE 
9 z 

Vmj) Vco dsg ( ;p P 
E1 j=1 ,9mig 09mj 

Finally, substitute them into (4.21) and (4.22) to see that 

(t (OmT) +V ( (zE A u)A-V0 ( $ Ax!3k( p gPc)c) 

(4.24) -V (dTVMT + >(dwj - dT)VMj + dwpVp)-qT 

This content downloaded from 136.159.119.111 on Mon, 1 Dec 2014 15:02:45 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


760 ZHANGXIN CHEN, GUAN QIN, AND RICHARD E. EWING 

where 

dT -( z a -A ) A dpcwk, 

\\ Ag dpcgo 
N 

Sg &mlg 
dj 

- 2JcAa -vgA) Adgo 9 mgm k, 

dwp =-( cASa - (gA g dpcgo aSg k, - ( &c~ ~A)A dsg &pk 

and 

at (j$m) + 1. 
ci~A 

) -1. cia&aAaA 3 k(po~ - pa*gc) 

(4.25) d a=go a=gNo 

-V diTVMT + Z(dij - diT)Vmj + dipVp ) qi, 
\ ~~j=l 

where, for i = 1, .. , N, 

diT -(cigg Ag + Ci oAo) Aw dPcwok 
~w 

0 
~w A dsw 

Ag dpcg N s8 &9mg 
dij =- -(cigfg[Ag - Al + cio0oAo) A dSgo E mg &m k 

dip=- - (cigfg[Ag - Al + io0oAo) Ag dpcgo g k. 
Adsg &p 

The system of transport equations consists of (4.24) and (4.25) for mT and mi. Its 
analysis will be carried out in the next subsection. 

4.2.1. The analysis of the transport system. We note that the diffusion 
terms in (4.24) and (4.25) stem from the phase capillary pressures. From the proper- 
ties of the capillary pressures Pcc.o and the phase mobilities Ac (a g g, w) [31, these 
diffusion terms are quite small compared to the advection terms in these equations, 
as mentioned before. Thus the transport system is advection-dominated. In the se- 
quential solution procedure presented in the next section, we decouple the diffusion 
terms in these equations by placing the off-diagonal terms and other nonsignificant 
terms to the right-hand side. Also, as in [221 we define the barycentric velocities 

UT =- (i_l -ig Ag + Ei-i mio A0 + mw Aw 
A mT Sg mT So mT SW 

and 

1 (mig Ag mio Ao 
vi=( -+ U. 

A mi Sg mi So 

With all these, (2.4), (2.6), and also moving the gravity terms to the right-hand side, 
it follows from (4.24) and (4.25) that 

(4.26) &t (mT) + V * (UTmT) - V * (dlVmT) -FT, 
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where 

d -_ A dPwk d2 _ 
, AaAw dpcwok 

dsW T _E w A dsw 

FT qT + V* (d 2VmT + (dwj - dT)Vmj + dwpVp) 
3=1 

+V. (zz Ac 
nAa3 k(p,g - Pcec)g 

and 

(4.27) Ot(bmi) + V * (utmi) )-V (d'Vmi)- F 

where 

dpcgo N 9 Ci-g dsg o z Sg &mlg se 
i ds9 g din9 dc 

N 

di _ (cigegAg + ci,OtA,) A dsl g kmlg&mi 

N 

Fi = qi + V (diTVmT + dij-diT)Vmj + dipvp) 
*X=1 

+V. (E k iapS (P-Pce) gc 

a=g,o d3 

wth dj -dj for i& 4jand d d? ij j-1 ..IN 
Note that Sg is less dependent on the pressure p, which, together with the physical 

properties of Ag and dpcgo/dsg, implies that dwp and dip are small compared to the 
advection terms and other diffusion terms in (4.26) and (4.27). In this case, the terms 
involving dwp and dip in FT and Fi can be neglected. 

