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ANALYSIS OF A COMPOSITIONAL MODEL
FOR FLUID FLOW IN POROUS MEDIA*

ZHANGXIN CHEN', GUAN QINf, AND RICHARD E. EWINGS

Abstract. In this paper we consider a compositional model for three-phase multicomponent
fluid flow in porous media. This model consists of Darcy’s law for volumetric flow velocities, mass
conservation for hydrocarbon components, thermodynamic equilibrium for mass interchange between
phases, and an equation of state for saturations. These differential equations and algebraic constraints
are rewritten in terms of various formulations of the pressure and component-conservation equations.
Phase, weighted fluid, global, and pseudoglobal pressure and component-conservation formulations
are analyzed. A numerical scheme based on the mixed finite element method for the pressure equation
and the Eulerian-Lagrangian localized adjoint method for the component-conservation equations is
developed. Numerical results are reported to show the behavior of the solution to the compositional
model and to investigate the performance of the proposed numerical scheme.

Key words. compositional model, porous medium simulation, finite elements
AMS subject classifications. 35K60, 35K65, 76505, 76T05
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1. Introduction. This paper deals with a three-phase multicomponent composi-
tional model often used in petroleum porous medium simulation. This model incorpo-
rates compressibility, compositional effects, and mass interchange between phases. It
consists of Darcy’s law for volumetric flow velocities, mass conservation for hydrocar-
bon components, thermodynamic equilibrium for mass interchange between phases,
and an equation of state for saturations. It models important enhanced oil recovery
procedures such as condensing gas drive and miscible gas injection. To understand the
complex chemical and physical phenomena of fluid flow in petroleum porous media,
it has become increasingly important to study such a realistic model.

In this paper we give a qualitative analysis of the compositional model. The
mathematical structure of a simplified, one-dimensional multicomponent two-phase
compositional model was analyzed in [28], where capillary pressure effects were not
considered. Here we analyze multidimensional, three-phase multicomponent fluid flow
with the capillary effects. First, we manipulate the differential equations and algebraic
constraints of this model to derive a pressure equation and modified component-
conservation equations. Various formulations of the pressure equation, including
phase, weighted fluid (with saturations as weights), global, and pseudoglobal ones,
are described. These formulations have been developed for immiscible fluid flow in
[11]; here we extend them to the complex compositional model.

We then analyze the mathematical structure of the differential system of these
formulations. This system is of mixed parabolic-hyperbolic type, typical for fluid

*Received by the editors January 30, 1998; accepted for publication (in revised form) January 19,
1999; published electronically February 10, 2000. This research was supported in part by National
Science Foundation grant DMS-9626179.

http://www.siam.org/journals/siap/60-3/33342.html

TDepartment of Mathematics, Box 750156, Southern Methodist University, Dallas, TX 75275-0156
(zchen@dragon.math.smu.edu).

fUpstream Strategic Research, Mobil Technology Company, Dallas, TX 75244-4390 (guan_qin@
email.mobil.com).

S$Institute for Scientific Computation, Texas A&M University, College Station, TX 77843-3404
(ewing@ewing.tamu.edu).

747

This content downloaded from 136.159.119.111 on Mon, 1 Dec 2014 15:02:45 PM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

748 ZHANGXIN CHEN, GUAN QIN, AND RICHARD E. EWING

flow equations in porous media. We prove that the pressure equation is a standard
parabolic problem and the modified component-conservation equations are advection-
dominated problems in the presence of capillary diffusive forces; they are purely hy-
perbolic in the absence of these diffusive forces. For simplicity, we neglect hydraulic
dispersion and molecular diffusion effects in this paper. We discuss the nonlinearity
and coupling of the differential system as well. We show that the pressure equation
is weakly nonlinear and less dependent on the conservation equations; these conser-
vation equations are strongly nonlinear and heavily dependent on the pressure, and
they are strongly coupled to the thermodynamic equilibrium constraints.

We also develop a numerical scheme for the solution of the compositional model
under consideration. Finite difference and finite element methods have been used to
solve compositional models under various assumptions on physical data (see, e.g., [1,
2, 15, 29, 30]). The numerical scheme proposed here is based on the mixed finite
element method for the pressure equation and the Eulerian-Lagrangian localized ad-
joint method (ELLAM) for the component-conservation equations. The combination
of the mixed and ELLAM methods has been considered for a compositional model in
[22, 23], where phase pressure and pseudo total velocity were employed. First, it is
known that accurate numerical simulation requires accurate approximations to flow
velocities. However, standard finite difference and finite element methods do not lead
to accurate velocities. On the other hand, the mixed method has a very satisfactory
property in both this aspect and the treatment of the geometrically complex geological
structure of porous media (see the references in [12]). Second, due to their advection-
dominated features, more suitable methods than the standard finite difference and
finite element methods must be exploited for the component-conservation equations.
The ELLAM method has been shown to be efficient in handling this type of problem
in a mass-conservative manner [8]. Third, to handle the strong coupling of the system
of the pressure and component-conservation equations, we utilize a sequential solution
procedure in this scheme to decouple it. The sequential procedure has been chosen
based on the analysis of the nonlinearity of the compositional system and the choice
of primary variables [22, 23]. The numerical scheme considered here utilizes various
pressure forms with the usual total velocity.

We report numerical experiments to show the behavior of the solution to the
compositional model and to investigate the performance of the proposed numerical
scheme. The experiments involve a three-phase fluid process.

The rest of the paper is organized as follows. In the next section, we review
compositional flow equations. Then in section 3, we analyze an equation of state
and thermodynamic equilibrium conditions. In section 4, we derive and analyze the
pressure and modified component-conservation equations. In section 5, we develop
our numerical scheme. In section 6, we report numerical experiments. Finally, we
give some remarks in section 7.

2. Governing equations. A compositional flow involves mass interchange be-
tween phases and compressibility. In a model for this type of flow, a finite number
of hydrocarbon components is used to represent the composition of porous medium
fluids. These components associate as phases in the porous medium. In this paper,
we describe a compositional model under the assumptions that the flow process is
isothermal (i.e., the constant temperature), the components form at most three phases
(e.g., gas, oil, and water), there is no mass interchange between the water phase and
the hydrocarbon phases (i.e., the oil and gas phases), and the porous medium is
rigid.
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ANALYSIS OF A COMPOSITIONAL MODEL FOR FLUID FLOW 749

Because of mass interchange between phases, mass is not conserved within each
phase; the total mass of each component must be conserved:

Ft(¢mw) +V - (§wtiw) = qu,

2.1
( ) at(¢mz) +V- (Cigggug + Ciofouo) =i, t=1,...,N,

where 0; denotes time differentiation; ¢ is the porosity of the porous medium; g, o,
and w refer to gas, oil, and water phases; ¢ is the component index; N is the number
of hydrocarbon components; m,, and m; denote the number of overall moles per
pore volume of the water and ith hydrocarbon component; c;4 and ¢;, are the mole
fraction of the ith component in gas and oil phases; £, and u, are the molar density
and volumetric flow velocity of the « phase; and ¢, and ¢; stand for the molar flow
rate of the water and the ith component, respectively, & = g, o, w. In (2.1), the
volumetric velocity u, in multiphase flow is given by Darcy’s law:

kra

[e%

(2-2) Uq = —k (Vpa - pagc)a « =g, 0, W,
where k is the effective permeability of the porous medium; ko, fo, Do, and p, are
the relative permeability, viscosity, pressure, and mass density, respectively, of the
a-phase; and g. is the gravitational constant vector.

