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Degenerate two-phase incompressible flow
II: regularity, stability and stabilization$
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Abstract

In this paper, we analyze a coupled system of highly degenerate elliptic-parabolic

partial differential equations for two-phase incompressible flow in porous media.

This system involves a saturation and a global pressure (or a total flow velocity).

First, we show that the saturation is Hölder continuous both in space and time and

the total velocity is Hölder continuous in space (uniformly in time). Applying this

regularity result, we then establish the stability of the saturation and pressure with

respect to initial and boundary data, from which uniqueness of the solution to the

system follows. Finally, we establish a stabilization result on the asymptotic behavior

of the saturation and pressure; we prove that the solution to the present system

converges (in appropriate norms) to the solution of a stationary system as time goes

to infinity. An example is given to show typical regularity of the saturation.
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1. Introduction

In this paper, we consider the flow of two incompressible, immiscible

fluids in porous media OCRd ; dp3 [8,25]:

f@ts �r � ðklwðsÞðrpw þ gwÞÞ ¼ 0;

� f@ts �r � ðkl0ðsÞðrp0 þ g0ÞÞ ¼ 0;

pcðsÞ ¼ p0 � pw; ð1:1Þ

where w indicates a wetting phase (e.g., water), o denotes a nonwetting
phase (e.g., oil), f and k are the porosity and absolute permeability of the
porous media, s is the (reduced) saturation of the wetting phase, pa; la; and
ga; are, respectively, the pressure, mobility (i.e., the relative permeability
over the viscosity), and gravity-density vector of the a-phase (a ¼ w; o), and
pc is the capillary pressure function. To analyze (1.1), following [2,9], we
define the global pressure

p ¼ p0 �
Z s

0

lw

l
@pc

@s

� �
ðxÞ dx; ð1:2Þ

and [10], the Kirchhoff transformation

y ¼ �
Z s

0

lwl0
l

@pc

@s

� �
ðxÞ dx; ð1:3Þ

where lðsÞ ¼ lw þ l0 is the total mobility. Then (1.1) can be manipulated to
yield the Eq. [10]

u ¼ �kðlðsÞrp þ g1ðsÞÞ; r � u ¼ 0; ð1:4Þ

and

f@ts �r � fkðryþ g2ðsÞÞ þ ug3ðsÞg ¼ 0; ð1:5Þ

where

g1ðsÞ ¼ lwgw þ l0g0; g2ðsÞ ¼
lwl0
l

ðgw � g0Þ;

g3ðsÞ ¼ �
lw

l
or

l0
l
: ð1:6Þ

In (1.5), s is related to y through (1.3):

s ¼ SðyÞ; ð1:7Þ

where SðyÞ is the inverse of (1.3) for 0pypyn with

yn ¼ �
Z 1

0

lwl0
l

@pc

@s

� �
ðxÞ dx:

The pressure equation is given by (1.4), while the saturation equation is
described by (1.5). They determine the main unknowns p (or u the total flow
velocity [10]), s; and y: The model is completed by specifying boundary and
initial conditions.
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With the following division of the boundary G of O:

G ¼ Gp
1,Gp

2 ¼ Gy
1,Gy

2; | ¼ Gp
1-Gp

2 ¼ Gy
1-Gy

2;

the boundary conditions are specified by

u � n ¼ j1ðx; tÞ; ðx; tÞAGp
1 
 J;

p ¼ j2ðx; tÞ; ðx; tÞAGp
2 
 J;

�fkðryþ g2ðsÞÞ þ ug3ðsÞg � n ¼ j3ðx; tÞ; ðx; tÞAGy
1 
 J;

y ¼ j4ðx; tÞ; ðx; tÞAGy
2 
 J;

ð1:8Þ

where the ji are given functions, J ¼ ð0;T � (T > 0), and n is the outer unit
normal to G: The initial condition is given by

sðx; 0Þ ¼ s0ðxÞ; xAO: ð1:9Þ

The differential system in (1.4) and (1.5) has a clear structure; the pressure
equation is elliptic for p; and the saturation equation is parabolic for y
(degenerate for s). This system has been recently studied in [10]. In
particular, existence of a weak solution (in the sense given in [10]) was
established under reasonable assumptions on physical data (also see
[1,3,4,9,21,22] for the existence under various assumptions on the data),
and a regularity result on the Hölder continuity of the saturation s was
obtained with the assumption that (1.5) has one degeneracy in diffusivity.
In this paper, we further study the coupled system of differential

