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Abstract

In this paper, we analyze a coupled system of highly degenerate elliptic-parabolic
partial differential equations for two-phase incompressible flow in porous media.
This system involves a saturation and a global pressure (or a total flow velocity).
First, we show that the saturation is Holder continuous both in space and time and
the total velocity is Holder continuous in space (uniformly in time). Applying this
regularity result, we then establish the stability of the saturation and pressure with
respect to initial and boundary data, from which uniqueness of the solution to the
system follows. Finally, we establish a stabilization result on the asymptotic behavior
of the saturation and pressure; we prove that the solution to the present system
converges (in appropriate norms) to the solution of a stationary system as time goes
to infinity. An example is given to show typical regularity of the saturation.
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1. Introduction

In this paper, we consider the flow of two incompressible, immiscible
fluids in porous media Q<= RY, d<3 [8,25]:
$0s =V - (1K2(8)(V Py + 7,,)) = 0,
— @0 — V - (ko(s)(Vpo + 7)) = 0,
Pe(s) = po — P, (1.1)

where w indicates a wetting phase (e.g., water), o denotes a nonwetting
phase (e.g., oil), ¢ and x are the porosity and absolute permeability of the
porous media, s is the (reduced) saturation of the wetting phase, p,, 4,, and
V. are, respectively, the pressure, mobility (i.e., the relative permeability
over the viscosity), and gravity-density vector of the a-phase (o« = w, 0), and
pe 1s the capillary pressure function. To analyze (1.1), following [2,9], we
define the global pressure

* (2w Opc .
p=m- [ (5%) @ (1)
0 L A
and [10], the Kirchhoff transformation
s lw/ALO apc
0=— — 1.
[ (%)@ (13)

where A(s) = A, + Ao is the total mobility. Then (1.1) can be manipulated to
yield the Eq. [10]

u=—xk(A®Vp+7y,s), V-u=0, (1.4)
and

$0is — V - {xc(VO + y,(5)) + uys(s)} =0, (1.5)
where

Jawlo
P168) = Awyy + 2079, V2(8) = 7 (7w = 70)5
v3(s) = —% or %. (1.6)

In (1.5), s is related to 0 through (1.3):

s = S(0), (1.7)

where #(0) is the inverse of (1.3) for 0<0<0™ with

! /ﬂm;{oap
o = — [ (2% ¢ ae,
/0<l as)(@ :

The pressure equation is given by (1.4), while the saturation equation is
described by (1.5). They determine the main unknowns p (or u the total flow
velocity [10]), s, and 6. The model is completed by specifying boundary and
initial conditions.
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With the following division of the boundary I' of Q:
r=rjuri=riury, 6=rinrb=r{nry,

the boundary conditions are specified by

u-v=qx,10), (x,0) el x J,

P = @y(x, 1), (x,0)el’ x J, 08
—{(V0 + 92(9)) + uys(s)} - v = @3(x, 1), (x,00€l] x J, '
H:(P4(x9l)a (x,l)ngXJ,

where the ¢; are given functions, J = (0, 7] (T > 0), and v is the outer unit
normal to I'. The initial condition is given by

s(x,0) = so(x), xef. (1.9)

The differential system in (1.4) and (1.5) has a clear structure; the pressure
equation is elliptic for p, and the saturation equation is parabolic for 6
(degenerate for s). This system has been recently studied in [10]. In
particular, existence of a weak solution (in the sense given in [10]) was
established under reasonable assumptions on physical data (also see
[1,3,4,9,21,22] for the existence under various assumptions on the data),
and a regularity result on the Hdélder continuity of the saturation s was
obtained with the assumption that (1.5) has one degeneracy in diffusivity.

In this paper, we further study the coupled system of differential
equations in (1.4) and (1.5). First, we show that the saturation s is Holder
continuous both in space and time and the total velocity u is Holder
continuous in space (uniformly in time). The assumptions imposed in [10]
are weakened; physically reasonable assumptions on the data are used.
Especially, (1.5) can have two degeneracies in diffusivity near zero and one.
Due to the two degeneracies, the argument here is different from that in [10];
these two degeneracies have to be related to each other in the argument.
Applying this regularity result, we then establish the stability of s and p with
respect to initial and boundary data, from which uniqueness of the solution
to this system follows. A uniqueness result was obtained in [10], where
the uniqueness was directly proven, while it follows from the stability here.
The arguments are different. Finally, we establish a stabilization result on
the asymptotic behavior of s and p; we prove that the solution to the present
system converges (in appropriate norms) to the solution of a stationary
system as time progresses to infinity. This result corresponds to the physical
case where the wetting phase completely displaces the nonwetting phase
(which initially occupied the domain Q) under the assumption that the
residual saturations are zero.

The rest of the paper is organized as follows. In the next section we
examine the regularity. Then in Section 3, we study the stability. In
Section 4, we consider the stabilization. Finally, in Section 5 an example is
given to show typical regularity of the saturation. As a general remark, all



348 Z. Chen | J. Differential Equations 186 (2002) 345-376

primary theorems are stated first and their proofs are then presented in a
series of lemmas. We close this section with a few remarks. While we
consider homogeneous right-hand sides in the first two equations of (1.1)
here for simplicity, the later results can be extended to the nonhomogeneous
case [10]. Also, all functions of s are assumed to be explicitly independent of
x and ¢; otherwise, only lower-order terms appear in (1.4) and (1.5) and the
subsequent analysis is the same. The theoretical results established in this
paper are very useful in the choice and analysis of numerical methods for
solving flow problems [5,6,11,12,14,15,19,25]. Since the differential system
for the single-phase, miscible displacement of one incompressible fluid by
another in porous media resembles that for the two-phase incompressible
flow studied here [13,19], the analysis presented in this paper extends to the
miscible displacement problem. Finally, we mention that the continuity of
the saturation is known; see [1,16] under the assumptions that one of the
degeneracies is at most logarithmic and is of power type, respectively. To
prove the results in this paper, the continuity of the saturation is not
enough; we need the Holder continuity of this quantity.

2. Regularity of a weak solution

Define the spaces
V ={veH"(Q):v|p =0; if I} =0, then [,vdx =0},
W= {ve H'(Q): v| = 0}.
Below V* and W* indicate the duals of ¥ and W, respectively. As

mentioned in the introduction, existence of a weak solution to the system in
(1.4) and (1.5) was established in [10] with

0eL2(J; W)+ 4 PEL™ (V) + ¢y s=S0), ¢aseL’(J; W),

where the usual Sobolev spaces are used. Also, if the data are assumed to be
physically consistent, it was shown via a maximum principle that 0<s<1
a.e. on Q7 [10], where Qr = Q x J. Thus, all functions of s need to be
defined only on [0, 1].