In addition to the differential equations (2.1) and (2.2), we also need algebraic
constraints for some quantities. The mass balance implies that

(23) My = Mig + Mo, i=1,...,N,

where m;q and m;, represent the number of moles per pore volume of the ith hydro-
carbon component in the oil and gas phases, respectively. Also, the mole fractions c;q
and ¢;, are given by

(2.4) cia=—Tmi—a—, i=1,...,N, a=g,o.
Zj:l Mjo
In the transport process, the porous medium is fully filled with fluids:

(2.5) ST = Sg 4 S0+ Sw =1,

where s, is the saturation of the a-phase, & = g, o, w. By their definition, the
saturations are expressed in terms of the phase compositions:

N
My 2iz1 Mia _
Sw=""7T"y Sa=—" 77—, « =g, o.
§w

€

The phase pressures are related by capillary pressures,

(2.6)

(27) Pcao = Pa — Pos @ =g, o0, w,

where peoo = 0, Dego Tepresents the gas phase capillary pressure, and pewo is the
negative water phase capillary pressure, which are assumed to be known functions
of the saturations. The relative permeabilities k... are also assumed to be known in
terms of the saturations. The viscosities u,, molar densities &,, and mass densities
Po are functions of their respective phase pressure and compositions.
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It should be noted that there are more dependent variables than there are differ-
ential and algebraic relations; there are formally 5N + 10 dependent variables: m,,,
M, Mia, Cias Uay Pa, a0d Sq, @ = g,0, ¢ = 1,...,N. It is then necessary to have
5N 410 independent relations to determine a solution of the system. Equations (2.1)-
(2.7) provide 4N + 10 independent relations, differential or algebraic; the additional
N relations are provided by the equilibrium relations needed to relate the numbers of
moles.

Mass interchange between phases is characterized by the variation of mass dis-
tribution of each component in the oil and gas phases. As usual, these two phases
are assumed to be in the phase equilibrium state at every moment. This is physically
reasonable since the mass interchange between phases occurs much faster than the
flow of porous medium fluids. Consequently, the distribution of each hydrocarbon
component into the two phases is subject to the condition of stable thermodynamic
equilibrium, which is given by minimizing the Gibbs free energy of the compositional
system (see the discussion in the next section). The closedness of this system in terms
of the primery unknowns chosen in this paper will be discussed later in the fourth
section. For physical aspects of the compositional flow presented here, consult [2, 3].

3. Thermodynamic equilibrium. Equations (2.1)—(2.7) form a strongly cou-
pled system of time-dependent, nonlinear differential equations and algebraic con-
straints. While there are formally 5N + 10 dependent variables, as mentioned before,
it follows from the Gibbs phase rule that this system can be written in terms of N + 2
primary variables and other variables can be expressed as functions of them. The pri-
mary variables must be carefully chosen so that main physical properties inherent in
the governing equations and constraints are preserved, the nonlinearity and coupling
among the equations are weakened, and efficient numerical methods for the solution

of the resulting system can be devised. In this paper we choose (p, mr,m1,...,my)
as our primary variables for the reasons 1\‘90 be explained later, where p is some as yet

unspecified pressure and mp = my, + Y _,_; m; (i.e., the total number of overall moles
per pore volume of the fluids, see [22]). Toward that end, in this section we give a
preliminary study on the thermodynamic equilibrium condition on the distribution of
hydrocarbon components into phases, which will be needed in the next section.

3.1. The Gibbs—Duhem condition. Though most of the results in Lemmas
3.1 and 3.2 below might be known [25], we believe that a brief discussion is in order.
Also, the arguments used in these two lemmas are different from the usual ones, and
the results will be heavily exploited later in this section.

As mentioned before, it is assumed that the oil and gas phases are in the stable
phase equilibrium state at ‘every moment, which is expressed in terms of a set of the
potential functions f;, of the ith component in the a-phase, i =1,...,N, a = g, o.
Since the potential functions are derived from thermodynamic principles, they have
some important properties. One of these properties is the Gibbs-Duhem condition [25]

Mo

, i=1,...,N, a=yg,o,
8mia

(3.1) fia =

where 7, indicates the total Gibbs free energy of the a-phase. Equation (3.1) says
that the potentials are the partial derivatives of the energy with respect to the com-
positions. From (3.1), we can deduce some other important properties.
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LEMMA 3.1. Under (3.1), we have

(3.2) im—‘?—f"‘”—:o j=1,...,N, a=g,0
i=1 “omja , o o

and

(3.3) éﬁi:%, i,j=1,...,N, a=g,o.

Proof. Recall that the energy +, is defined by
N

VYo = Z Mia fias
1=1

therefore

8 « l a o
i fja"l'zmia“_f—‘
=1

8mja - 8mjo¢
This, together with (3.1), implies (3.2). Also, by (3.1), we see that
Ofia Y _ Vo _ Ofja

OMja  OMjadmia  OMinOmja  Omis’

which implies (3.3). This completes the proof. |
We remark that the consequence of (3.3) is that the matrix (0fia/0mja)nx N is
symmetric, o = g, o.

3.2. The Kuhn—Tucker conditions. The total Gibbs free energy is defined by

(3.4) ¥ =Yg + Yo

Now, the constrained minimization problem for the Gibbs free energy of the compo-
sitional system under consideration is formulated as follows:

Given 0 < my, find (mig,mi6), ¢ =1,..., N, such that

3.5 .
(3:5) Y(Mig, Mio) = INf{y(vig, Vi) : 0 < vig, Vio and viq + vio = m;}.

From this minimization problem, we easily derive the Kuhn-Tucker conditions [18, 27]
under the assumption that both the gas and the oil phases are formed.

LEMMA 3.2. Let (m;g, m;o) be defined as in (3.5) and assume that both the gas
and the oil phases are formed. Then
(3.6) fig(p,mlga-'-amNg) = fio(DyMi0s -, MNo), i=1,...,N,

and the Hessian matriz (0fiq/0mjg + Ofio/Omjo)Nxn is symmetric and positive-
definite at (p, mig, Mio), where p is treated as a parameter.

Proof. From (2.3), (3.1), and (3.4), we see that

07 _ 0% N~ 0% Omio _ vy O
Om;g  Omag = Omjo Om;g  Omyg  Omyo

= fig - fioa
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so (3.6) follows from (3.5) and the assumption of the present lemma. Similarly, we
have that

82’)/ _ 8fzg + 8f’io
8mi98mjg o 8mjg (9ij.

Consequently, we see that (0f;g/0m;jg+0fio/Omjo) Nxn is positive-definite from (3.5)
and the theorem of the second-derivative test in calculus; the symmetry is obvious.

The proof is complete. 0

3.3. Some useful relations. We now exploit Lemmas 3.1 and 3.2 to derive
some relations that will be useful in the next section.