equations in (1.4) and (1.5). First, we show that the saturation s is Hölder
continuous both in space and time and the total velocity u is Hölder
continuous in space (uniformly in time). The assumptions imposed in [10]
are weakened; physically reasonable assumptions on the data are used.
Especially, (1.5) can have two degeneracies in diffusivity near zero and one.
Due to the two degeneracies, the argument here is different from that in [10];
these two degeneracies have to be related to each other in the argument.
Applying this regularity result, we then establish the stability of s and p with
respect to initial and boundary data, from which uniqueness of the solution
to this system follows. A uniqueness result was obtained in [10], where
the uniqueness was directly proven, while it follows from the stability here.
The arguments are different. Finally, we establish a stabilization result on
the asymptotic behavior of s and p; we prove that the solution to the present
system converges (in appropriate norms) to the solution of a stationary
system as time progresses to infinity. This result corresponds to the physical
case where the wetting phase completely displaces the nonwetting phase
(which initially occupied the domain O) under the assumption that the
residual saturations are zero.
The rest of the paper is organized as follows. In the next section we

examine the regularity. Then in Section 3, we study the stability. In
Section 4, we consider the stabilization. Finally, in Section 5 an example is
given to show typical regularity of the saturation. As a general remark, all
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primary theorems are stated first and their proofs are then presented in a
series of lemmas. We close this section with a few remarks. While we
consider homogeneous right-hand sides in the first two equations of (1.1)
here for simplicity, the later results can be extended to the nonhomogeneous
case [10]. Also, all functions of s are assumed to be explicitly independent of
x and t; otherwise, only lower-order terms appear in (1.4) and (1.5) and the
subsequent analysis is the same. The theoretical results established in this
paper are very useful in the choice and analysis of numerical methods for
solving flow problems [5,6,11,12,14,15,19,25]. Since the differential system
for the single-phase, miscible displacement of one incompressible fluid by
another in porous media resembles that for the two-phase incompressible
flow studied here [13,19], the analysis presented in this paper extends to the
miscible displacement problem. Finally, we mention that the continuity of
the saturation is known; see [1,16] under the assumptions that one of the
degeneracies is at most logarithmic and is of power type, respectively. To
prove the results in this paper, the continuity of the saturation is not
enough; we need the Hölder continuity of this quantity.

2. Regularity of a weak solution

Define the spaces

V ¼ fvAH1ðOÞ : vjGp

2
¼ 0; if Gp

2 ¼ |; then
R
O v dx ¼ 0g;

W ¼ fvAH1ðOÞ : vjGy
2
¼ 0g:

Below Vn and W n indicate the duals of V and W ; respectively. As
mentioned in the introduction, existence of a weak solution to the system in
(1.4) and (1.5) was established in [10] with

yAL2ðJ;W Þ þ j4; pALNðJ;V Þ þ j2; s ¼ SðyÞ; f@tsAL2ðJ;W nÞ;

where the usual Sobolev spaces are used. Also, if the data are assumed to be
physically consistent, it was shown via a maximum principle that 0psp1
a.e. on OT [10], where OT ¼ O
 J: Thus, all functions of s need to be
defined only on ½0; 1�:

2.1. Main regularity results

Set

aðsÞ ¼ �
lwl0
l

@pc

@s
: ð2:1Þ

The assumptions described in this paper are required only for establishing
the regularity, stability, and stabilization results. To see the assumptions
needed for the existence result, see [10]. In this section, we need assumptions
(A1)–(A10) below for regularity. First, we assume that
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(A1) The porosity satisfies that fn
XfðxÞXf

*
> 0; and the permeability

kðxÞ is a bounded, symmetric, and uniformly positive definite matrix; i.e.,

0ok
*
pjxj�2

Xd

i;j¼1

kijðxÞxixjpknoN; xAO; xa0ARd :

(A2) lðsÞ; aðsÞ; and giðsÞ ði ¼ 1; 2; 3Þ are continuous in sA½0; 1�: Further-
more, there are positive constants l

*
; ln; pc*

; and Cn such that

l
*
plðsÞpln; �pc*

p
@pc

@s
; aðsÞ þ jg1ðsÞj þ jg2ðsÞj þ jg3ðsÞjpCn;

sA½0; 1�:

(A3) There are positive constants do1=2; ai ði ¼ 1;y; 4Þ; and Ci

ði ¼ 1;y; 6Þ such that

C1s
a1paðsÞpC2s

a2 ; sA½0; d�;

C3paðsÞpC4; sA½d; 1� d�;

C5ð1� sÞa3paðsÞpC6ð1� sÞa4 ; sA½1� d; 1�:

Note that assumption (A3) reflects the degeneracy of aðsÞ near zero and
one, and all three assumptions are physical reasonable. Below C (with or
without a subscript) indicates a generic constant, which probably takes on
different values in different occurrences.