2.1. Main regularity results

Set

Ao/ Opc
als) = — i"%. Q.1

The assumptions described in this paper are required only for establishing
the regularity, stability, and stabilization results. To see the assumptions
needed for the existence result, see [10]. In this section, we need assumptions
(A1)-(A10) below for regularity. First, we assume that
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(A1) The porosity satisfies that ¢*>@(x)>¢, >0, and the permeability
k(x) is a bounded, symmetric, and uniformly positive definite matrix; i.e.,

d
0<r, <[E ) k(&G <K< 0, xeQ, E#£0eR”.
ij=1

(A2) Als), a(s), and y,(s) (i = 1,2,3) are continuous in s€[0, 1]. Further-
more, there are positive constants A, , A%, p.,, and C* such that

0
}“* </’L(S)<l*a —Pex <&

Os’
se[0, 1].

(A3) There are positive constants 0<1/2, o; (i=1,...,4), and C;
(i=1,...,6) such that
Cis" <als) < Crs™, s€[0, 4],
Cy<a(s) < Cy, se[o,1 — 9],
Cs(1 —9)* <a(s) < Ce(1 — )™, se[l —9,1].

a(s) + 71 ()] + [ )] + 3 < C¥,

Note that assumption (A3) reflects the degeneracy of a(s) near zero and
one, and all three assumptions are physical reasonable. Below C (with or
without a subscript) indicates a generic constant, which probably takes on
different values in different occurrences.

Theorem 2.1 (Interior regularity of s). Under assumptions (A1)—(A3), s is
locally Holder continuous in Qp. That is, for every compact set K of Qr, there
exist constants C >0 and a€(0, 1) such that

: 22
IsCx1, 1) — $(x2, 12| S C(Ix1 — x2* + |11 — "),

for every pair of points (x1, 1)), (x2,)€K.

The constant C depends on the data and the distance from K to I', while
o<min{o;, i =1,...,4} depends only on the data. We need an additional
assumption for a corresponding result on u:

(A4) A(s) and y,(s) are Holder continuous in s€[0, 1].

Theorem 2.2 (Interior regularity of u). Under assumptions (A1)—(A4), u is
locally Holder continuous in Q. Namely, for every compact set K of Q, there
are constants C >0, gy > 0, and f (0, 1) depending only on the data such that

u(x1, 1) — u(x2, DS Clxy — xof) Yz,
for every pair of points x1,x,€K.
We now state global regularity results on s and u. Toward that end, we

need assumptions on I" and the boundary and initial data. For simplicity, in
this paper we only consider the case where I' = I'] = F(l) or '=T%= Fg;
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i.e., we consider either the complete Dirichlet case or the complete
Newmann case. Under the assumption that I" is sufficiently smooth (e.g.,
I is in the class H? [3]), a solution of the present problem with the mixed

boundary condition (1.8) can be continued to a neighborhood of I "I or
[} N T, so the subsequent analysis reduces to such a case.

We first consider the Dirichlet boundary problem. For this, we need the
assumptions:

(AS) T 3 = I satisfies the property of positive geometric density (see [23]
for the definition).

(A6) s is Holder continuous on Q.

(A7) ¢4 1s Holder continuous on I' x J.

Theorem 2.3 (Global regularity of s in the Dirichlet case). Under assump-
tions (A1)~(A3) and (AS)~(A7), s is Holder continuous on Q. That is, there
exist constants C >0 and 0.€(0, 1) such that

Is(x1, 1) — $(x2, 1) S C(Ix1 — x2* + |11 — /%),

for every pair of points (x1,t1), (x2,1)€Qr.

Again, the constants C > 0 and « depend only on the data. The exponent
o in Theorem 2.3 may be different from that in Theorem 2.1. For notational
convenience, we utilize the same exponent «. This remark applies to f3, too.
For a corresponding result on u, we require that

(A8) I'; = I belongs to the class C'*# (Be(0,1)) and ¢, e L*(J; C'*F(Q)).

Theorem 2.4 (Global regularity of u in the Dirichlet case). Under
assumptions (A1) «(A4) and (A6)~(AR), u is Holder continuous on Q
(uniformly in teJ). Namely, there are constants C > 0 and (0, 1) such that

lu(x1, 1) — u(xr, | < Clx; — xof Vied,

for every pair of points x\, x,€Q. In particular, ue L* (Qr).

We now consider the Newmann boundary problem. In this case, we
assume that

(A9) I'Y =T is of class C'** and @ye L*(J; Wh*(Q)).

Theorem 2.5 (Global regularity of s in the Newmann case). Under
assumptions (A1)~(A3), (A6), and (A9), s is Holder continuous on Qr.

Finally, we make the assumption in this section:
(A10) I'l = I is of class C'*# and ¢, is Holder continuous on Q7.
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Theorem 2.6 (Global regularity of u# in the Newmann case). Under
assumptions (A1)—~(A4), (A6), and (A10), u is Holder continuous on Q
(uniformly in teJ). In particular, ue L* (Qr).

We shall only prove Theorem 2.1. Theorems 2.3 and 2.5 follow by
combining the arguments in the proof of this theorem and those presented in
[17] for handling boundary regularity. Under assumption (A4) and Theorem
2.1 (respectively, Theorems 2.3 and 2.5), the pressure p satisfies the elliptic
equation (1.4) with Hoélder continuous coefficients. Theorem 2.2 (respec-
tively, Theorems 2.4 and 2.6) thus follows from the standard elliptic theory
[20]. An example will be given in Section 5, which shows typical regularity of
s. Specifically, in general s is only continuous or Hélder continuous, and its
derivatives in space are discontinuous.

2.2. Preliminaries

In this subsection, we introduce notation which will be used in the later
subsections. For any real number /, define the truncations of the saturation s
by

(s =0, =max{s— 10}, (s—/)_=max{—(s—1/),0}.
Also, for p >0, define the cube
_ wd . _
K, = {xe)i : lma<xd |x,|<p}.