LEMMA 3.3. Under the assumption of Lemma 3.2, we have

N

om;
(3.7) ijagm—é =0, a, B=g,0, a#p.
— m;

Proof. 1t follows from (3.6) that
8fio _ afig .

8m]~ - am]‘,

ie.,

i 8fzo 8'rnlo ZN: fig 8ml9
 Omyg Om;
By (2.3) and (3.3), we thus see that

i( Ofio , afz-g> dmuo _ Ofig _ Ot

- )
Omi,  Omyg) Om;  Omjg  Omyg

(3.8)
=1

which, together with (3.2), implies that

gL (afio + 8fzg) 8mlo ia EN:
1

=1 1=1 8mlo 8mlg

That is,

N N
Z(afw + afig>zamlomjg:0, ’l=1,,N
1 J

Now, by Lemma, 3.2 the only solution to this system is the null solution

8mlo

ﬂijg:O, l:].,,N

With the same argument, we can show

Zam’g 0, I=1,...,N.
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Thus the proof is completed. |
LEMMA 3.4. It holds that

N
0
(39) ija Cia =O, 1:=1,...,N, a =g, o.
mj

0%

This directly comes from the definition of ¢;o in (2.4).

PROPOSITION 3.5. Under the assumption of Lemma 3.2, for a, 8 = g, o we have
ZNim' 9s5 [ sa if a=p,
= 7% 0Om; 0 if a#8

Proof. Tt follows from (2.6) that

N
(3.10) 88‘? - gi (1 ~35>. %5 acl? ) ,

so that

Z 335 377’1,]5 1 N (9m]g _ ZZ 3£g 8cl5 8m]g
* Om;jg Om; T & 56 deig Omyp Om;

j=11=1
Hence, we observe that
N
i

N N
; m;
=1

j=11i=1 J=11=1 i=1

am]ﬁ S nw~ s Do Omyg
m; S,BZZZm (9Clgam3g 3777,z ’

which, together with (3.7), implies the case a # (. Note that, by (2.3) and (3.7),

N
3mja
E Mo = Mja-
i=1 om;

Therefore, for the case a = 3, we see that

N N N

3} 00 O
Zmia 88 Z Mja — Sa Z Z Mja acla 87:7;@ = Sa,

i=1 mi j=11=1

by (2.6) and (3.9). This yields the case oo = §. O

4. The compositional system. As mentioned before, the system in (2.1)-
(2.7) involves a large number of strongly coupled nonlinear differential equations and
algebraic constraints. To alleviate the nonlinearity and coupling, we carefully choose
our primary variables and derive a compositional system for them. This system
consists of the (various) pressure and modified component-conservation equations.
We shall use the usual total flow velocity

(4.1) U= Ug + Uy + Uy

This content downloaded from 136.159.119.111 on Mon, 1 Dec 2014 15:02:45 PM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

754 ZHANGXIN CHEN, GUAN QIN, AND RICHARD E. EWING

Several choices for p will be made later. For the time being, let us assume that
p has been given. Also, for expositional convenience we assume that s, essentially
depends on p instead of p,, @ = g,0,w. This means that we neglect the errors (due
to the capillary pressures) caused by calculating s, at p instead of p,. These errors
contribute to the lower-order terms in the pressure equations, which does not affect
the properties of these equations. The technique for handling these errors for a simpler

problem in [13] also applies here.

4.1. The pressure equation. Note that sy = sp(p, My, m1,...,mny), as given
n (2.5), is a function of its arguments. Then it follows from the differentiation of

(2.5) with respect to time that

osrt osr Osr
?p—atp om Btmw -+ Z —({)t’mz =0.

Apply (2.1) to see that

asrt 0
crOip + 'a_—‘v (gw o + Z o V (ngggug + Czofouo)

4.2
( ) BST al BST

where cr is the total fluid and rock compressibility given by

(4.3) =—¢a—571+< +Z i )a¢.

By (2.5), we see that

ost 084 sy 0Osg n 0s,

(4.4) Oy Omy’ om;  Om; Om;’

and, by (2.4) and (2.6),

(4.5) Ciaba = ou Omy & L

My aSw 1 <1 _ 8§w >
Now, apply (4.1), (4.4), (4.5), and Proposition 3.5 to (4.2) to obtain

8sw N 3ST
cTc')tp + V- U‘ng (%) C Uy — ; \Y% (a—ﬂ%) : (Cigggug -+ Ciogouo)

N
=1 Bmz

Omy, Oy

Normally, water is assumed to be incompressible or slightly compressible. In this case,
we obtain

dsy Os
(4.6) crop+V-u— Z \Y% ( mz) (ngggug + Ciobollo) = + Z 37)’2
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where, by (2.3) and (2.5),

. aST 8¢
cr = ‘5; + 8]) .

In the subsequent analysis, solely for notational convenience we shall utilize the as-
sumption that water is incompressible; then &,, is constant. It now remains to express
u in terms of p.

4.1.1. Phase pressure. We first review the phase pressure formulation. The
oil phase pressure often has been used in petroleum porous medium simulation:

(4'7) P = Po-

For expositional convenience, we introduce the phase mobility functions

)‘a= s & =g, 0, W,
Ko

and the total mobility function

A= Ao,

«

where (and later) >, = > Then it follows from (2.2), (2.7), and (4.7) that

a=w,0,q9"

(48) u=—k\ (Vp - G)\ + Z )\_)\avpcao> )

where Gy = gc Y., Para/A. Substitution of (4.8) into (4.6) yields the equation for
the phase pressure p. The analysis of the resulting equation will be described in
subsection 4.1.5. The pressure equation as split in (4.6) and (4.8) into a first-order
differential system is suitable to the application of the mixed finite element method
presented in the next section.

From (2.2) and (2.7), we see that the phase velocity is related to the total velocity
by

A
(49) wa=-F|utk D A {V(Pego = Peao) = (05 = Pa)9e} |, @ =g, 0, w.
B

4.1.2. Weighted fluid pressure. We now define a smoother pressure than the
phase pressure given in (4.7). Namely, we define the weighted fluid pressure

(410) b= Zsapa-

Note that even if some saturation is zero (i.e., some phase disappears), we still have
a nonzero smooth variable p. By (2.5) and (2.7), the phase pressures are given by

Poa =P+ Pecao — Zsﬁpcﬁoa @« =g, 0, W.
B
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Then, apply (2.2) and (4.1) to see that

(411) u = _k)\ <Vp - G)\ -+ Z )\)\—avpcao - Z V(Sapcao)> .

Finally, the relationships between the phase velocities and the total velocity are the

same as in (4.9).
Observe that the pressure is strongly coupled to the saturations or to the com-

positions through the last term on the right-hand side of (4.8) (respectively, the last
two terms of (4.11)). To have less coupling, next we introduce the so-called global

pressure.