Theorem 2.1 (Interior regularity of s). Under assumptions ðA1Þ–ðA3Þ; s is

locally Hölder continuous in OT : That is, for every compact set K of OT ; there

exist constants C > 0 and aAð0; 1Þ such that

jsðx1; t1Þ � sðx2; t2ÞjpCðjx1 � x2j
a þ jt1 � t2j

a=2Þ;

for every pair of points ðx1; t1Þ; ðx2; t2ÞAK :

The constant C depends on the data and the distance from K to G; while
apminfai; i ¼ 1;y; 4g depends only on the data. We need an additional
assumption for a corresponding result on u:
(A4) lðsÞ and g1ðsÞ are Hölder continuous in sA½0; 1�:

Theorem 2.2 (Interior regularity of u). Under assumptions ðA1Þ–ðA4Þ; u is

locally Hölder continuous in O: Namely, for every compact set K of O; there

are constants C > 0; e0 > 0; and bAð0; 1Þ depending only on the data such that

juðx1; tÞ � uðx2; tÞjpCjx1 � x2j
b 8tXe0;

for every pair of points x1;x2AK :

We now state global regularity results on s and u: Toward that end, we
need assumptions on G and the boundary and initial data. For simplicity, in

this paper we only consider the case where G ¼ Gp
1 ¼ Gy

1 or G ¼ Gp
2 ¼ Gy

2;
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i.e., we consider either the complete Dirichlet case or the complete
Newmann case. Under the assumption that G is sufficiently smooth (e.g.,

G is in the class H2

*
[3]), a solution of the present problem with the mixed

boundary condition (1.8) can be continued to a neighborhood of %Gp
1- %Gp

2 or
%Gs
1- %Gs

2; so the subsequent analysis reduces to such a case.

We first consider the Dirichlet boundary problem. For this, we need the
assumptions:

(A5) Gy
2 ¼ G satisfies the property of positive geometric density (see [23]

for the definition).

(A6) s0 is Hölder continuous on %O:
(A7) j4 is Hölder continuous on G
 J:

Theorem 2.3 (Global regularity of s in the Dirichlet case). Under assump-

tions ðA1Þ–ðA3Þ and ðA5Þ–ðA7Þ; s is Hölder continuous on %OT : That is, there

exist constants C > 0 and aAð0; 1Þ such that

jsðx1; t1Þ � sðx2; t2ÞjpCðjx1 � x2j
a þ jt1 � t2j

a=2Þ;

for every pair of points ðx1; t1Þ; ðx2; t2ÞA %OT :

Again, the constants C > 0 and a depend only on the data. The exponent
a in Theorem 2.3 may be different from that in Theorem 2.1. For notational
convenience, we utilize the same exponent a: This remark applies to b; too.
For a corresponding result on u; we require that

(A8) Gp
2 ¼ G belongs to the class C1þb ðbAð0; 1ÞÞ and j2ALNðJ;C1þbð %OÞÞ:

Theorem 2.4 (Global regularity of u in the Dirichlet case). Under

assumptions ðA1Þ–ðA4Þ and ðA6Þ–ðA8Þ; u is Hölder continuous on %O
(uniformly in tAJ). Namely, there are constants C > 0 and bAð0; 1Þ such that

juðx1; tÞ � uðx2; tÞjpCjx1 � x2j
b 8tAJ;

for every pair of points x1; x2A %O: In particular, uALNðOT Þ:

We now consider the Newmann boundary problem. In this case, we
assume that

(A9) Gy
1 ¼ G is of class C1þa and j3AL2ðJ;W 1;NðOÞÞ:

Theorem 2.5 (Global regularity of s in the Newmann case). Under

assumptions ðA1Þ–ðA3Þ; ðA6Þ; and ðA9Þ; s is Hölder continuous on %OT :

Finally, we make the assumption in this section:

(A10) Gp
1 ¼ G is of class C1þb and j1 is Hölder continuous on %OT :
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Theorem 2.6 (Global regularity of u in the Newmann case). Under

assumptions ðA1Þ–ðA4Þ; ðA6Þ; and ðA10Þ; u is Hölder continuous on %O
(uniformly in tAJ). In particular, uALNðOT Þ:

We shall only prove Theorem 2.1. Theorems 2.3 and 2.5 follow by
combining the arguments in the proof of this theorem and those presented in
[17] for handling boundary regularity. Under assumption (A4) and Theorem
2.1 (respectively, Theorems 2.3 and 2.5), the pressure p satisfies the elliptic
equation (1.4) with Hölder continuous coefficients. Theorem 2.2 (respec-
tively, Theorems 2.4 and 2.6) thus follows from the standard elliptic theory
[20]. An example will be given in Section 5, which shows typical regularity of
s: Specifically, in general s is only continuous or Hölder continuous, and its
derivatives in space are discontinuous.