SIES

For xpe ‘Rd, let xo + K, denote the cube of center xy. Also, for # >0 a given
number, define

Q(”Ia p) = Kp X (_7730)
For (xo, )€ R et (xo, to) + O(n,p) be the ““cylinder” congruent to
O, p); ie.,

(0, 70) + O, p) = {x0 + K} x (10 — 1, o)

To obtain the Holder continuity of a solution to degenerate parabolic
problems, we need to work with cylinders whose dimensions are suitably
scaled to reflect the degeneracy of the problems [17]. Let ¢ >0 be a small
number and consider the cylinder

(X0, 20) + Q(R**,2R),

where R > 0 is so small that such a cylinder is completely contained in Q7.
Set

st = esssup{s| (xo, 1) + O(R*“,2R)},
s~ =essinf{s|(xo, 7)) + O(R**2R)}, w=s" —5.
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For problem (1.5), these cylinders need to be suitably rescaled to reflect the
two degeneracies of this problem.

Remark 2.1. For notational simplicity, in (A3) we assume that «; = a; and
o3 = dy4, and define

Po(s) = s, y(s) = s,

From the later arguments, we shall see that this condition is not
essential. Also, we shall present the subsequent analysis with the case

o) = a3. Otherwise, we shall work with the functions zﬁo(s) and xﬁl(s) defined
by

Do) = U5 (). Y = ¥ ().
Construct the cylinder
o (v (2).8)

where m is a positive integer. We assume that m is so large that we have the
inclusion

(W _
0(v1" (52) R R) = O(R*,2R). 22)
Let my be the smallest positive integer satisfying
@)
S < 0, (2.3)

where 9§ is given in assumption (A3). Now, choose m large enough so that

(%) <tnl5) o

Inequality (2.4) relates the arguments in (-) and ¥,(-). Also, construct the
cylinder

(0. D+ 0y (355) B R). 2.5)
Under (2.4), if we have
4 () v ()R 2o

then the following inclusion holds:

(x0,3+Q(¢0 (WH) 2,R)c(xo,to)+Q(l//;l(zﬂm)R{R). 2.7)

We shall work with the subcylinders of the type in (2.5). For expositional
convenience, we introduce the notation

~ 1/ o
QR = Q(lp() : <2mo+2) Rza R) .

These subcylinders reflect the degeneracy at zero, and the degeneracy at one

via (2.4). After a translation, we will work with (xy, 79) = (0,0) below.




Z. Chen | J. Differential Equations 186 (2002) 345-376 353

Lemma 2.1 (Interior regularity of p). Under assumptions (A1) and (A2), p is
locally Holder continuous in Q (uniformly in t). Namely, for every compact set K
of Q, there are constants C > 0 and f € (0, 1) depending only on the data such that

p(x1, 0) = ploea, DI Clyy — xaff Ve,

for every pair of points x1,x,€ K.

Proof. By (1.4), p satisfies the equation
=V - A{k(A$)Vp + 7,9} =0, (2.8)

which is uniformly elliptic by assumptions (Al) and (A2). Then Lemma 2.1
follows from the standard elliptic theory [20]. O

In the subsequent analysis, we shall fix such a compact set K of Q from
Lemma 2.1, where p is Hoélder continuous with exponent f, and from now
on we shall assume that K, c K.

Below (-, -)g denotes the L2(S) inner product (or sometimes the duality pairing);
S is omitted if S = Q. Also, & is a positive constant, as small as we please.

Lemma 2.2. Under assumptions (A1) and (A2), for every K,cK there is a
constant C depending only on the data such that

(VPP )k, <CLL )k, + AL IV Pk )
Sor all f e H\(K,), where B is from Lemma 2.1.

Proof. For any fixed x; € K,, multiply (2.8) by (p(x, 1) — p(x1, 1))f?, integrate
the resulting equation over K, and use Green’s formula to see that

(AP + 71D, S> YD)k, + 20<(A)Vp + 71(5)),
(p(x, 1) = p(x1, D) Vf)g, = 0.

Then the desired result follows from the Holder inequality and Lemma 2.1. [
2.3. Proof of Theorem 2.1, Part 1

The proof of Theorem 2.1 is carried out via an alternative argument
introduced in [17]. Here special care must be taken on treating the two
degeneracies of the coefficient a(s) and the coupling of the saturation and
pressure equations. To fix ideas and avoid repetition, we pay attention only
to the arguments which are different from those in [17].

Lemma 2.3. There is a constant vy€(0, 1), depending only on the data, such
that if for some cylinder (0,7) + Qp it holds that

(600, + Qp [ (v, ) <™ + 5| <l Q.
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then we have either

3 SCRI. 29)
or
s(x,1)>s + FmiT ae. (x,0€(0,7) + Og/a, (2.10)

where |- | indicates the Lebesgue measure.

Proof. Without loss of generality, we assume that 7 =0 and s~ = 0. Set
R R
5 + Wa
We work with the cylinders O r,- Let &,(x, 1) be a smooth cutoff function in
Op, satisfying

Rn: n:0,1,2,... .

0<é, <1 on Qg ,
5" = 1 on QR7V+],
- _ w

&, =0 on 0Qp or for t=—y, ! (W)Rz,
[VE<2"/R, 4&,| < C22 D /R2,

241 « 2
0<8,f,,<2 (n+ )wo (2’71<J+2) /R ’

Also, let

_ _ LW r_ -1 @ 2
Kn = KRn’ Sy = maX{S,W}, 1= 7!,00 (W)R .

and
w

:W+W’ n=0,1,2,... .

ky

Multiply (1.5) by (s, — k,)_&2, integrate over K, x (£, 1) with /<¢<0, and
apply Green’s formula to see that

t
[ @065~ i) &)y d
t
t
+ / (V0 + 75(9)} + up3(s), Vi(sw — kn) G}k, dT=0.  (2.11)
t
We estimate each term in (2.11) as follows. First, note that

/ ($015. (50— ko)) e
- / {(r/)a,(sm ) (50— k) O

t
i

(oo 52) () 8), o
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= 30— k) () + (qs(s ~30e5) > (3 — k) _éﬁ)K"(t)
- [woo - coen.
200 ) (s k) G0} e

> 06— . 0 [ @6~k G0, 0

- (52 [ Gtsa<hd oy, d

where y{s, <k,} is the characteristic function of the set {s, <k,}. Thus, by
the pryyertles of &,, we see that

(B8, (50— ) B, de> 5 (Bls — k. D (1) — ()
(3) (znﬂ) [ st
Second, by (2.1), we have

/ V0,V {(s0 — k) 2y d

= / ,(Ka(s)w V(s — kn)_E})k, dr

t
= / {(ca(s,) IV (s = k)%, ED, + 20ca(s) Vs, (50 — kn) &,V D, } d
t
= H, + 2H>.
On the set {2,,,3’+2<sw <sm 4, by (Al), (A3), and (2.3), we see that

11> Oy () [ 1960 k) P 0, .
t

Also, by Green’s formula, we observe that

H2 - / {(Ka(sw)(sw - kn)—v(sw - k”)—’ énvén)l("