Now, the mathematical structure of the transport system is clear. Recall that 
Pewo is the negative water phase capillary pressure, so dpcwo/dsw > 0 by the property 
of this capillary pressure. Hence if k is positive-definite, then d' is nonnegative. The 
degeneracy of d' is caused by the fact that Aw can be zero. Therefore, (4.26) is 
a degenerate parabolic problem. Next, it follows from (3.10) that since the molar 
densities are less dependent on the phase compositions, we have the approximation 

_ _ _ _ 1 : =,X 

amlg Ng 

Also, as in (3.8), we see that 

N N 
f0o &fig Dit9g a-_0 

+ - a i,-, j . , N2. 
m7 m m19 mj m amjo 

This equation physically relates how the phase compositions change with respect to 
the overall hydrocarbon compositions, at the thermal equilibrium state and fixed 
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pressure. Thus each 8mig/&mi should be positive [2, 3]. Consequently, these two 
facts, together with the positiveness of dpcgo/dsg, imply that d& is nonnegative; the 
degeneracy of d' is caused now by A. Hence, (4.27) is also a degenerate parabolic 
problem. Finally, we mention that there are N + 2 equations for the N + 2 primary 
variables (p, mT,, ..... , mN); the equations consist of the pressure equation in (4.6) 
and (4.8) (respectively, (4.11), (4.14), or (4.18)) and the transport equations in (4.26) 
and (4.27) (or (4.24) and (4.25) if desired). Other variables can be calculated by them 
via the algebraic constraints described in section 2. With appropriate boundary and 
initial conditions, the whole compositional system is solvable (see section 5). 

From the definition of UT and ut and the previous nonlinearity analysis for the 
pressure equation, we see that the nonlinearity of the transport equations (4.26) and 
(4.27) is primarily caused by the phase mobilities (i.e., the relative permeabilities) and 
the minimization problem (3.5) (equivalently (3.6)). The coupling between (4.26) 
and (4.27) is due to the volumetric constraint (2.5), and the coupling among the 
modified mass conservation equations for the hydrocarbon components comes from 
(3.5) or (3.6). Finally, through the barycentric velocities, the transport system heavily 
depends on the total velocity u. 

We close this section with a remark. In the case where the capillary pressure 
effects are fully ignored, (4.26) and (4.27) become 

(4.28) &t(qmT) + V . (UTmT) = FT, 

where 

FT-qT+V ( C AaAf3k(pfj _ Pp)gc) 

and 

(4.29) at(qmi) + V* (uitmi) = Fi, i 1,..., N, 

where 

Zcia'AceAk Fi =qi +V I E3 k (po 
- 

pc, g) 
? e=g( o d3 

In the sequential solution procedure below, we compute the barycentric velocities 
from the previous time level to linearize and decouple the advection terms in (4.26) 
and (4.27). This is reasonable since the barycentric velocities are smoother than the 
phase velocities due to the introduction of the total velocity and the scaling factors 
in the definition of UT and ui. Then it is obvious that (4.28) and (4.29) are purely 
hyperbolic since they are single equations. This is in striking contrast to the long 
characteristic analysis presented in [28], where the phase velocities were used. 

5. Numerical scheme. In this section we develop a numerical scheme for solv- 
ing the compositional system derived in the last section. The sequential solution 
procedure considered below to decouple this system is similar to that in [22]. 

5.1. A sequential procedure. As mentioned before, the phase compositions 
of the porous medium fluid are calculated at the thermodynamic phase equilibrium 
state when a pressure and the overall compositions of the fluid are prescribed. This 
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solution technique for the phase compositions is called a flash calculation in mechanics 
and is characterized by the minimization problem (3.5) (or equivalently (3.6)). We 
now state our sequential solution procedure as follows: 

(1) At time t 0 O, the primary variables (p, mT, . .M . ., mN) are computed from 
the initial data. 

(2) Use the flash calculation to determine the phase compositions mia, i 
1,...,N, a=g, o. 

(3) Evaluate the phase viscosities p, by empirical correlations [19] and molar 
and mass densities ($,, p,) by the equation of state [21], and then the mole 
fractions cij and saturations sc, by (2.4) and (2.6). 

(4) Calculate the coefficients of the pressure equation in (4.6) and (4.8) (respec- 
tively, (4.11), (4.14), or (4.18)) and some of the coefficients of the transport 
system in (4.26) and (4.27), and then proceed to the next time level. 

(5) Apply the mixed finite element method in the next subsection to solve the 
pressure equation for u (and p if desired). 

(6) Exploit the total velocity to complete the calculation of the coefficients of the 
transport system (i.e., to calculate the barycentric velocities UT and ui). 

(7) Utilize the ELLAM method considered below to solve the transport system 
for (mT,mM, .. *,mN). 