2.2. Preliminaries

In this subsection, we introduce notation which will be used in the later
subsections. For any real number l; define the truncations of the saturation s

by

ðs � lÞþ ¼ maxfs � l; 0g; ðs � lÞ� ¼ maxf�ðs � lÞ; 0g:

Also, for r > 0; define the cube

Kr ¼ xARd : max
1pipd

jxi jor
� �

:

For x0ARd ; let x0 þ Kr denote the cube of center x0: Also, for Z > 0 a given

number, define

QðZ;rÞ ¼ Kr 
 ð�Z; 0Þ:

For ðx0; t0ÞARdþ1; let ðx0; t0Þ þ QðZ;rÞ be the ‘‘cylinder’’ congruent to
QðZ; rÞ; i.e.,

ðx0; t0Þ þ QðZ;rÞ ¼ fx0 þ Krg 
 ðt0 � Z; t0Þ:

To obtain the Hölder continuity of a solution to degenerate parabolic
problems, we need to work with cylinders whose dimensions are suitably
scaled to reflect the degeneracy of the problems [17]. Let e > 0 be a small
number and consider the cylinder

ðx0; t0Þ þ QðR2�e; 2RÞ;

where R > 0 is so small that such a cylinder is completely contained in OT :
Set

sþ ¼ ess supfs j ðx0; t0Þ þ QðR2�e; 2RÞg;

s� ¼ ess inffs j ðx0; t0Þ þ QðR2�e; 2RÞg; o ¼ sþ � s�:
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For problem (1.5), these cylinders need to be suitably rescaled to reflect the
two degeneracies of this problem.

Remark 2.1. For notational simplicity, in (A3) we assume that a1 ¼ a2 and
a3 ¼ a4; and define

c0ðsÞ ¼ sa1 ; c1ðsÞ ¼ sa3 :

From the later arguments, we shall see that this condition is not
essential. Also, we shall present the subsequent analysis with the case

a1 ¼ a3: Otherwise, we shall work with the functions #c0ðsÞ and #c1ðsÞ defined
by

#c0ðsÞ ¼ ca3
0 ðsÞ; #c1ðsÞ ¼ ca1

1 ðsÞ:

Construct the cylinder

ðx0; t0Þ þ Q c�1
1

o
2m

� 	
R2;R

� 	
;

where m is a positive integer. We assume that m is so large that we have the
inclusion

Q c�1
1

o
2m

� 	
R2;R

� 	
CQðR2�e; 2RÞ: ð2:2Þ

Let m0 be the smallest positive integer satisfying

o
2m0

od; ð2:3Þ

where d is given in assumption (A3). Now, choose m large enough so that

c1

o
2m

� 	
p
1

2
c0

o
2m0þ2

� 	
: ð2:4Þ

Inequality (2.4) relates the arguments in c0ð�Þ and c1ð�Þ: Also, construct the
cylinder

ðx0; %tÞ þ Q c�1
0

o
2m0þ2

� 	
R2;R

� 	
: ð2:5Þ

Under (2.4), if we have

%t � c�1
0

o
2m0þ2

� 	
R2 > t0 � c�1

1

o
2m

� 	
R2; ð2:6Þ

then the following inclusion holds:

ðx0; %tÞ þ Q c�1
0

o
2m0þ2

� 	
R2;R

� 	
Cðx0; t0Þ þ Q c�1

1

o
2m

� 	
R2;R

� 	
: ð2:7Þ

We shall work with the subcylinders of the type in (2.5). For expositional
convenience, we introduce the notation

%QR ¼ Q c�1
0

o
2m0þ2

� 	
R2;R

� 	
:

These subcylinders reflect the degeneracy at zero, and the degeneracy at one
via (2.4). After a translation, we will work with ðx0; t0Þ ¼ ð0; 0Þ below.

Z. Chen / J. Differential Equations 186 (2002) 345–376352



Lemma 2.1 (Interior regularity of p). Under assumptions ðA1Þ and ðA2Þ; p is

locally Hölder continuous in O (uniformly in t). Namely, for every compact set K

of O; there are constants C > 0 and bAð0; 1Þ depending only on the data such that

jpðx1; tÞ � pðx2; tÞjpCjx1 � x2j
b 8tAJ;

for every pair of points x1;x2AK :

Proof. By (1.4), p satisfies the equation

�r � fkðlðsÞrp þ g1ðsÞÞg ¼ 0; ð2:8Þ

which is uniformly elliptic by assumptions (A1) and (A2). Then Lemma 2.1
follows from the standard elliptic theory [20]. &

In the subsequent analysis, we shall fix such a compact set K of O from
Lemma 2.1, where p is Hölder continuous with exponent b; and from now
on we shall assume that KrCK :

Below ð�; �ÞS denotes the L2ðSÞ inner product (or sometimes the duality pairing);
S is omitted if S ¼ O: Also, e1 is a positive constant, as small as we please.