4.1.3. Global pressure. To introduce a global pressure, we assume that three-
phase relative permeability and capillary pressure functions satisfy the condition

(4.12)

___a_ 2‘_7.3_ OPewo + i ﬁ)_ 8pcgo _ __8__ /\_'w OPewo + ___a__ ﬁ apcgo
0sg \ A 08y 0sg \ A ) 0sy Oy \ A Dsg s \ A ) Osg
This condition is referred to as the total differential condition [9, 11], and it is a
necessary and sufficient mathematical condition to write (2.2) and (2.7) in terms of

(4.14) below (see the derivation of (4.14) and the reason that (4.12) is needed in [11]
for a simpler problem). When it is satisfied, we can define a pressure

reoms= [ {(5) €0 %220+ (32) €0 %o o ac
() e w,oap““”( w0+ (36 w,<>8p°g°< o fac

We now introduce the global pressure

(4.13) P = Po + Pe-
Apply (2.2), (2.7), (4.1), (4.12), and (4.13) to see that

(4.14) u=—kXNVp-—G,).
The phase velocity is determined by
Ao
(4.15) Uo = U + kAo (V(pe — Peao) — 6a), a=g, o, w,
where

A
‘5a—z ﬂ(p,@ Pa)ge-
B

While condition (4.12) is not always true, it has been shown [11] that it is satisfied
for some simple three-phase relative permeability and capillary pressure functions.
Also, a simple numerical procedure for constructing three-phase relative permeability
and capillary pressure curves satisfying this condition has been given in [9]; some of
the numerical examples have been compared with the classical Stone’s model [26],
which does not satisfy this condition, and similar results have been obtained.
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4.1.4. Pseudoglobal pressure. The global pressure formulation in the previ-
ous subsection requires the total differential condition (4.12) on the shape of three-
phase relative permeability and capillary pressure functions. In this subsection, as
introduced in [11}], we finally consider a pseudoglobal pressure formulation, which
does not require this condition. For this, assume that the capillary pressures satisfy
the usual condition

(4.16) Pewo = Pewo(Sw),  Pego = Pego(8g)-

We then introduce the mean values

(4.17) (/;\Tw\)(s“’) 1 1—lsw /?::w g%’”) (5w, ¢)d¢,
(32) (50) = 1~sg/0 ( (¢, 59)d,

and the pseudoglobal pressure

=t [ </\)<<> oeellges [ @(4>Mdc,

we gc dsg

where s, and sg. are such that peywo(Swe) = 0 and pego(sge) = 0. Now, apply these
definitions to (4.8) to find that

(4.18) w= k) {Vp~ G+ (%ﬁ - (%)) %ﬂwa}.
a [e]

The phase velocities in terms of the total velocity are expressed as in (4.9). A com-
parison of all these formulations will be mentioned later.

4.1.5. Analysis of the pressure equation. The pressure equation is given by
(4.6) and (4.8) (respectively, (4.11), (4.14), or (4.18), depending upon the formulation
used). We analyze the global formulation in detail. Substitution of (4.14) into (4.6)
yields that

crdip =V - {kA(Vp — Gy)}
(4.19) N

= Z \Y (85T> ng§9u9 + czogouo + Z aST i
=1

Since the porosity ¢ is a nondecreasing function of pressure, 9¢/dp > 0. Also, the
fluid compressibility means that —¢(dsr/dp) > 0. Hence, the rock and fluid com-
pressibility combines to see that

Furthermore, although the individual phase mobilities A, can be zero (a = g, o, w),
the total mobility A is positive. Thus if the absolute permeability k& of the porous
medium is positive-definite, so is kA. Consequently, it follows from (4.19) that the
pressure equation is parabolic. Typically, the rock and fluid compressibility is quite
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small, and the pressure reaches a steady state very rapidly. The analysis for other
formulations is exactly the same.

Note that the relative permeabilities k., (@ = g,0,w) are strongly nonlinear
functions of the saturations, and the viscosities i, mainly depend on the temperature,
which is constant here, and are not so sensitive to the pressure change. Thus it follows
from their definitions that the phase mobilities A, are the functions of the saturations.
However, since the total mobility A is a much smoother quantity than the phase ones,
in general the coefficient in the second term of the left-hand side of (4.19) can be
explicitly calculated. Also, the first term on the right-hand side of (4.19) is effectively
quadratic in velocities, which is usually small in almost all of the porous medium, and
can be explicitly treated. Therefore, according to the rule in [2] that the variables
that are functions of the pressure only are considered to be weakly nonlinear and
the variables that depend on the saturations are strongly nonlinear, the pressure
equation is a weakly nonlinear parabolic equation. It is also less coupled to the mass
conservation equations derived in the next subsection.

To analyze other pressure formulations, it suffices to notice that the capillary
pressures are usually smaller compared to a porous medium pressure. Consequently,
the capillary pressure effects in these pressure equations can be explicitly handled.
Hence, the above discussion on the nonlinearity for the global formulation applies to

them.

4.1.6. Comparison of formulations. Since the four pressure formulations con-
sidered above have the same structure as those developed in [11] for the flow of three
immiscible fluids, we just mention a brief comparison of these formulations. For more
details on both theoretical and numerical comparisons, consult [11].

The global formulation is far more efficient than the phase and pseudoglobal
ones from the computational point of view and also more suitable for mathematical
analysis since the coupling between the pressure equation and the transport equations
derived in the next subsection is much less. The weakness of the global formulation
is the need to satisfy the total differential condition (4.12) by the three-phase relative
permeability and capillary pressure curves. In general, the phase formulation can be
applied. However, if the fractional flow functions of the water and gas phases are close
to their respective mean values as defined in (4.17), the pseudoglobal formulation is
more useful. In the (probably unphysical) case where the capillary pressures peg, and
Pewo are zero, all the formulations are the same.

4.2. The transport system. In this subsection, we derive the system of trans-
port equations, i.e., modified component-conservation equations. Toward that end,
first sum the second equation in (2.1) over 4, use (2.4), and sum the resulting equation
with the first equation in (2.1) to see that

(4.20) O(¢pmr) + V - (Z €aua) = qr,

where ¢ = qu +Zi]\;1 q;- By its definition, note that myp is smoother than m,,. Also,
the total molar flux > {ntq is a much smoother quantity than the individual flux
&wlqy- That is why we have chosen mr instead of m,, as our primary variable.

Next, observe that the second equation in (2.1) for m; and (4.20) for my depend
on the pressure p explicitly through the phase velocities. Thus we need to utilize (4.9)
or (4.15) to eliminate these velocities.
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Notice that the relationships between the phase velocities and the total velocity for
the phase pressure, weighted fluid pressure, and pseudoglobal pressure formulations
are all the same. Also, apply (4.12) and the definition of p, to see that

88w A 05y, A Osy Bs, A s, A Bsy

8pc )\w 8pcwo ﬁ apcgo 8pc _ éﬂ apcwo + /\g apcgo
Then it follows from (4.15) that

)‘Ot )\w )\g —
U = By + Aok (—/\—Vpcwo + TVPCHO — VPeao — 6a) , a=g, 0, w,

which reduces to (4.9). In terms of Vpeywo and Vpego, the component-conservation
equations are thus the same for all pressure formulations. Therefore, it suffices to
derive the modified conservation equations for one of them.

Substitution of (4.9) into (4.20) and the use of algebraic manipulations yields
(4.21)

ada a)\a)\
Oy(¢pmr) +V - (Z %—u) -V N 5__/\_£k(/’ﬁ = Pa)ge
[e4 o ﬂ
w A
v { <Z €ada = gw/\> 2\/\—kv17cwo + <Z Eata — €g/\> Tngpcgo} = qr.