+ (Ka(s) (% - kn) v (s - %) E énV§n> . } dt

= / {(Ka(sw)(sw — kn)_V(s0 — kn)_, énvén)l{”

+ (W ( / w a(&) dé) (2m°:’+2 - k,,),anén) } dt
K,

X 1O+



356 Z. Chen | J. Differential Equations 186 (2002) 345-376
/ {(KCI(SU)(S(U kn),V(Sw - kn),, énvén)Kn

v ( [ a(é)d«:> (oo — ) f,lv@)
—

( ( ) + ( ) ) (72”(070-9-2 k”) 3| ; §n| )
V)lo Amy+2 :
( </( a(é)‘ f) (2:)0+2 - kn) > gnAéﬂ> } art,
’ K,

so, by the properties of &, again,

Ky

|Ha|< Yy (zn?:+2> /,{61(|V(Sw — k) % &k,

w2 /ontl 2
(3 (R ) |x{sw<kn}|}dr

Third, by (2.1) and (A2), we have

[y2(5)|< Ca(s). (2.12)

Then, we see that
t
[ w0160 = k)&, v
t

- / (75T 00— i)+ e+ 20675(5) 50 — k) EaVEg )
<vo(303) / {sl(|V(sw—kn)|2,éi)K,

) 2n+l
+C(1 + 2w R )|;{{sw<k,,}|}d‘1:

Fourth, by the choice of my in (2.3) and the definition of y;, note that an
inequality similar to (2.12) also holds for y;. Then it follows from (1.4) and
Green’s formula that

/ (U'})3(S), v{(s(/) - kn)_fﬁ}),(” dT

- / {5V (50 — k)2 D+ 20075(8) S0 — n) 2 EVED ) dn
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-/ { (uV( / (&) df),é,%>K

n

25— k) 2 EVE } dx

<Cily(ss) [ 10PIG60 ) G E,
F (50— k) EIVEDR

@ ' -B 2 242
<Cwo(m) / {e1R,"(IVPI, (50 — kn)~ &)k,
t
+ R5(|v§n|2’ X{Sw<kn})Kn

+ ((Sw - kn),, €n|vén|)K,,} dt.
Hence, by Lemma 2.2 with f = (s, — k,)_¢,,, we see that

[ 3016~ ) g, d
<Ch(r55) [ {nRIOV = ko) PG

2n+l 2 w 2n+l
) +Rﬁ< ) +

—-B
+ R’l ( 21y R 21y

S <kn }I}

If (2.9) is violated, we have
w
omy’

Substitute all these inequalities into (2.11) and choose ¢; appropriately to
obtain

CRI? <

(= 00+ 0 (5) [ (0= ) P8

) ) 2n+1
<Cy, (MH) (2m0) ( ) / {50 <hon}| dx. (2.13)
Introduce the change of time variable z = #)(5:%2), which transfers

Q(x//g (2MO+Z>R2 R) into Q(R2,R,).
Set

o (52)). B! (52))
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Then it follows from (2.13) that

0
swp (0= k) g0+ [ (V0= Py, d

—R2<z<0

nRIX

2 2n+1 2 .0
<o) (%) [, e <hiae

Now, the rest of the proof is completed by a standard argument for
parabolic problems (see Lemma 4.1 in Chapter III of [17]). O

We now suppose that the assumption of Lemma 2.3 is satisfied for some
cylinder (0,7) 4+ Qg. Then, at time level

_f:f—%l(ﬁ) <§>2’

the function x+ s(x, —£) is larger than s~ + st in Kgyy by Lemma 2.3. We
consider the cylinder

O(1,R/2) = Kgjy x (—1,0).
Set
_ _ w A w
Hw esssup{(s(s +2171()+1))|Q(I’R/2)}<2m0+1’

and define

H
Y —In" — - [0) - _ ,
H(U - (S - (S + 2mO+l))7 + g +T+n

where In" v = max{lnv,0} and n>1 is to be determined later.

The following result says that, because of (2.10), the set where s(-,?) is
close to s~ within a smaller cube can be made arbitrarily small for all
te(—1,0).

Lemma 2.4. For every vi(w)e(0,1), there is a positive integer m; > mygy + 1
(independent of w) such that either

“ B/2
o SCR (2.14)
or
_ w
xeKpya|s(x,0)<s + o <v1|Kgyal,

for all te(—1,0).

Proof. Again, without loss of generality, let s— =0. Let x+—{(x) be a
smooth cutoff function in Kg/, such that

{(x) =1 on Kg/4 and V{<CR ! on Kg)».
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Multiply (1.5) by (P2(s))'(%, integrate on Kg)» x (—7,7) (¢<0), and apply
Green’s formula to see that

[ wos.ryeyg,, dn

+ [ RI904 208 + 00 VNP, dr =0 219)

As in the proof of Lemma 2.3, we need to estimate each term in (2.15). First,
fort=—1,s>s + gm0 (X, —1) =0 on Kg). Hence, we see that

/ (90, (P P, de
= YD)y (0 — (WP, g~ = (6, W), (D

Second, by the property of {, we have
/ ;(Ka(S)VS, VAP Y, dr
_ / ;{(Ka(S)WSIZ,(l TN )iy, + AV, PPV} de
>C /_tf{(a(smﬁ, (L+ YY), — Rals), ¥, .
Third, we see that
/_ ;(,%(s), VWY P, dr
-2 /;{(m(s) Vs, (1+ W)V, , + 2060:(5), VIV, ) dr.

Note that the above integrals extend only on the set {s<5¢=} N O(f,R/2).
Thus, by (2.12), we find that

/, (72(5), VI P, de

< [ {a@@)IVsP, (1+ P Ok, + Cllas)(1+ ), (P O,
+ (a(s)PIP'L, Vg, 1) dr.

By the definition of ¥, we see that

mo+1+n

2
P<nln2, |V|<C :
(0)]
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Hence we obtain
t
[ . 1) Py, e
—t

< / @@Vl (1+ V(P O, dt

mo+1+n
+ () (s )|Q<z R/2).

Fourth, using Lemma 2.2 with f = {, a similar argument yields
t
[ w51 g, ae
—t
t
= 2/ {(uys(s) - Vs, (1 + ‘l’)(‘l/')zéz)Km2 + 2(uy5(s), ‘P'P'CV()KR/Z} dt
—t

< / {e1@@IVsP, (1 + V)P, , + Cla@lul (1 + ), (P O)gy,s
+ (ula(s)¥1¥'], {V LDk, 1} d

</ ia(a(s»v»vﬁ,(l + V), de

2ml>+1+n R2/i B B

Substitute all these inequalities into (2.15) and choose & appropriately to find

, n 2mo+l+n 2 n
(P20, D, , < Co () ﬁ+( — )[R Rz} 1O R/2).