(8) Perform a few iterations between the pressure equation, transport system, 
and constitutive relations at the current time level, if necessary. 

(9) Go back to step 2 to update the coefficients at the current time level and 
repeat the above procedure until a final state t = T is reached. 

In conventional IMPES solution procedures for the simulation of compositional 
flow in porous media [1, 2, 15, 29, 30], the pressure equation is solved implicitly with its 
coefficients evaluated explicitly, and the transport system is solved explicitly to obtain 
the overall mass of each component. Hence, the size of time steps must be restricted 
to stabilize the overall procedure due to the explicit computation of the transport 
system. Also, in this procedure, initial guesses in the flash calculation are computed 
in terms of the phase compositions at the previous time level. Consequently, the size 
of the time steps has to be severely restricted. In contrast, in this paper the sequential 
procedure is developed to decouple and linearize the compositional system. Instead 
of calculating the phase velocities, an accurate total velocity is provided by the mixed 
method for the transport system. The latter is implicitly solved by the ELLAM 
method, which produces accurate compositions without oscillations and numerical 
dispersion even if large time steps are taken. Also, for the initial guesses in the flash 
calculation, the phase compositions are computed from their values at the previous 
time level by back-tracking through the characteristics used in the ELLAM method. In 
summary, in our sequential solution procedure the pressure and transport equations 
are linearized first and then solved implicitly (we call it a sequential semi-implicit 
method); it fully utilizes the physics of the flow and transport processes, improves the 
efficiency and accuracy of the flash calculation, and relaxes the time step restrictions. 
Finally, we mention that there were attempts [14, 15] to solve compositional models 
in a fully coupled and implicit scheme. This scheme is stable for large time steps, 
but its application is restricted to very small problems due to limited computational 
resources. 

5.2. Mixed finite element methods. In this subsection we briefly review the 
mixed finite element method for the pressure equation. For more information on this 
method for second-order problems, see [4]. 
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Recall that the pressure equation can be written in the general form, 

(5.1) c0tpcp+V u=q, (x,t) EQixJ, 

u =-a(Vp-b), (x,t) E Q x J, 

where a(x, t) is a uniformly positive-definite, bounded, symmetric tensor, b(x, t) is a 
bounded vector, c(x, t) > 0 is a bounded function, Q is the porous medium domain, 
and J (0,E] (1 > 0) is the time interval of interest. Let OQ =- ri U 2 with 
ri n 02 0. We consider the boundary conditions 

(5.2) P = 
-Y1, (x, t) C IF x J, (5.2) 

U -~~1 v = g2i (X, t) E rF2 x J, 

where vi is the outer unit normal to Q, and q(x,t), gl(x,t), and g2(x,t) are given 
functions. Finally, the initial condition is given by 

(5-3) ~~~p(X, 0) = p?(X), x C- Q. 

Problem (5.1)-(5.3) is recast in mixed form as follows. Let 

L2(Q) w Q Iw(x)12 dx < oo}, 

H(div; Q) ={v C (L2(Q))d: V v C L2(Q)} 

W =L 2(Q), 
V' = {v CE H(div; Q): V v = r on F2}, 

where d is the space dimension of Q and 7r(x) is a function defined on 9F2. Then the 
mixed form of (5.1) and (5.2) for a pair of maps (u,p) J * V92 X W iS 

(5.4) (c&tp, w) + (V 
. u, w) (q, w) Vw C W, 

* (a-l~Wu,v) - (p,V v) = (b, v) + (gi, v - z,)r,, Vv C- V?, 

where (-,*) is the L2(Q) or (L2(Q))d inner product, as appropriate, and (, )p1 denotes 
the duality paring between H1/2(IF) and H-1/2(F1). System (5.4) is obtained from 
(5.1) by Green's formula. This system has a unique solution [4]. 

To define a finite element method, we need a partition Sh of Q into elements 
E, say, simplexes, rectangular parallelepipeds, and/or prisms, where only faces on 
the boundary IF = Q may be curved. In Sh, we also need for adjacent elements to 
completely share their common face. Finally, each exterior face has imposed either 
Dirichlet or Neumann conditions on it. 