Similarly, substitute (4.9) into the second equation in (2.1) to have
(4.22)

lom)+ V- ( Z CLQ_&:\Z);Q—U> -V Z Z Czaﬁa)\ )\ﬁ k(pp — pa)ge

a=g,o0 a=g,0 f
Ao
+V- {—CigggAgkvpcgo + ( Z Ciaga/\a> ( Z Tkvpcao>} = (i,
a=g,0 a=g,w
fori=1,...,N.

We now write Vpewo and Vp.g, in terms of the overall compositions mz and m;.
For notational simplicity, let pewo and pego satisfy the usual assumption (4.16). Then
it follows from (2.3), (2.6), (4.16), and the definition of mr that

1 cwo
Vpcwo :é. dp (v mr _vaz> )

’U)

(4.23) d 0 Osy, O
_ GPcgo Sg Sg ng )
Vpcgo = ng ( V + Z Z ang am] ]) .

=1 j=1

Finally, substitute them into (4.21) and (4.22) to see that

O(¢pmy) +V - <Z %Aﬁu) -V (ZZ é'%ii)ﬁk(/)ﬁ - pa)gc>
o a g

(4.24) N
-V (dTVmT + Z(dwj — dT)ij + dprp) = qr,

Jj=1
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where
A dewO
_ Ag dpego 0sg Omyg
(Zaj €ala @A) o Z By o, k,
Ag dPcgo 83g

o= (Zéa o @A) N s Byt

and
cia&a/\a Ciaga)\a)\ﬂ
Oy(¢m;) +V - ( _Z _‘)‘\‘—-U) -V a_zoz fk(pﬁ ~ Pa)9e

(4.25) azge 90 b

~V - | dirVmr + Z dir)Vm; +dip,Vp | = g,

where, for i =1,..., N,

A dsy

Ag dpego ~ 034 Om
dij = = (Cig€q[Ag — Al + Cio€odo) Tg dsZ 8m7g 8mljg &

Ag dPcgo 85
dz‘p = — (Ciggg [Ag — /\] + Ciogvo) A dsg 8; kﬁ
g

dir= — (clg ég /\ + Cio §O A0) /\—w dpcwok

The system of transport equations consists of (4.24) and (4.25) for mq and m;. Its
analysis will be carried out in the next subsection.

4.2.1. The analysis of the transport system. We note that the diffusion
terms in (4.24) and (4.25) stem from the phase capillary pressures. From the proper-
ties of the capillary pressures peqo and the phase mobilities A\, (o = g, w) [3], these
diffusion terms are quite small compared to the advection terms in these equations,
as mentioned before. Thus the transport system is advection-dominated. In the se-
quential solution procedure presented in the next section, we decouple the diffusion
terms in these equations by placing the off-diagonal terms and other nonsignificant
terms to the right-hand side. Also, as in [22] we define the barycentric velocities

N N
1 <Zi=1mi9ﬁ n 2i=1 Mo Ao + ﬁlﬂ)‘_w> u

A mrT Sg mrT So mrT Sy

ur =

and

ui:1<_@gﬁ+%ﬁ>u
A\ my; s mi So

With all these, (2.4), (2.6), and also moving the gravity terms to the right-hand side,
it follows from (4.24) and (4.25) that

(4.26) Oi(pmr) +V - (urmr) — V - (d-Vmr) = Fr,
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where
— dpc’wo Sa >‘ >‘ dpcwo
dT = Ay dsw Z ,
Fr=qr+V-|d3Vmr + Z (dwj — dr)Vm; + duypVp
j=1
adaA
+V- Z Z é—'—/\—ﬁk(pﬁ = pa)ge |
a g

and
(4.27) O(¢pm;) +V - (uym;) — V- (dz'va =F,
where

i = eyt e z LRI

6mlg om;
)\ dp Os, Omy
d2 = —\& A 1050 o e g Ik
¢ (Ciglog + Ciolod A dsg ¢ Z 3mlg Bmz
N ~
Fi=g¢+V- | drVmr+» (dij — dir)Vm; + dipVp
j=1
CiafaraA »
DA DI IR

a=g,0 [

with di; = dy; for i # j and dy = d?, 4,5 =1,..., N.

Note that s is less dependent on the pressure p, which, together with the physical
properties of Ay and dpcgo/dsg, implies that d,, and d;, are small compared to the
advection terms and other diffusion terms in (4.26) and (4.27). In this case, the terms
involving d.,, and d;p, in Fr and F; can be neglected.

Now, the mathematical structure of the transport system is clear. Recall that
Pewo 1S the negative water phase capillary pressure, so dpeyo/ds,, > 0 by the property
of this capillary pressure. Hence if k is positive-definite, then d% is nonnegative. The
degeneracy of d} is caused by the fact that A, can be zero. Therefore, (4.26) is
a degenerate parabolic problem. Next, it follows from (3.10) that since the molar
densities are less dependent on the phase compositions, we have the approximation

Osg 1
Omyy &

l=1,...,N.

Also, as in (3.8), we see that

N
Z(Ww +6fig)8ng: Ofio i, j=1,...,N.

=1 6‘mlo 8mlg 8mj 8mjo’

This equation physically relates how the phase compositions change with respect to
the overall hydrocarbon compositions, at the thermal equilibrium state and fixed
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pressure. Thus each dm;,/0m; should be positive [2, 3]. Consequently, these two
facts, together with the positiveness of dp.g0/dsy, imply that d} is nonnegative; the
degeneracy of d} is caused now by \,. Hence, (4.27) is also a degenerate parabolic
problem. Finally, we mention that there are N + 2 equations for the IV + 2 primary
variables (p, mr,m1,...,my); the equations consist of the pressure equation in (4.6)
and (4.8) (respectively, (4.11), (4.14), or (4.18)) and the transport equations in (4.26)
and (4.27) (or (4.24) and (4.25) if desired). Other variables can be calculated by them
via the algebraic constraints described in section 2. With appropriate boundary and
initial conditions, the whole compositional system is solvable (see section 5).

From the definition of ur and u; and the previous nonlinearity analysis for the
pressure equation, we see that the nonlinearity of the transport equations (4.26) and
(4.27) is primarily caused by the phase mobilities (i.e., the relative permeabilities) and
the minimization problem (3.5) (equivalently (3.6)). The coupling between (4.26)
and (4.27) is due to the volumetric constraint (2.5), and the coupling among the
modified mass conservation equations for the hydrocarbon components comes from
(3.5) or (3.6). Finally, through the barycentric velocities, the transport system heavily
depends on the total velocity w.

We close this section with a remark. In the case where the capillary pressure
effects are fully ignored, (4.26) and (4.27) become

(4.28) 8 (¢mr) + V- (urmr) = Fr,

where
7 a)\a)\
Fr=ar+ V- [ 392800, p)g |,
o B

and

where

EZQz"’V Z Z%—%Mﬁk(pﬁ“’pa)gc

a=g,0 (3

In the sequential solution procedure below, we compute the barycentric velocities
from the previous time level to linearize and decouple the advection terms in (4.26)
and (4.27). This is reasonable since the barycentric velocities are smoother than the
phase velocities due to the introduction of the total velocity and the scaling factors
in the definition of ur and u;. Then it is obvious that (4.28) and (4.29) are purely
hyperbolic since they are single equations. This is in striking contrast to the long
characteristic analysis presented in [28], where the phase velocities were used.