Notice that
A w
10 R/2)|< CR™2 /y (33).

where we recall that d is the dimension number of Q and m is defined as in
(2.2). Then it follows that

Yo(w/2™) 2Ty R
(‘PZ(t) 1)1<R/4\ Rd+2l//0( /2m){ +( - ) {E+F]}

(2.16)

If (2.14) is violated, apply (2.16) to see that

2
(P2(1), Vg, < CnRIZEZLDS ({jpol((w//zm)) (2.17)
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On the set

{xeKR/4|s(x,z)<s*+ te(~7.0),

w
2mo+l+n}’
the definition of ¥ means that
P2>(m—1)*1n*2.
Hence it follows from (2.17) that
_ w
HXEKR/4 |s(x,0)<s™ + W}‘

2mo )
¢ (l’l l/l 1)2 liol(((z)//z,n)) |KR/4|3 te (—t, 0),

which implies the desired result by choosing » large enough. [

Remark 2.2. Because of Remark 2.1 (particularly because o; = 23), m; in
this lemma is independent of . If o # a3, the proof in this lemma still works
if we work with the functions y,(s) and y/;(s) in place of y(s) and ¥,(s),
respectively, as mentioned before. This remark applies to other positive
integers m; (i =2, ...,5) later.

Lemma 2.4 is now used to show that s is strictly bounded away from s~ in
a smaller cylinder, as stated below.

Lemma 2.5. Suppose that the assumption of Lemma 2.3 is satisfied for some
cylinder (0,7) + Qg. Then there is a positive integer my > my (independent of
) such that either

2 <CRM
2m2
or

s(x,0)>s + a.e. (x,1)eKgss x (—1,0).

w
my+1 ’

The proof of this lemma can be completed by combining the techniques in
Lemma 2.3 and the argument in Lemma 6.2 in Chapter III of [17]. The
results obtained so far are summarized in the next proposition; i.e., the so-
called first alternative in [17] is established.

Proposition 2.1. There is a constant vy € (0, 1), depending only on the data, and
a positive integer my> 1 (independent of w) such that if for some cylinder
(0,7) + Oy it holds that
_ @)
(x,0e{(0,7) + O} | s(x,6)<s™ +

2m0 <VO|QRL
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then we have either
o< 2™ RA (2.18)

or

ess osc{s(x, )| (x,1) € Qp/s} < (1 —anM>w (2.19)

Proof. If (2.18) is violated, Lemma 2.5 implies that
. = _ 1)
essinf{s|(x,0)e Qgis} =5 + ST
Hence,
ess supls| (x, 1) Opys} — essinf{s| (x, )€ Op s}

_ _ w
Sesssupls|(x, )€ Qrjs} =57 — 5,05

1
< (1 _W>ws

which is the desired result. [

2.4. Proof of Theorem 2.1, Part 11

We now analyze the case where the assumption of Lemma 2.3 is violated;
i.e., for every cylinder (0,7) + Ok,

_ o -
(x, )€ {(0,0) + Og} | s(x,0)<s t S|~ vo|Ogl-
Note that
s’L—£>s_—|—ﬂ for my=2.

2m0 2mo
We can rewrite the above inequality as follows:

D€ {0,0) + Og} (v, > 5™ — | <(1 = )l Qg (2:20)

which holds for all cylinders (0,7) + Q. In terms of (2.20), we examine the
behavior of s near s*. Let us fix one of such cylinders with “vertex” (0, 7) where

R? R? 0
nE o ]

fe

Lemma 2.6. Under (2.20), there is a time level t* in the interval

R o w K
e L g e
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such that

w 1—v
xeKgp|s(x, *)>st — 0

Nl PLERRLE] )
2mo 1—v0/2| l

This statement is a simple consequence of (2.20) (see Lemma 7.1 in
Chapter III of [17]). This lemma implies that at some time level #* the set
where s is close to s™ occupies only part of the cube K. The next result
asserts that this does occur for all time levels in a small interval.

Lemma 2.7. Under (2.20), there is a positive integer ms > my (independent of
) such that either

w f/2
> SCR

or

‘xeKR|s(x, nH>st —

2
Ve [T— R, (30) /2.1]- 2.21)

«w V2
<(1-2) K
( 4)| Rl

Proof. The proof is similar to that in Lemma 2.4. Set

+ _ + @ ~ &)
H) =ess sup{(s (s —2mo)>+|(0,f)+ QR}ézmo

and
H+
‘I’:1n+{ . —— — }
Hwi(si(s 72"7‘0))++W

where 7 is to be determined below. The cutoff function x> {(x) satisfies

1
{(x)=1 for xeKy_sr and |VC|<E on Kg,

where € (0, 1). Multiply (1.5) by (¥?)'¢?, and utilize the same argument as
in Lemma 2.4 to see that

(P2(0), g, <(PA), Dy, + Cn (%)

7 Yo%)

Note that ¥<nlIn2 and it vanishes on the set {s<s" —5%}. Hence, by
Lemma 2.6, we have

|KR.

n(l—vo) | ¥1G) }| K. (2.22)

v2(n), 1 <Cn{ T
(1) )Ka—am 1 —vy/2 UWO(%)

On the set {xeK(1-or|5> 5" — 5im},
2> — 1712,
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so it follows from (2.22) that

w
‘XEK(I_U)R | s> 57— 2mo+n
<« {"(1 —v0) | VG }lKR|. (2.23)
(n — 1)2 1— V0/2 Glﬁo(z%
Also, observe that
‘)(,‘EI<R|‘S‘>S+ 2mo+n ‘XEKU,U)R|S>S+ 2m oTn + ’KR\K(l )R ’
‘XEK(HT)R |s>s" — 2m —| T dolKgl.

Consequently, by (2.23), we see that

noN v L)
<
C((n— 1) 1—v0/2+omﬁ0(2,,,0 +do ) IKgl.

Dmg+n =

‘xeKR|s>s+ —

Finally, choosing ¢ and n appropriately generates the desired result. [

Since (2.20) is valid for all cylinders of the form (0,7) + Qg, using (2.6),
(2.21) holds for all ¢ in the interval

R? R?
[0) (1 VO) W ’0 :
lp (2’”) l//0 my+2.