Let Vh7 x Wh C V' x W denote some standard mixed finite element space for 
second-order elliptic problems defined over ?h (see [5, 6, 7, 10, 20, 24] for all the 
mixed spaces). The mixed finite element solution of (5.4) is (Uh, Ph) J - X Wh 

satisfying 

(5.5) (C&tph, W) + (V . Uh, W) 
- 

(q, w) VW C Wh, 

(aW1Uh, V)- (Ph, V * V) = (b, v) + (g, v v)rp Vv C VhV. 

The approximate initial datum is given by 
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where Ph is an appropriate approximation in Wh of po. The system in (5.5) and (5.6) 
again has a unique solution. The time differentiation term can be discretized by the 
standard backward Euler scheme or other more accurate time stepping procedures, 
for example. The linear system arising from (5.5) is a saddle point problem. To 
see how to solve this saddle point problem refer to [12j. As remarked before, the 
mixed method yields accurate approximations to both the pressure and velocity in a 
mass-conservative manner. Also, it can handle complicated boundary conditions and 
geological boundaries. 

5.3. The ELLAM method. Recall that equations (4.26) and (4.27) are ad- 
vection dominated; they are more hyperbolic. Standard finite difference and finite 
element methods produce numerical solutions with excessive oscillations, while up- 
winding and stabilized versions of these methods tend to generate solutions with 
nonphysical dispersions. Although conventional Eulerian-Lagrangian methods can 
overcome these difficulties, they fail to conserve mass. Here we very briefly review the 
Eulerian-Lagrangian localized adjoint method (ELLAM), which can accurately and 
efficiently solve advection-dominated problems in a mass-conservative manner. 

To fix the ideas, we present the ELLAM scheme for the transport equation in one 
space dimension: 

(Om)t + (Vm -Dm,,), = q, (x, t) E (a, b) x J, 

Vm -Dmx = ga(t), x = a, t C- J, 
(5-7) 

~-Dmx gb (0) x = b, t C- J, 

m(x, O) go (x), x ( [a, b]. 

An extension to several space dimensions is straightforward. Also, in (5.7) we consider 
an inflow flux and an outflow Neumann boundary condition; the ELLAM formalism 
can handle other types of boundary conditions [8]. Finally, for notational simplicity 
we consider uniform partitions in space and time below. 

For positive integers I and JV, we introduce the partitions 

h= (b-a)/I, xi =a+ih, i=O,1, ...,I, 

/\t = T/A0( tn = n/\t, n = 0,1, . ... ,J. 

For any space-time test function v that vanishes outside [a, b] X (tn, tn+l] and is possibly 
discontinuous in time at tn, a space-time weak formulation of (5.7) reads as follows: 

f q$(X) tn+1)m(X, tn+1)V(X, tn+1)dx + ffb ftt? Dmxvxdtdx 

Itn 

1 

bL pb tn?1 (5.8) + ft? (Vm -Lm) v - Ja n mq (vt + V"vx) dtdx 

fa q$(x tn)m(x, tn)v(x, tn)dx + fb tn qvdtdx, 

where v(x, tn) =limttn v(x, t) and Vf = V/t. 
The ELLAM scheme below suggests that the test function v should be chosen 

from the solution space of the formal homogeneous adjoint problem of (5.7) 

-Ovt - Vvx - Dvxx - 0. 

This solution space is infinite-dimensional. For a numerical procedure, only a finite 
number of test functions are needed. Different choices of these functions lead to 
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different classes of approximation methods. A choice is to solve the adjoint problem 
using the following operator-splitting technique: 

(5.9) qvt + Vv, = 0 and Dv, 0. 

This implies that v is constant along the characteristic in the direction (0, V) or 
(1, V+), so the last term in the left-hand side of (5.8) vanishes. In general, we cannot 
track the characteristic exactly. However, the residual should be small if the test 
function is constant along an approximate characteristic. Below we approximate the 
characteristic via the backward Euler method. Also, it follows from (5.9) that v can 
be chosen as standard hat functions in space. Substituting this type of v into (5.8) and 
carrying out algebraic manipulations, we derive the ELLAM scheme for the resulting 
weak formulation. We briefly sketch its development below, which is rather technical. 
The ideas in [8] are utilized here. 

We are restricted to the time interval [t', tn+']. At the time level t'+', we define 
the approximate characteristic X(T; x, tn+1) by 

(5.10) X(T; x, tn+ 1) -= xV (X, tn+1) (tn+ I- T) wT C [tnvtn+1] 

This characteristic emanates backward from (x, tn+1). At the outflow boundary the 
approximate characteristic emanating backward from (b, t) is defined by 

(5.11) X(T; b, t) - b - Vk(b, t)(t - T), T C [tn, t]. 