5. Numerical scheme. In this section we develop a numerical scheme for solv-
ing the compositional system derived in the last section. The sequential solution
procedure considered below to decouple this system is similar to that in [22].

5.1. A sequential procedure. As mentioned before, the phase compositions
of the porous medium fluid are calculated at the thermodynamic phase equilibrium
state when a pressure and the overall compositions of the fluid are prescribed. This
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solution technique for the phase compositions is called a flash calculation in mechanics
and is characterized by the minimization problem (3.5) (or equivalently (3.6)). We
now state our sequential solution procedure as follows:

(1) At time ¢t = 0, the primary variables (p, mr,m1,...,my) are computed from
the initial data.

(2) Use the flash calculation to determine the phase compositions mi,, @ =
1,...,N,a=g,o.

(3) Evaluate the phase viscosities p1, by empirical correlations [19] and molar
and mass densities ({4, po) by the equation of state [21], and then the mole
fractions ¢;, and saturations s, by (2.4) and (2.6).

(4) Calculate the coeflicients of the pressure equation in (4.6) and (4.8) (respec-
tively, (4.11), (4.14), or (4.18)) and some of the coefficients of the transport
system in (4.26) and (4.27), and then proceed to the next time level.

(5) Apply the mixed finite element method in the next subsection to solve the
pressure equation for u (and p if desired).

(6) Exploit the total velocity to complete the calculation of the coefficients of the
transport system (i.e., to calculate the barycentric velocities ur and u;).

(7) Utilize the ELLAM method considered below to solve the transport system
for (mg,my,...,mp).

(8) Perform a few iterations between the pressure equation, transport system,
and constitutive relations at the current time level, if necessary.

(9) Go back to step 2 to update the coefficients at the current time level and
repeat the above procedure until a final state ¢ = 7 is reached.

In conventional IMPES solution procedures for the simulation of compositional
flow in porous media [1, 2, 15, 29, 30], the pressure equation is solved implicitly with its
coefficients evaluated explicitly, and the transport system is solved explicitly to obtain
the overall mass of each component. Hence, the size of time steps must be restricted
to stabilize the overall procedure due to the explicit computation of the transport
system. Also, in this procedure, initial guesses in the flash calculation are computed
in terms of the phase compositions at the previous time level. Consequently, the size
of the time steps has to be severely restricted. In contrast, in this paper the sequential
procedure is developed to decouple and linearize the compositional system. Instead
of calculating the phase velocities, an accurate total velocity is provided by the mixed
method for the transport system. The latter is implicitly solved by the ELLAM
method, which produces accurate compositions without oscillations and numerical
dispersion even if large time steps are taken. Also, for the initial guesses in the flash
calculation, the phase compositions are computed from their values at the previous
time level by back-tracking through the characteristics used in the ELLAM method. In
summary, in our sequential solution procedure the pressure and transport equations
are linearized first and then solved implicitly (we call it a sequential semi-implicit
method); it fully utilizes the physics of the flow and transport processes, improves the
efficiency and accuracy of the flash calculation, and relaxes the time step restrictions.
Finally, we mention that there were attempts [14, 15] to solve compositional models
in a fully coupled and implicit scheme. This scheme is stable for large time steps,
but its application is restricted to very small problems due to limited computational
resources.

5.2. Mixed finite element methods. In this subsection we briefly review the
mixed finite element method for the pressure equation. For more information on this
method for second-order problems, see [4].

This content downloaded from 136.159.119.111 on Mon, 1 Dec 2014 15:02:45 PM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

764 ZHANGXIN CHEN, GUAN QIN, AND RICHARD E. EWING

Recall that the pressure equation can be written in the general form,

(5.1) cOp+V -u=q, (z,t) € Q x J,
' u=—a(Vp—b), (z,t) € Q x J,

where a(z,t) is a uniformly positive-definite, bounded, symmetric tensor, b(x,t) is a
bounded vector, ¢(z,t) > 0 is a bounded function, 2 is the porous medium domain,
and J = (0,7] (Z > 0) is the time interval of interest. Let 02 = 'y U Ty with
'y NTs = (). We consider the boundary conditions

D= —gi, (z,t) € Ty x J,

5.2
(52) UV = gs, (z,t) € Ty x J,

where v is the outer unit normal to Q, and ¢(z,t), g1(z,t), and gz(x,t) are given
functions. Finally, the initial condition is given by

(5.3) p(z,0) =p°(z), ze
Problem (5.1)—(5.3) is recast in mixed form as follows. Let

L2(Q) = {w: Jo lw(@)? dz < oo},
H(div; Q) = {v € (L?(Q))¢: V-v € L2(Q)},

W = L?(Q),
VT ={ve H(div;Q) :v-v=m on I'z},

where d is the space dimension of Q and 7 (z) is a function defined on dT's. Then the
mixed form of (5.1) and (5.2) for a pair of maps (u,p) : J — V92 x W is

(cdep, w) + (V- u,w) = (¢, w) Yw e W,
(5.4) . 0
(a™tu,v) — (p, V -v) = (b,v) + (g1,v - V)1, Yo e VO,

where (-, -) is the L2() or (L?(£2))¢ inner product, as appropriate, and (-, -)r, denotes
the duality paring between H'/?(I';) and H~1/2(T;). System (5.4) is obtained from
(5.1) by Green’s formula. This system has a unique solution [4].

To define a finite element method, we need a partition &£, of € into elements
E, say, simplexes, rectangular parallelepipeds, and/or prisms, where only faces on
the boundary I' = 99 may be curved. In &, we also need for adjacent elements to
completely share their common face. Finally, each exterior face has imposed either
Dirichlet or Neumann conditions on it.

Let V¥ x W), € V™ x W denote some standard mixed finite element space for
second-order elliptic problems defined over &, (see [5, 6, 7, 10, 20, 24] for all the
mixed spaces). The mixed finite element solution of (5.4) is (up,pp) : J — V72 x W),

satisfying

(catp}“w) + (v : Uh,’lU) = (q,'lU) Yw € Wha

B un ) = oV 0) = (5,0) + (g0 ) Vo€ VD,

The approximate initial datum is given by

(5.6) pu(z,0) =ph(z),  z€Q,
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where p{ is an appropriate approximation in W}, of p°. The system in (5.5) and (5.6)
again has a unique solution. The time differentiation term can be discretized by the
standard backward Euler scheme or other more accurate time stepping procedures,
for example. The linear system arising from (5.5) is a saddle point problem. To
see how to solve this saddle point problem refer to [12]. As remarked before, the
mixed method yields accurate approximations to both the pressure and velocity in a
mass-conservative manner. Also, it can handle complicated boundary conditions and
geological boundaries.

5.3. The ELLAM method. Recall that equations (4.26) and (4.27) are ad-
vection dominated; they are more hyperbolic. Standard finite difference and finite
element methods produce numerical solutions with excessive oscillations, while up-
winding and stabilized versions of these methods tend to generate solutions with
nonphysical dispersions. Although conventional Eulerian-Lagrangian methods can
overcome these difficulties, they fail to conserve mass. Here we very briefly review the
Eulerian-Lagrangian localized adjoint method (ELLAM), which can accurately and
efficiently solve advection-dominated problems in a mass-conservative manner.