Then, using (2.4), we see that (2.21) holds for all e (——=+-,0). Therefore,

2y 1(2,”>
we work with cylinders of the type

R2

()

Lemma 2.8. For every vye(0,1) there is a positive integer my > mj
(independent of w) such that either

:KRX ,O

B/2
27<CR/
or
(v 0€ OF |50, 1) > 5° — 2| <val Ol

The proof of this lemma can be carried out by using the ideas of last
subsection and the argument in Lemma 8.1 in Chapter 111 of [17]. The same
remark applies to the following lemma (see Lemma 9.1 in Chapter III
of [17]).
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Lemma 2.9. There are constants o, €(0,1) and ms > my (independent of )
such that either

@ < CRM?
2ms

or

H<st @ HNek s Rzo
(60 <5 — 5o ae (% )EKgy X —@\5) °):

o

Now we summarize the results of this subsection in the next proposition;
i.e., the second alternative is shown.

Proposition 2.2. Suppose that for all cylinders of the type (0,7) + Oy it holds
that

_ w _
(x,)e{(0,7) + O} | s(x,0) > 5" — | S (1= v0)| Ogl-
Then there are constants ¢, €(0, 1) and ms (independent of w) such that either

w< CoMs Rﬁ/Z

K 7 (R V(o !
ess 0scq s(x, 1) | (x, 1) e R/8 X @(g) > \( W)w

This proposition can be shown as in Proposition 2.1 by using Lemma 2.9.
The two alternatives in Propositions 2.1 and 2.2 can be combined to prove
Theorem 2.1 with a standard fashion (see Proposition 3.1 in Chapter III
of [17]).

or

3. Stability of the weak solution

In this section, we prove stability results for the weak solution of the
previous section with respect to the boundary and initial data. Uniqueness
of this solution then follows trivially from this result. The stability results
heavily depend on the results established in the last section; especially, those
on the uniform boundedness of u in Theorems 2.4 and 2.6 are used.

3.1. Main stability results

For the next two results we need the assumption below. Its meaning will
be described in Section 3.3.
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(A11) There is a constant C > 0 such that
3
1(s1) = As)l720) + D I2i€51) = 752720y < Clst — 52,01 — 62),
i1

0<0,, 02<6*, Si = 3’(0,), i=1,2.

Let (s1, 01, p1,u1) and (s;, 02, p2, up) solve the system in (1.4) and (1.5) with
the boundary and initial data (9,5, @}, ¢4 50) and (97,93, 93, 93, 57),
respectively. Again, we first consider the Dirichlet boundary problem.

Theorem 3.1 (Stability in the Dirichlet case). In addition to the assumptions
of Theorem 2.4, if (A11) is satisfied, then
[ / (51— 52,01 — 2) di
J

2 2
+ 1lp1 = p2llze ey + 1 — w2llz - .20
1 2112 1 2112
< C{llgp; — 992||Lm(J;H1/2(r)) + llpg — 994||L2(J;H1/2(r))

2
+ ||S(l) - S(Z)HH*I(Q)}'

The result for the corresponding Newmann boundary problem is stated as
follows:

Theorem 3.2 (Stability in the Newmann case). In addition to the assumptions
of Theorem 2.6, if (A11) is satisfied, then

[Is1 _s2||i%(];H*1(Q)) + /(Sl — 5,01 — 0)) dt
J

2 2
+ llpr = p2llz= g2y + i — w2l .20
1 2112 1 2112
< C{||§01 - Q]HL%(J;H*I/Z(F)) + llp3 — @3||L2(J;H—1/2(r))

1 2012
+ ||S0 _SOHH’I(Q)}‘

Corollary (Uniqueness). Under the assumptions of either Theorem 3.1 or
Theorem 3.2, the weak solution is unique.

3.2. Proof of Theorem 3.2

To fix the ideas, we show Theorem 3.2 in detail; the proof of Theorem 3.1
is remarked at the end of this section.
We introduce the bilinear form a(-,-) on H'(Q) x H'(Q):

a(v,w) = (kVo, Vw) + (v,w) Vv, we H(Q),
and the Green operator G : H~'(Q)— H'(Q) by
a(Gu,w) = (¢pv,w) Ywe H'(Q), ve H1(Q), 3.1
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where H~'(Q) is the dual to H'(Q). Note that (3.1) implies
Gl 1) < Cllvll 1) (3.2)

Lemma 3.1. Under the assumptions of Theorem 2.6, with teJ we have
llur — wallr2(0)

< C(l14(s1) — A 20y + 1v1Gs1) — 710Dl 120) + ot — €0%||H71/2(r))~

Proof. It follows from (1.4) and (1.8) that
(kA(s)VIp1 — p2l, Vip1 — p2]) + (k[A(s1) — A(s2)IVp2, VIp1 — p2])
+ (1(51) = 71(52). VIp1 = p2]) + (@} — @1.p1 — p2)r = 0. (33)

Then, by the definition of V, Poincare’s inequality, assumptions (Al) and
(A2), and Theorem 2.6, we see that

V(@1 — p)ll2 )
< C(1As1) — A 2) + 171651 — y1(52)Ml220) + ||€0i - (P%”H*I/Z(I"))

Now the desired result follows from the definition of . O

Lemma 3.2. Under the assumptions of Theorem 2.6, with teJ we have
t
651 = O+ [ (51— 52,00~ )
0

t
<& / {lur — ”2”%2(9) + |ly,(s1) — VZ(S2)||iZ(Q)
0

+ {lr3(s1) = 73672y dT

!
+ C{HS(l) - S%)H%rl(g) + / ”9[% - 90§||§{ 12(r dT}-
0

Proof. It follows from (1.5) and (1.8) that
(pails1 — 521, G(s1 — 52)) + (93 — 93, G(s1 — $2))p
+ (V[0 = 0], VG(s1 — 52)) + (k[p2(s1) — 72(52)], VG(s1 — 52))
+ (ui[p3(s1) — 73(52)], VG(s1 — 52))
+ ([ur — u2]y3(s2), VG(s1 — 52)) = 0. 3.4)
By (3.1), observe that
(¢0dls1 — 521, G(s1 — 52)) = 20ills1 — 82171()-
Also, by (3.1), notice that
(kV[01 — 021, VG(s1 — 52))
= a(0) — 02, G(s1 — 52)) — (01 — 02, G(s51 — 52))
= ([0 — 02],51 — 52) — 161 — Oall20p)lIs1 — $21lr-1(0)-
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The desired result then follows from assumption (A3), (3.2), Theorem 2.6,
and Gronwall’s inequality. [

We now see that Theorem 3.2 follows from Lemmas 3.1 and 3.2 and
assumption (A1ll). Remark that while we have only proven the Newmann
problem, the proof for the Dirichlet case is similar. In this case, we define the
bilinear form a(-,-) on H{(<Q):

a(v,w) = (kVv,Vw) Vo, weH(}(Q).