We also introduce the notation 

x*- X (tn; x) tn+) I b* (t) X X(tn;b ) 

Xi* - X (tn; xi 7 tn+l i = 0) 1 ) . .. ) I, 

x* - X(tn ; b) ti)) i = I + 1, ... ., I + IC) 

where ti is defined below. 
To handle the inflow boundary condition, we need more notation. Let x be the 

point at t'+' such that the approximate characteristic emanating backward from 
(x,tn+1) meets (x,tn); i.e., x - X(tn;sx,tn+1) - g(tn). Also, let t*(x) be the time 
when the approximate characteristic x(T) traced backward from (x, tn+1) meets the 
inflow boundary x = a; i.e., a - X(t*(x);X,tn+l) x(t*(x)). Next, set t* t*(xi), 
i = 0, 1, ..., IC1, where IC, = [CI] (the integer part of CI) with C (a - a)/h. For 
convenience, set t = t. Finally, define 

At(x) tn+1 -tn if x > xo 

-t(x) if x < X0. 

Also, to treat the outflow boundary condition, set 

-O max V (b) t), C2 - VOAt/h, IC = [C2]. 

Now, we define 

trtn+1 a (ic-nI)h/Vn s t . .t., + IC. 

For later convenience, set t_[+_C+l - tn. 
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With the above notation, we now take the test function v to be the standard hat 
function in space at t'+' (or at the outflow boundary) and to be constant along the 
approximate characteristic from t'+1 (or the outflow boundary) to t' (or the inflow 
boundary if the approximate characteristic meets it). With this test function, we now 
consider each term in (5.8). 

The first term on the right-hand side of (5.8) is split into two terms such that 
the first one tracks forward to the new time level t'+', while the second one tracks 
forward to the outflow boundary. Namely, 

fq 
lb 

(y,tn T)m(y, tn) V(y, tn ) dy 
1b q(x*, tn)m(x*, tn)v(x*, tn)dx* + 

bA 
0(x*, tn)m(x*, tn)v(x*, tn)dx* 

(.) 1b (ta; x, tn+1)X(x*, tn)m(x*, tn)v(x*, tn+l)dx 

p tn?lX 

+ J 42(tn b,t(b(t), t)m(b*(t), tn)v(b, t)dt, 

where we use the fact that the test function v is constant along the approximate 
characteristics in (5.10) and (5.11), and IQ and T2 are the Jacobians of the transfor- 
mations in (5.10) and (5.11): 

F1 (T; x, tn+1) -1 1V (x, tn+l1) (tn+ I-T), T C [t* (x), tn+1], xC [a, b], 

'F2(T; b, t) = VO(b, t) + Vj (b, t)(t - T), T C [tn, t], t C [tn, tn+1]. 

If the temporal integral is computed by the backward Euler quadrature at tn+1 and 
the outflow boundary, the last term on the right-hand side of (5.8) can be written as 
follows: 

b tn+l 

fa Itrn q(y, T)v(y, T)dTdx 

tn?l rb*(7r) - 
ftn+ fabT q (X(T; x, tn+1), T) V(X (T; x, tn+1), T)dX(T; x, tn+1 )dT 

tn?l b 
+ ft n fb*(,r) q(X(T; b, t), T)v(X(T; b, t), T)dX(T; b, t)dT 

(5.13) = b ftn(+) (X tn+l tn+I)V(Xtn+ 

tn?l t 
+ tftn tftn P2 (T; bI t)q(b, t)v(b, t)dTdt + Rq (v) 

- fqa t(,t )q(x, t )( t )dx 

+ ft4n 4(b) t)q(b, t)v(b, t)dt + Rq(v), 

where Rq is the truncation error due to the application of backward Euler quadrature, 
and XF3 and XF4 are determined by 

F 3(x, tn+1) - At(x)- V2(x,t +1)(At(X))2/2, x E [a,b], 

'F4(b, t)- V'k(b,t)(t - tn) + V-(b, t)(tn-t)2/2, t E [tn,tn+1]. 