To fix the ideas, we present the ELLAM scheme for the transport equation in one
space dimension:

(pm)s + (Vm — Dmy), = q, (z,t) € (a,b) X J,

Vm — Dmy = g,(t), r=a,t€J,
(5.7)

—Dmg, = gp(t), r=0b,t€lJ,

m(z,0) = go(z), z € [a,b)].

An extension to several space dimensions is straightforward. Also, in (5.7) we consider
an inflow flux and an outflow Neumann boundary condition; the ELLAM formalism
can handle other types of boundary conditions [8]. Finally, for notational simplicity
we consider uniform partitions in space and time below.

For positive integers I and N, we introduce the partitions

h=0®B-a)/I, z;,=a+th, i=0,1,...,1,
At =T/N, t" = nAt, n=20,1,...,N.

For any space-time test function v that vanishes outside [a, b] x (", t" '] and is possibly
discontinuous in time at t", a space-time weak formulation of (5.7) reads as follows:

f: é(z, t" T Ym(z, ") (z, t" ) dx + ff f::H Dmgv,dtdx
(5.8) + [0 (Vm = Dmg)olPdt— [P 5T mg (v + Véu,) dtde
— [? ¢z, tym(z, t)o(a, t7)de + [2 [h qudtde,
where v(z,t%}) = lim¢_¢n v(z,t) and Ve =V/é.

The ELLAM scheme below suggests that the test function v should be chosen
from the solution space of the formal homogeneous adjoint problem of (5.7)

—¢vy — Vg — Dugy = 0.

This solution space is infinite-dimensional. For a numerical procedure, only a finite
number of test functions are needed. Different choices of these functions lead to
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different classes of approximation methods. A choice is to solve the adjoint problem
using the following operator-splitting technique:

(5.9) ¢vi + Vg, =0 and Dvg, =0.

This implies that v is constant along the characteristic in the direction (4, V) or
(1,V?), so the last term in the left-hand side of (5.8) vanishes. In general, we cannot
track the characteristic exactly. However, the residual should be small if the test
function is constant along an approximate characteristic. Below we approximate the
characteristic via the backward Euler method. Also, it follows from (5.9) that v can
be chosen as standard hat functions in space. Substituting this type of v into (5.8) and
carrying out algebraic manipulations, we derive the ELLAM scheme for the resulting
weak formulation. We briefly sketch its development below, which is rather technical.

The ideas in [8] are utilized here.
We are restricted to the time interval [t",¢"+!]. At the time level t"*!, we define

the approximate characteristic X (7;z,t"*1) by
(5.10) X(r;2,t" ) = 2 — VO (2, " (" — 1), e [ttt

This characteristic emanates backward from (x,t"*!). At the outflow boundary the
approximate characteristic emanating backward from (b,t) is defined by

(5.11) X(r;b,t) =b—Ve(b,t)(t—7), TE["1].

We also introduce the notation
¥ = X(t";z,t" ), b*(t) = X(t"%;b,t),
zf = X ("2, t"th), i=0,1,...,1,
xzF = X(t";b,t;), i=I+1,...,1+1C,

where t; is defined below.
To handle the inflow boundary condition, we need more notation. Let Z be the

point at t"T! such that the approximate characteristic emanating backward from
(Z,t"1) meets (z,t"); i.e., z = X(t™ %, t"1) = Z(t*). Also, let t*(x) be the time
when the approximate characteristic z(7) traced backward from (z,t"*!) meets the
inflow boundary z = a; i.e., a = X(t*(z);2,t" ') = z(t*(z)). Next, set t} = t*(z;),
i=0,1,...,1Cy, where IC; = [C4] (the integer part of C;) with Cy = (@ —a)/h. For
convenience, set {7, ., = t". Finally, define

it ¢n if xz>%
At(z) = 1 . 7
ttl — () if <.
Also, to treat the outflow boundary condition, set

V¢ = max V?b,t), Co=VEAt/h, IC =][Cy].

teftn tn+]
Now, we define

ti=t""' — (G- Dh/VE,  i=1,..., 1+IC.

For later convenience, set tyiro+1 = t".
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With the above notation, we now take the test function v to be the standard hat
function in space at ¢"*! (or at the outflow boundary) and to be constant along the
approximate characteristic from ¢"*! (or the outflow boundary) to t" (or the inflow
boundary if the approximate characteristic meets it). With this test function, we now
consider each term in (5.8).

The first term on the right-hand side of (5.8) is split into two terms such that
the first one tracks forward to the new time level t"*1, while the second one tracks
forward to the outflow boundary. Namely,

J2 9w, t)my, " )o(y, t1)dy
iy ST ) L0l ma (e st
= f.bllll(t"'x ) gz, tym(at, tYu(e, ) da
+ ftn 2 (£ b, t)p(b* (t), t™)m(b* (t), t™)v(b, t)dt

where we use the fact that the test function v is constant along the approximate
characteristics in (5.10) and (5.11), and ¥; and U5 are the Jacobians of the transfor-
mations in (5.10) and (5.11):

Uy (132,71 = 1= V2 (2, )t — 1), 7 € [t*(z),t""Y], 2 € [a,b],
Uo(73b,t) = V(b t) + V2 (b, t)(t — 1), 7€ [tn 8], t € [t e,

If the temporal integral is computed by the backward Euler quadrature at t"*! and
the outflow boundary, the last term on the right-hand side of (5.8) can be written as
follows:

tn-f—l

f Som ,7)drdz
= tt:“ ff S (X (1;2, "), To(X (152, "), 7)d X (75 2, 7 )d T
S iy (X (i, 8), m)0(X (5 b, ), 7)AX (73 b, t)dr
(5.13) =f2 f*(z) Uy (132, ") g(z, " u(z, 7+ drda
Tt Wa(rs b, B)g(b, o (b, t)drdt + Ry(v)
= fab Us(z, t"‘”) (z,t" (") dz
ft,, Ya(b,t)v(b, t)dt + Ry (v),

where R, is the truncation error due to the application of backward Euler quadrature,
and U3 and ¥, are determined by

Uy(x, ") = At(z) — V. (z, ") (At(2))? /2, z € [a,b],
Wy (b t) = V(b t)(t —t™) + V2 (b, t)(t — t™)2/2,  te [ttt

With a similar argument, the second term on the left-hand side of (5.8) is evaluated
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tn+1

D(y, t)mg(y, t)vs(y, t)dtdy

J2
(5.14) = [7 At(2)D(, " )mg (2, 7 v (2, £+ )dz

tn+1
— Jin

(t — t™)D(b, t)ma (b, t)vy (b, £)dt + Rp (v),

where Rp is again the truncation error. Substitute (5.12)—(5.14) into (5.8) to see
that

f: (z, " Yym(z, t" o (z, t" ) da

+f: At(z)D(z, t" T Ymyg (2, t" v, (2, t" ) de

tn+1
— Jyn

+ft,. Vm Dmyg) (b, t)v(b, t)dt

(t —t™)D(b, t)my (b, t)ve(b, t)dt
(5.15) — [5 (Vi — Dmy)(a, tyo(a, t)dt
=f2 wl(t";a:, gz, tym(z*, 1Yo (@, ") dz
+ ftn 2(t7; b, t)(b* (t), t™)m(b* (), t™)v(b, t)dt
+f \Ifg(:r,t"+1)q(a:,t”+1)v(x,t"+1)dx

+ ftn 4(b,t)q(b, t)v(b, t)dt + R(v),

where

tn+l

/ / m(vy + VOv,)dtdz — Rp(v) + Ry(v).