The Green operator G : H1(Q)— H}(Q) is defined as before, with H1(Q)
being the dual to H}(2). With these and an obvious modification on the
boundary terms in (3.3) and (3.4) (see [14]), Theorem 3.1 can be similarly
shown.

3.3. Sufficient conditions for assumption (All)

Let 5 represent one of the quantities 4 and y; (i = 1,2, 3). It is clear that if
n satisfies that

In(s1) — n(s)P < Clsp — 52)(01 — 02) YO0y, 0 <O%(x),
a.e. on Qr, (3.5)

then assumption (A11) is true for 7. A necessary and sufficient condition for
(3.5) to hold is that

> < Ca(s) Vse[0,1], a.e. on Qr. (3.6)

Inequality (3.6) means that u, vanishes with a. Below we examine the
conditions on 5 so that (3.5) or (3.6) holds.

Proposition 3.1. Assume that ne C'[0,1], n,(0) = n,(1) =0, n, is Lipschitz
continuous at 0 and 1, and assumption (A3) is satisfied with 0< oy, 04 <2. Then
there is a constant C > 0 such that (3.5) holds.

Proof. With ¢ as in assumption (A3), let s; and s, satisfy 0<s;<d<1 —
0<sy<1. Then, by (A3), we see that

52 1-0
6, — 0, — / a() de> / a(&) de= Cy(1 — 26),

51 0
SO

2
n(s2) — n(s) < max n*(sy — 1) SM(n —s1)(62 — 6).
.< ©

0<s< C3(1 —25)

That is, (3.5) is true.
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We now consider the case where 0<s;<d<s <1 — 6. It follows from
(A3) that

0, — 0, / a(®)de> / FldE =@ -6

S1

Also, by the mean value theorem, there are s; <{;,{, <s, such that

n(s2) — n(s1) = ny(r)(s2 — s1) and

S = = (o + DG (52— 51). (3.8)
Note that

‘ 1 2 Liso+si\# 10"

3= ndezs(Z5) 2505 )

Cz S — 51 1 é dé 2( 2 ) 2(2
i.€.,

1
<2, (3.9)

Apply (3.7)—(3.9) and the assumptions in the theorem to see that

In(s2) — n(sDPF = n(C)(s2 — 51702 — 01) (0> — 0;)
< (o + D@3 = s (52 — 510702 — 01)
< CEEY (52— s1)(02 — 0)
< CG " (52— 51)(02 — 0y).

Other cases can be handled analogously. [

4. Stabilization of the weak solution

We now obtain stabilization results on the asymptotic behavior of the
weak solution as ¢t — oo. This section is independent of the last section. The
results in Section 2 are needed; in particular, the uniform boundedness of s
and u are utilized.

4.1. Main stabilization results

The stationary problem corresponding to (1.4), (1.5), and (1.8) is

i=-kQEVp+7,6), V-a=0  xeQ

$0,5 — V - {k(V0 + 7,(3)) + ity;(s)} = 0, xeQ, “.1)
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with the boundary conditions

u-v=0x), xel?,
P = py(x), xel?,
g s _ ) 4.2)
—{K(VO + 9,(5)) + @y3(5)} v = p3(x), xel,
0= 0%, xerly.
Note that the phase mobility functions 4,, and 4, satisfy [8,10]
Ap(0)=0 and A¢(1)=0. (A.12)

Also, if the following assumption holds:
1 = @3, (A.13)

by (1.6) and (A.12) we can easily see that the stationary problem in (4.1) and
(4.2) has the solution (5,5 = 1) where p satisfies
a=—-x(ADVp+7y,(1), V-u=0, xeQ,
i-v=ox), xell, 4.3)
P = 3y(x), xel?.

We also have 0 = 0*.

As mentioned before, system (4.3) corresponds to the physical case where
the wetting phase completely displaces the nonwetting phase which initially
occupied the domain Q. Physically, that is not possible in practice because of
nonzero residual saturations. Mathematically, this is possible since we can
appropriately normalize the saturations.

We now show that the solution to the transient problem in (1.4), (1.5),
(1.8), and (1.9) converges to the solution to the stationary problem in (4.3)
as t— oo. Toward that end, we assume that

(A14) There is a constant C > 0 such that

[2(s1) = 72(s2) + [y3(s1) — 73(s2)[ < Cl01 — 03,

0<0y, ,<0%, 5, = L(0;), i = 1,2.

This assumption can be remarked as for (All) in Section 3.3. For the
Dirichlet problem, we also need the assumption

@2_¢2€L1((09OO);H1(Q))3 @4_0*6L1((0900) X F)s

: ) (A.15)
lim;, oo [l@; — @2llgi@) = 0.

Theorem 4.1 (Stabilization in the Dirichlet case). Suppose that the assump-
tions of Theorem 2.4 and (A.12)—(A.15) are satisfied. Then

,linglo{lls —Ulpe) 1P — Pllag) + llu — dll 2y} = 0.
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For a corresponding result in the Newmann case, we need the assumption
@1 — P1. @3 — Py L'((0, 00) x T), tlini ley — @il = 0. (A.16)

Theorem 4.2 (Stabilization in the Newmann case). Suppose that the
assumptions of Theorem 2.6, (A.12)—(A.14), and (A.16) are satisfied. Then

tl_i,nalc{HS = Uiz + 1P = Pllrz) + llu — dll 20 = 0.

4.2. Proof of Theorems 4.1 and 4.2

A stabilization result was shown in [18] under abstract assumptions on the
coefficients of a two-phase flow problem. In particular, when these
assumptions were applied to the coefficient a(s), it was required to have a
degeneracy only near one:

a(s) = C(1 — s)»,

for a3>2. In this subsection, we prove Theorems 4.1 and 4.2 under the
general assumption (A3) on a(s). Moreover, the assumptions imposed in [18]
are weakened here.

Lemma 4.1. Let assumption (A3) be satisfied. Then, with «,, = max{o; : i =
1,...,4}, there is a positive constant C such that

(51 — ) T <CO, — 0,), s;=F0,),i=1,2,0<0<0*

This lemma can be shown in the same fashion as in Proposition 3.1.