With a similar argument, the second term on the left-hand side of (5.8) is evaluated 
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by 

b tn?1 

ta fn D(y, t)mx (y, t)v, (y, t)dtdy 

b 
tn+lXtnIVxXtnld 

(5.14) f At /\(x) D(x , tn+1)x(,t+ v xt+ d 

-t 
+ (t - tn)D(b, t)mx(b, t)vt(b, t)dt + RD(V), 

where RD is again the truncation error. Substitute (5.12)-(5.14) into (5.8) to see 
that 

,b 
x 

,( tn+ 1) T(x, tn+1) V (X, tn 1)dx 

+ f At(x)D(x, tn+l)mTx(x, tn+l)Vx(X, tn+l)dx 

t n+1 (t - tn))D(b, t)mx (b, t)vt (b, t)dt 

tn +1 

+ f8n (Vm - Dmx)(b, t)v(b, t)dt 

(5.15) tn- 
ftn (Vm - Dmx)(a, t)v(a, t)dt 

- fw I' (tn; x, tn+1 )q(x*, tn)m(x*, tn)v(x, tn+1)dx 
qI tn+lX 

+ ftn T2(; b, t)4(b* (t), tn)m(b* (t), tT)v(b, t)dt 

+ fJb T3(X, tn+ )q(x, tn+1)v(x, tn+l)dx 

tn+l 
+ ftn XF4(b, t)q(b, t)v(b, t)dt + R(v), 

where 

b tn+ 1 

R(v) 1 J J $m(vt + VOvx)dtdx - RD(V) + Rq(V). 

Note that all terms except the error R(v) in (5.15) have been expressed as the integrals 
at t', t?+?, the inflow boundary, or the outflow boundary. Equation (5.15) is the basis 
for the development of the ELLAM scheme presented here. 

At tn+1 and the outflow boundary, we employ the piecewise linear trial 
function 

I+IC+1 

M(xNl tng te er term R(v, r ci(x,tn+ 1)m b , a usib], n t te 1s .f. .toV1. 
i=-o 

Neglecting the error term R(v), replacing m by M, and using the test function vi in 
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(5.15), we obtain the ELLAM scheme 

Ab ?>Xtn+l )M (x, tn+l 1) V (x, tn+ 1 )dx 

+ fb At(x)D(x, tn+l)M (x, tn+l)V,x (x, tn+l)dx 

tn+l 

+ ftn VM (b, t) vi (b, t) dt 

- 

X i(t,; 
Xtn+l)q$(X* tn)M(x*,tn)vi(x,tn+l)dx 

tn+l 
(5.16) + ftn '2(t2; b, t)4(b*(t), tn)M(b*(t), tn)Vi(b, t)dt 

+ fb '3(X tn+1 ) q(x, tn+ 1 )v, (x, tn I)dx 

tn+l 

+ ft n T'4(b, t)q(b, t)vi(b, t)dt 

+f t ga(T) vi(xO,T)dT - ft,'- gb(t)vi(b, t)dt 
i+1 +1I 

t 
8i-I (t -tn )gb (t) vit (b) t) dt, 

where Wi = Wi) i I+ 1, ... ,I+ IC, and _I+IC+l 
- 

WI+IC + WI+IC+l. To conserve 
mass, all the test functions must sum to one [8]. Because M(b, tn) is known from the 
previous time step, the equation for i = I + IC + 1 is not needed. Hence, the test 
function zI+IC, which is one on [tn, tI1IC], is utilized instead of WI?IC. 

We end with three remarks. First, (5.16) is a closed linear system with a sym- 
metric and positive-definite stiff matrix. Second, from the above discussion we see 
that the ELLAM scheme handles the boundary conditions in a systematic manner; 
this is in contrast to other characteristic-based methods, which treat these conditions 
in an ad hoc fashion. Finally, this scheme directly applies to the advection-diffusion 
equation in a conservative manner, while most other characteristic-based methods 
apply only to a nonconservative form of the advection-diffusion equation. 

6. Numerical tests. The major part of this paper is concerned with the devel- 
opment and analysis of the compositional model and its numerical scheme. In this 
section we report numerical results for a test example. A comparison of various for- 
mulations derived in section 4 has been given in [11] through numerical experiments 
for the flow of three immiscible fluids in a porous medium. Since the structure of 
these formulations has the same pattern here, as mentioned before, the test example 
presented here does not involve the comparison. To have an example applicable to all 
these formulations, we take the zero capillary pressures 

Pcgo - Pcwo 0. 