Note that all terms except the error R(v) in (5.15) have been expressed as the integrals
at t", t"*1, the inflow boundary, or the outflow boundary. Equation (5.15) is the basis
for the development of the ELLAM scheme presented here.

At t"™! and the outflow boundary, we employ the piecewise linear trial
function

I+IC+1
M(z,t") = Z M (zi, " vy (2, "), 2z €a,b],n=0,1,...,N — L.

=0

Neglecting the error term R(v), replacing m by M, and using the test function v; in
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(5.15), we obtain the ELLAM scheme
J2 B, )M (2, £ Yo (2, £ d
+f;J At(z)D(z, t" ) My (2, t" T v (z, t"T1)dz
tntt N
+ [ VM(b,t)0;(b, t)dt
= [2w( tn;x,tn+1)¢(a:*,tn)M(a;*,tn)w(x,wl)dx
(5.16) —|—ftn 2(t7; b, 6)Pp(b* (t), t™) M (b* (¢), t™)0;(b, t)dt
_|_f \1,3 x,t"“)q( tn-l—l) ( tn-l—l)d

+ S Wb t)a(b, t)oi (b, t)dt
+ft 7)vi(z0, T)dT — f::l gv(t)0; (b, t)dt
- f;f (£ — £)gs ()02 (b, £)dlt,

where W; = w;, i =14+1,...,14+1C, and Wyirc+1 = wrirc +wrircr1- To conserve

mass, all the test functions must sum to one [8]. Because M (b, ™) is known from the
previous time step, the equation for ¢ = I + IC' + 1 is not needed. Hence, the test
function W4 o, which is one on [t",t;41¢], is utilized instead of wryc.

We end with three remarks. First, (5.16) is a closed linear system with a sym-
metric and positive-definite stiff matrix. Second, from the above discussion we see
that the ELLAM scheme handles the boundary conditions in a systematic manner;
this is in contrast to other characteristic-based methods, which treat these conditions
in an ad hoc fashion. Finally, this scheme directly applies to the advection-diffusion
equation in a conservative manner, while most other characteristic-based methods
apply only to a nonconservative form of the advection-diffusion equation.

6. Numerical tests. The major part of this paper is concerned with the devel-
opment and analysis of the compositional model and its numerical scheme. In this
section we report numerical results for a test example. A comparison of various for-
mulations derived in section 4 has been given in [11] through numerical experiments
for the flow of three immiscible fluids in a porous medium. Since the structure of
these formulations has the same pattern here, as mentioned before, the test example
presented here does not involve the comparison. To have an example applicable to all
these formulations, we take the zero capillary pressures

Pcgo = Pewo = 0.

In this case, all the formulations are the same. Also, a comparison of the numerical
methods exploited here with other methods such as upwinding finite difference and
high-order total variation diminishing (T'VD) methods has been described before. We
shall not compare our numerical scheme with others. Finally, the main purpose of
the test example is to show the behavior of the solution to the compositional system
obtained in previous sections, so we shall consider a one-dimensional problem.

The one-dimensional porous medium is 250 feet in length with a sectional area of
50 square feet. The porosity of the medium is taken to be 20%. The initial pressure
is 2000 psi, the temperature is 160°F, and the permeability of the medium is 2 darcy.
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F1G. 1. Profile of the mole fraction of methane.

The relative permeability functions are defined by the modified Corey’s model [16]

krg =527 (1= (1-50)%), kro=5(1-(1-5,)%), kpw=0.15,

where the normalized saturations are given by

_ Sg — Srg _ So = Sro __ Sw — Srw
Sg y  So = y  Sw =

1— 570~ Sr 1= 870 = Srw

B 1"37‘9_57‘0_57‘11)
with the residual saturations
Spg =0, 870 =10.25, 5, =0.35.

The initial water saturation is 20% and oil saturation is 80%. The molar density of the
water phase is 3.467 Ib-mole/ft3 and its viscosity is 0.5 cp. The oil phase is composed
of 20% methane (light hydrocarbon component), 20% butane (medium hydrocarbon
component), and 60% decane (heavy hydrocarbon component).

In the test example, we inject 95% water and 5% hydrocarbon mixture (456%
methane, 45% butane, and 5% decane) into the porous medium, and the total injection
rate is 1000 1b-mole per day. This example involves a three-phase fluid flow process.
The lowest-order Raviart—Thomas space [24] over 40, 50, and 80 elements is used, and
the sequential solution procedure developed in section 5 is utilized. The profiles of
the mole fractions of methane, butane, and decane and of the saturations of the gas
and phases are displayed in Figures 1-5. The profiles per element vs. distance at 100
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F1G. 6. Profile of the mole fraction of methane.

and 200 days for the experiment of 50 elements are illustrated in these figures. As
seen from them, the numerical scheme is stable and captures the sharp front of the
solutions. Note that water is the main stream of the injecting fluid, and a water
front is formed and propagated as time evolves (at about 55 and 155 feet at 100 and
200 days, respectively, in Figure 5). Also, notice that the porous medium pressure is
increased due to the injection, so the resident hydrocarbon fluid is vaporized to form
a gas zone, as shown in Figure 4. Figure 3 describes the computed number of the
mole fractions of decane, which is the main stream in the oil phase. Note that the
transition of the decane corresponds to the intersection of the water and gas fronts.
In Figures 6-10, we show the results of varying the grid size; i.e., the profiles of the
mole fractions of methane, butane, and decane and of the saturations of the gas and
phases at 150 days for the experiments of 40, 50, and 80 elements are presented. We
clearly see the stability and convergence of the numerical scheme proposed here.

7. Conclusions. The compositional flow for multicomponent three-phase flu-
ids in porous media involves a time-dependent, strongly coupled system of an enor-
mous number of nonlinear partial differential equations and algebraic constraints. For
large-scale petroleum fields, this system cannot be easily solved in a fully coupled and
implicit manner. To devise a suitable numerical algorithm for solving it, we have
to derive appropriate formulations for these differential equations and algebraic con-
straints. In this paper, with proper choices of primary variables we have developed a
compositional model for multicomponent, multidimensional three-phase fluid flow in
porous media. Various pressure formulations have been incorporated in this system
to alleviate nonlinearities and couplings. The mathematical analysis carried out here
provides a qualitative structure of this compositional model. The analysis is also use-
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ful in the design of numerical methods for solving this model. With the mixed finite
element method, we can obtain accurate volumetric flow velocities, which are heavily
used in the Eulerian—Lagrangian localized adjoint method for the transport system.
The latter method is both accurate and efficient for handling advection-dominated
problems. The numerical experiments done so far show a strong potential of the
numerical scheme proposed in this paper.
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