Lemma 4.2. Let the nonnegative functions H\(t) and ¢(t) satisfy the
differential inequality

d
Db F<HWW,  9(0) = g0 >0,

where H, € L'(0, c0). Then we have
t t T
g(t)<F(t)—efo/(T)dr<go+/ efom)d*Hl(r)dr>—>0 as t— oo,
0

where the nonnegative function f(t) is the solution of the differential equation

d
Vsr=mo. ro=n (44

Proof. Let f(z) satisfy (4.4). Obviously, g(?)<f(t) for t€(0, c0) since
H,(1)=0. Also, we can easily see that the solution f has the representation

1 t T
1) = e /O <g0+ / eféf‘”"ng(z)dz)
0

These facts yield the desired result. [
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We now consider the auxiliary problem
o+ H(x, )V - (kVv)+ I(x,1)- Vo= —nH(x,t)v (x,1)eQr,

kVv-v=20 (x,t)eF‘l’xJ,
v=20 (x,t)el"gx],
v(x, T) = vp(x)=0 xeQ,

4.5)

where H(x, 1) = Ho(x, 1) + & =¢1, Hy, I € C**2(Q7), voe C***(Q), and 1 is a
positive constant. For this problem, we have the next result. For its proof,
see Lemma 2 in [18].

Lemma 4.3. Let |I|< CH with C independent of x, t, and ¢,. Then there exists
o such that for all 0<n <y, the solution v to (4.5) satisfies

O0<uv(x, )<llvollcg) + 1 (x,0)elr,
&KV, V)< Cy(T)< 0,

€] /(w, V- (kVv)) dt| < \/aCo(T)llwlle(QT) Ywe L*(Qr).
J

Moreover, for properly chosen vy we have

KkVo-v|<C, (x,0)el’ x J.
We are now in a position to prove Theorems 4.1 and 4.2.

Proof of Theorems 4.1 and 4.2. Let v be determined by (4.5) with the
coefficients given below. Without loss of generality, let |2] = 1 and 0<v<1
(otherwise, consider Q/|Q| and v/{||vollcq) + 1} below). Then it follows
from (1.5), (1.8), (4.1), and (4.2) that

A1 = 5),0) = ($(1 — 5),00) + (KV (0" — 0), Vv)

+ (K[72(1) — p2(9)], Vo) + (ly5(1) — 3(5)], Vo) + ([ — ulps(1), Vv)
+ (3 — (/)37”)r‘{ =0.

Apply Green’s formula to the third term in the left-hand side of the above
equation. Also, by (1.6) and (A.12), we see that y;(1) = —1. Consequently,
by (1.4), (4.3), and (4.5), we obtain
A(P(1 = 5),0) = (P(1 = 5),0) — (0% — 0,V - (V1))
+ (0% = 0,V V) + (lya(1) = p2()] + uly3(1) = 73(s)], Vo)

+ (@) — (Pl,U)rfl’ +(p5 — (/’3,U)r‘l’ =0.
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That is,
0:(p(1 — 5),v) — (P(1 — 5), 0,0 + HV - (xVv) + I'Vv)
+ (0" = 0,kV0 V) + (P — @1, 0)pp + (D3 — @3, 0)p0
+ e1(P(l =),V - (kVv)) =0,

where

H=(0"-0/{¢p(1 -9} +e1,
I = {xclys(1) = 92()] + uly3 (1) = y3(IN}/{d(1 — 5)}.

Denote by {p;} a sequence of functions that are infinitely differentiable on
Q7 such that

IVpr — Vil —0  as h—0".

With u replaced by u;,, we define I = I} in (4.5). Now, by Lemma 4.3, we see
that
OlPp(1 — ), v) + n(0* — 0,0)< C{' — Il 20Vl 29) + 116F — Pallzicro)
+ 121 = @il + 123 — @3l

+ e C(T)}.
Letting #—0 and ¢; —0, we see that
p(1 — 5),v) + n(0* — 0,v) <H,\ (1), (4.6)
where

Hi(1) = CHUI0* = @4llp oy + 191 — @il + 1103 — @3llLiro)}-

By Lemma 4.1, the Jensen inequality, and the facts that 0<s<1 and
0<wv<l, observe that

0% — 0,0)=C((1 — )™ )= C(1 — 5,v)! ™
> C(¢*, am)(p(1 — ), o)™
Let g = (¢(1 — s),v). Then (4.6) reduces to
019 + C(P*, 0)g ™ > < H\ (1),
with go = C(||vollc@) + 1)- Now, apply Lemma 4.2 to see that

9(T) = (p(1 — 5), v )(T) < F(T),
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where F(T) is given as in this lemma. Choose vy in (4.5) such that
vy €L™(Q), 0<n<1. Then it follows from the Holder inequality that

11 = sl < CHlIvg @ F (T} -0 as T o0,

Apply Poincare’s inequality to have
P — Pl < CUIV(P — D2 + 192 — ®allaio)-

Also, as in Lemma 3.1, by the uniform boundedness of p and Vp we have

V@ — P2y < CUIL = sl + llo; — Q_Dl”Ll(r'l’))-

Therefore, the theorem follows. [

5. An example

In this section, we present an example to show typical regularity of the
saturation. Namely, we consider the so-called porous medium equation

05— A" =0, m>1.
This equation can be equivalently rewritten in form (1.5):

05—V -(ms" 'Vs) =0, m>1, (5.1

so we see that the diffusion coefficient a(s) is ms” ! and the variable 0 equals
s". Obviously, (5.1) is degenerate at zero. Note that (1.5) reduces to (5.1) if
7, =73 =0 and ¢ = 1. Also, Eq. (5.1) often arises in the flow of a gas in
porous media. To see this, ignoring certain constants, the gas flow is
governed by

Oop+V-(pv)=0, v=-Vp, p=p’, (5.2)

where p is the density, p the pressure, v the velocity, and y a (constant) ratio
of specific heats. These equations are the mass conservation, Darcy’s law,
and equation of state [8,25], respectively. Eliminating v and p in (5.2), we
obtain

@p—T%;A@””5=0-
Rescaling ¢ by 1/(1 + y) leads to (5.1) with s = p. Hence we see that one of
the advantages of writing the two-phase flow equations (1.1) in (1.4) and
(1.5) is that the analysis also applies to the single-phase flow.
Beginning from a delta function of integral I' at the original, the exact
solution to (5.1) is of the form [7,24]

1/(m—1)
o L a(m — 1) |x]?
u(|x|, 1) = de{O,l (F Ry m—rrr ,
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where o = 1/(m — 1 + 2/d). Fig. 1 shows an example of this solution in two
dimensions. It is radially symmetric and has compact support. Also, the
solution contains an interface where the gradient is discontinuous. With the
present choice of the initial datum, (5.1) corresponds to the flow case with a
point source.
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