In this case, all the formulations are the same. Also, a comparison of the numerical 
methods exploited here with other methods such as upwinding finite difference and 
high-order total variation diminishing (TVD) methods has been described before. We 
shall not compare our numerical scheme with others. Finally, the main purpose of 
the test example is to show the behavior of the solution to the compositional system 
obtained in previous sections, so we shall consider a one-dimensional problem. 

The one-dimensional porous medium is 250 feet in length with a sectional area of 
50 square feet. The porosity of the medium is taken to be 20%. The initial pressure 
is 2000 psi, the temperature is 160?F, and the permeability of the medium is 2 darcy. 
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FIG. 1. Profile of the mole fraction of methane. 

The relative permeability functions are defined by the modified Corey's model [16] 

-2 5 (1 -(1- )2) kro =2.5 (1- (1 -) 3), krw 0.1-3 

where the normalized saturations are given by 

_ _ 859 -Srg So -Sro Sw Srw 

1 lSrg Sro -Srw 
i 

-Sro --Srw 1 Sro -Srw 

with the residual saturations 

Srg = 0, Sro 0.25, Srw = 0.35. 

The initial water saturation is 20% and oil saturation is 80%. The molar density of the 
water phase is 3.467 lb-mole/ft3 and its viscosity is 0.5 cp. The oil phase is composed 
of 20% methane (light hydrocarbon component), 20% butane (medium hydrocarbon 
component), and 60% decane (heavy hydrocarbon component). 

In the test example, we inject 95% water and 5% hydrocarbon mixture (45% 
methane, 45% butane, and 5% decane) into the porous medium, and the total injection 
rate is 1000 lb-mole per day. This example involves a three-phase fluid flow process. 
The lowest-order Raviart-Thomas space [24] over 40, 50, and 80 elements is used, and 
the sequential solution procedure developed in section 5 is utilized. The profiles of 
the mole fractions of methane, butane, and decane and of the saturations of the gas 
and phases are displayed in Figures 1-5. The profiles per element vs. distance at 100 
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FIG. 6. Profile of the mole fraction of methane. 

and 200 days for the experiment of 50 elements are illustrated in these figures. As 
seen from them, the numerical scheme is stable and captures the sharp front of the 
solutions. Note that water is the main stream of the injecting fluid, and a water 
front is formed and propagated as time evolves (at about 55 and 155 feet at 100 and 
200 days, respectively, in Figure 5). Also, notice that the porous medium pressure is 
increased due to the injection, so the resident hydrocarbon fluid is vaporized to form 
a gas zone, as shown in Figure 4. Figure 3 describes the computed number of the 
mole fractions of decane, which is the main stream in the oil phase. Note that the 
transition of the decane corresponds to the intersection of the water and gas fronts. 
In Figures 6-10, we show the results of varying the grid size; i.e., the profiles of the 
mole fractions of methane, butane, and decane and of the saturations of the gas and 
phases at 150 days for the experiments of 40, 50, and 80 elements are presented. We 
clearly see the stability and convergence of the numerical scheme proposed here. 

7. Conclusions. The compositional flow for multicomponent three-phase flu- 
ids in porous media involves a time-dependent, strongly coupled system of an enor- 
mous number of nonlinear partial differential equations and algebraic constraints. For 
large-scale petroleum fields, this system cannot be easily solved in a fully coupled and 
implicit manner. To devise a suitable numerical algorithm for solving it, we have 
to derive appropriate formulations for these differential equations and algebraic con- 
straints. In this paper, with proper choices of primary variables we have developed a 
compositional model for multicomponent, multidimensional three-phase fluid flow in 
porous media. Various pressure formulations have been incorporated in this system 
to alleviate nonlinearities and couplings. The mathematical analysis carried out here 
provides a qualitative structure of this compositional model. The analysis is also use- 
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ful in the design of numerical methods for solving this model. With the mixed finite 
element method, we can obtain accurate volumetric flow velocities, which are heavily 
used in the Eulerian-Lagrangian localized adjoint method for the transport system. 
The latter method is both accurate and efficient for handling advection-dominated 
problems. The numerical experiments done so far show a strong potential of the 
numerical scheme proposed in this paper. 
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