Lemma 2.2. Under assumptions ðA1Þ and ðA2Þ; for every KrCK there is a

constant C depending only on the data such that

ðjrpj2; f 2ÞKr
pCfð1; f 2ÞKr

þ r2bð1; jrf j2ÞKr
g;

for all fAH1
0 ðKrÞ; where b is from Lemma 2.1.

Proof. For any fixed x1AKr; multiply (2.8) by ðpðx; tÞ � pðx1; tÞÞf 2; integrate
the resulting equation over Kr; and use Green’s formula to see that

ðkðlðsÞrp þ g1ðsÞÞ; f
2rpÞKr

þ 2ðkðlðsÞrp þ g1ðsÞÞ;

ðpðx; tÞ � pðx1; tÞÞfrf ÞKr
¼ 0:

Then the desired result follows from the Hölder inequality and Lemma 2.1. &

2.3. Proof of Theorem 2.1, Part I

The proof of Theorem 2.1 is carried out via an alternative argument
introduced in [17]. Here special care must be taken on treating the two
degeneracies of the coefficient aðsÞ and the coupling of the saturation and
pressure equations. To fix ideas and avoid repetition, we pay attention only
to the arguments which are different from those in [17].

Lemma 2.3. There is a constant n0Að0; 1Þ; depending only on the data, such

that if for some cylinder ð0; %tÞ þ %QR it holds that

ðx; tÞAfð0; %tÞ þ %QRg j sðx; tÞos� þ
o
2m0




 


pn0j %QRj;
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then we have either

o
2m0

pCRb=2; ð2:9Þ

or

sðx; tÞ > s� þ
o

2m0þ1
; a:e: ðx; tÞAð0; %tÞ þ %QR=2; ð2:10Þ

where j � j indicates the Lebesgue measure.

Proof. Without loss of generality, we assume that %t ¼ 0 and s� ¼ 0: Set

Rn ¼
R

2
þ

R

2nþ1; n ¼ 0; 1; 2;y :

We work with the cylinders %QRn
: Let xnðx; tÞ be a smooth cutoff function in

%QRn
satisfying

0pxnp1 on %QRn
;

xn ¼ 1 on %QRnþ1
;

xn ¼ 0 on @ %QRn
or for t¼�c�1

0

o
2m0þ2

� 	
R2;

jrxnjp2nþ1=R; jDxnjpC22ðnþ1Þ=R2;

0p@txnp22ðnþ1Þc0

o
2m0þ2

� 	.
R2:

Also, let

Kn ¼ KRn
; so ¼ max s;

o
2m0þ2

n o
; t̂ ¼ �c�1

0

o
2m0þ2

� 	
R2;

and

kn ¼
o

2m0þ1
þ

o
2m0þ1þn

; n ¼ 0; 1; 2;y :

Multiply (1.5) by ðso � knÞ�x
2
n; integrate over Kn 
 ðt̂; tÞ with t̂ptp0; and

apply Green’s formula to see thatZ t

t̂

ðf@ts; ðso � knÞ�x
2
nÞKn

dt

þ
Z t

t̂

ðkfryþ g2ðsÞg þ ug3ðsÞ;rfðso � knÞ�x
2
ngÞKn

dt ¼ 0: ð2:11Þ

We estimate each term in (2.11) as follows. First, note thatZ t

t̂

ðf@ts; ðso � knÞ�x
2
nÞKn

dt

¼
Z t

t̂

(
ðf@tðso � knÞ�; ðso � knÞ�x

2
nÞKn

:

þ f@t s �
o

2m0þ2

� 	
�
;

o
2m0þ2

� kn

� 	
�
x2n

� �
Kn

)
dt
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¼
1

2
ðfðso � knÞ

2
�; x

2
nÞKn

ðtÞ þ f s �
o

2m0þ2

� 	
�
;

o
2m0þ2

� kn

� 	
�
x2n

� �
Kn

ðtÞ

�
Z t

t̂

�
ðfðso � knÞ

2
�; xn@txnÞKn

:

þ 2ðfðs �
o

2m0þ2
Þ�

o
2m0þ2

� kn

� 	
�
; xn@txnÞKn

�
dt

X
1

2
ðfðso � knÞ

2
�; x

2
nÞKn

ðtÞ �
Z t

t̂

ðfðso � knÞ
2
�; xn@txnÞKn

dt

� C
o

2m0þ2

� 	2Z t

t̂

ðwfsookng; xn@txnÞKn
dt;

where wfsookng is the characteristic function of the set fsookng: Thus, by
the properties of xn; we see thatZ t

t̂

ðf@ts; ðso � knÞ�x
2
nÞKn

dtX
1

2
ðfðso � knÞ

2
�; x

2
nÞKn

ðtÞ � Cc0

o
2m0þ2

� 	
o
2m0

� 	2 2nþ1

R

� �2Z t

t̂

jfsookngj dt:

Second, by (2.1), we haveZ t

t̂

ðkry;rfðso � knÞ�x
2
ngÞKn

dt

¼
Z t

t̂

ðkaðsÞrs;rfðso � knÞ�x
2
ngÞKn

dt

¼
Z t

t̂

fðkaðsoÞjrðso � knÞ�j
2; x2nÞKn

þ 2ðkaðsÞrs; ðso � knÞ�xnrxnÞKn
g dt

� H1 þ 2H2:

On the set f o
2m0þ2

osoo o
2m0

g; by (A1), (A3), and (2.3), we see that

H1XCc0

o
2m0þ2

� 	Z t

t̂

ðjrðso � knÞ�j
2; x2nÞKn

dt:

Also, by Green’s formula, we observe that

H2 ¼
Z t

t̂

(
ðkaðsoÞðso � knÞ�rðso � knÞ�; xnrxnÞKn

þ kaðsÞ
o

2m0þ2
� kn

� 	
�
r s �

o
2m0þ2

� 	
�
; xnrxn

� �
Kn

)
dt

¼
Z t

t̂

(
ðkaðsoÞðso � knÞ�rðso � knÞ�; xnrxnÞKn

þ kr
Z s

o
2m0þ2

aðxÞ dx

 !
�

o
2m0þ2

� kn

� 	
�
; xnrxn

 !
Kn

9=
; dt
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¼
Z t

t̂

(
ðkaðsoÞðso � knÞ�rðso � knÞ�; xnrxnÞKn

� r � k
Z s

o
2m0þ2

aðxÞ dx

 !
�

o
2m0þ2

� kn

� 	
�
; xnrxn

 !
Kn

� k
Z s

o
2m0þ2

aðxÞ dx

 !
�

o
2m0þ2

� kn

� 	
�
; jrxnj

2

 !
Kn

� k
Z s

o
2m0þ2

aðxÞ dx

 !
�

o
2m0þ2

� kn

� 	
�
; xnDxn

 !
Kn

9=
; dt;

so, by the properties of xn again,

jH2jpc0

o
2m0þ2

� 	Z t

t̂

(
e1ðjrðso � knÞ�j

2; x2nÞKn

þ C
o
2m0

� 	2 2nþ1

R

� �2

jwfsookngj

)
dt:

Third, by (2.1) and (A2), we have

jg2ðsÞjpCaðsÞ: ð2:12Þ

Then, we see thatZ t

t̂

ðkg2ðsÞ;rfðso � knÞ�x
2
ngÞKn

dt

¼
Z t

t̂

fðkg2ðsÞrðso � knÞ�; x
2
nÞKn

þ 2ðkg2ðsÞðso � knÞ�; xnrxnÞKn
g dt

pc0

o
2m0þ2

� 	Z t

t̂

(
e1ðjrðso � knÞ�j

2; x2nÞKn

þ C 1þ
o
2m0

2nþ1

R

� �
jwfsookngj

�
dt:

Fourth, by the choice of m0 in (2.3) and the definition of g3; note that an
inequality similar to (2.12) also holds for g3: Then it follows from (1.4) and
Green’s formula thatZ t

t̂

ðug3ðsÞ;rfðso � knÞ�x
2
ngÞKn

dt

¼
Z t

t̂

fðug3ðsÞrðso � knÞ�; x
2
nÞKn

þ 2ðug3ðsÞðso � knÞ�; xnrxnÞKn
g dt
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¼
Z t

t̂

ur
Z so

kn

g3ðxÞ dx
� �

�

; x2n

� �
Kn

(

þ 2ðug3ðsÞðso � knÞ�; xnrxnÞKn

�
dt

pCc0

o
2m0þ2

� 	Z t

t̂

fðjrpjðso � knÞ�; xnjrxnjÞKn

þ ððso � knÞ�; xnjrxnjÞKn
g dt

pCc0

o
2m0þ2

� 	Z t

t̂

fe1R�b
n ðjrpj2; ðso � knÞ

2
�x

2
nÞKn

þ Rb
nðjrxnj

2; wfsookngÞKn

þ ððso � knÞ�; xnjrxnjÞKn
g dt:

Hence, by Lemma 2.2 with f ¼ ðso � knÞ�xn; we see thatZ t

t̂

ðug3ðsÞ;rfðso � knÞ�x
2
ngÞKn

dt

pCc0

o
2m0þ2

� 	Z t

t̂

e1Rb
nðjrðso � knÞ�j

2; x2nÞKn

�

þ R�b
n

o
2m0

� 	2
þRb

n

2nþ1

R

� �2

þ
o
2m0

2nþ1

R

" #
jwfsookngj

)
dt:

If (2.9) is violated, we have

CRb=2o
o
2m0

:

Substitute all these inequalities into (2.11) and choose e1 appropriately to
obtain

ððso � knÞ
2
�; x

2
nÞKn

ðtÞ þ c0

o
2m0þ2

� 	Z t

t̂

ðjrðso � knÞ�j
2; x2nÞKn

dt

pCc0

o
2m0þ2

� 	 o
2m0

� 	2 2nþ1

R

� �2Z t

t̂

jwfsookngj dt: ð2:13Þ

Introduce the change of time variable z ¼ tc0ð
o

2m0þ2
Þ; which transfers

Q c�1
0

o
2m0þ2

� 	
R2

n;Rn

� 	
into QðR2

n;RnÞ:

Set

vð�; zÞ ¼ so �; tc�1
0

o
2m0þ2

� 	� 	
; #xnð�; zÞ ¼ xn �; tc�1

0

o
2m0þ2

� 	� 	
:
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Then it follows from (2.13) that

sup
�R2

npzp0

ððv � knÞ
2
�;

#x
2

nÞKn
ðzÞ þ

Z 0

�R2
n

ðjrðv � knÞ�j
2; #x

2

nÞKn
dz

pC
o
2m0

� 	2 2nþ1

R

� �2Z 0

�R2
n

jwfvokngj dz:

Now, the rest of the proof is completed by a standard argument for
parabolic problems (see Lemma 4.1 in Chapter III of [17]). &

We now suppose that the assumption of Lemma 2.3 is satisfied for some

cylinder ð0; %tÞ þ %QR: Then, at time level

�t̂ ¼ %t � c�1
0

o
2m0þ2

� 	 R

2

� �2

;

the function x/sðx;�t̂Þ is larger than s� þ o
2m0þ1

in KR=2 by Lemma 2.3. We

consider the cylinder

Qðt̂;R=2Þ ¼ KR=2 
 ð�t̂; 0Þ:

Set

H�
o ¼ ess sup s � ðs� þ

o
2m0þ1

Þ
� 	

�
j Qðt̂;R=2Þ

� �
p

o
2m0þ1

;

and define

C ¼ lnþ
H�

o

H�
o � ðs � ðs� þ o

2m0þ1
ÞÞ� þ o

2m0þ1þn

( )
;

where lnþ v ¼ maxfln v; 0g and nX1 is to be determined later.
The following result says that, because of (2.10), the set where sð�; tÞ is

close to s� within a smaller cube can be made arbitrarily small for all

tAð�t̂; 0Þ:

Lemma 2.4. For every n1ðoÞAð0; 1Þ; there is a positive integer m1 > m0 þ 1
(independent of o) such that either

o
2m1

pCRb=2 ð2:14Þ

or

xAKR=4 j sðx; tÞos� þ
o
2m1




 


pn1jKR=4j;

for all tAð�t̂; 0Þ:

Proof. Again, without loss of generality, let s� ¼ 0: Let x/zðxÞ be a
smooth cutoff function in KR=2 such that

zðxÞ ¼ 1 on KR=4 and rzjpCR�1 on KR=2:
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Multiply (1.5) by ðC2ðsÞÞ0z2; integrate on KR=2 
 ð�t̂; tÞ ðtp0Þ; and apply

Green’s formula to see thatZ t

�t̂

ðf@ts; ðC2Þ0z2ÞKR=2
dt

þ
Z t

�t̂

ðkfryþ g2ðsÞg þ ug3ðsÞ;rfðC2Þ0z2gÞKR=2
dt ¼ 0: ð2:15Þ

As in the proof of Lemma 2.3, we need to estimate each term in (2.15). First,

for t ¼ �t̂; s > s� þ o
2m0þ1

; so Cðx;�t̂Þ ¼ 0 on KR=2: Hence, we see thatZ t

�t̂

ðf@ts; ðC2Þ0z2ÞKR=2
dt

¼ ðfC2; z2ÞKR=2
ðtÞ � ðfC2; z2ÞKR=2

ð�t̂ÞXðf;C2ÞKR=4
ðtÞ:

Second, by the property of z; we haveZ t

�t̂

ðkaðsÞrs;rfðC2Þ0z2gÞKR=2
dt

¼ 2

Z t

�t̂

fðkaðsÞjrsj2; ð1þCÞðC0Þ2z2ÞKR=2
þ 2ðkaðsÞrs;CC0zrzÞKR=2

g dt

XC

Z t

�t̂

fðaðsÞjrsj2; ð1þCÞðC0Þ2z2ÞKR=2
� R�2ðaðsÞ;CÞKR=2

g dt:

Third, we see thatZ t

�t̂

ðkg2ðsÞ;rfðC2Þ0z2gÞKR=2
dt

¼ 2

Z t

�t̂

fðkg2ðsÞ � rs; ð1þCÞðC0Þ2z2ÞKR=2
þ 2ðkg2ðsÞ;CC0zrzÞKR=2

g dt:

Note that the above integrals extend only on the set fso o
2m0þ1

g-Qðt̂;R=2Þ:
Thus, by (2.12), we find thatZ t

�t̂

ðkg2ðsÞ;rfðC2Þ0z2gÞKR=2
dt

p
Z t

�t̂

fe1ðaðsÞjrsj2; ð1þCÞðC0Þ2z2ÞKR=2
þ C½ðaðsÞð1þCÞ; ðC0Þ2z2ÞKR=2

þ ðaðsÞCjC0j; zjrzjÞKR=2
�g dt:

By the definition of C; we see that

Cpn ln 2; jC0jpC
2m0þ1þn

o
:
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Hence we obtainZ t

�t̂

ðkg2ðsÞ;rfðC2Þ0z2gÞKR=2
dt

p
Z t

�t̂

e1ðaðsÞjrsj2; ð1þCÞðC0Þ2z2ÞKR=2
dt

þ Cc0

o
2m0

� 	n

R

2m0þ1þn

o

� �2

jQðt̂;R=2Þj:

Fourth, using Lemma 2.2 with f ¼ z; a similar argument yieldsZ t

�t̂

ðug3ðsÞ;rfðC2Þ0z2gÞKR=2
dt

¼ 2

Z t

�t̂

fðug3ðsÞ � rs; ð1þCÞðC0Þ2z2ÞKR=2
þ 2ðug3ðsÞ;CC0zrzÞKR=2

g dt

p
Z t

�t̂

fe1ðaðsÞjrsj2; ð1þCÞðC0Þ2z2ÞKR=2
þ C½ðaðsÞjuj2ð1þCÞ; ðC0Þ2z2ÞKR=2

þ ðjujaðsÞCjC0j; zjrzjÞKR=2
�g dt

p
Z t

�t̂

e1ðaðsÞjrsj2; ð1þCÞðC0Þ2z2ÞKR=2
dt

þ Cc0ð
o
2m0

Þn
2m0þ1þn

o

� �2

1þ
R2b

R2

� �
þ R�2

( )
jQðt̂;R=2Þj:

Substitute all these inequalities into (2.15) and choose e1 appropriately to find

ðC2ðtÞ; 1ÞKR=4
pCc0

o
2m0

� 	 n

R2
þ

2m0þ1þn

o

� �2
n

R
þ

nR2b

R2

� � !
jQðt̂;R=2Þj:

Notice that

jQðt̂;R=2ÞjpCRdþ2=c1

o
2m

� 	
;

where we recall that d is the dimension number of O and m is defined as in
(2.2). Then it follows that

ðC2ðtÞ; 1ÞKR=4
pCRdþ2c0ðo=2

m0Þ
c1ðo=2mÞ

n

R2
þ

2m0þ1þn

o

� �2
n

R
þ

nR2b

R2

� �( )
:

ð2:16Þ

If (2.14) is violated, apply (2.16) to see that

ðC2ðtÞ; 1ÞKR=4
pCnRdc0ðo=2

m0Þ
c1ðo=2mÞ

: ð2:17Þ
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On the set

xAKR=4 j sðx; tÞos� þ
o

2m0þ1þn

n o
; tAð�t̂; 0Þ;

the definition of C means that

C2
Xðn � 1Þ2 ln2 2:

Hence it follows from (2.17) that

xAKR=4 j sðx; tÞos� þ
o

2m0þ1þn

n o


 



pC

n

ðn � 1Þ2
c0ðo=2

m0 Þ
c1ðo=2mÞ

jKR=4j; tAð�t̂; 0Þ;

which implies the desired result by choosing n large enough. &

Remark 2.2. Because of Remark 2.1 (particularly because a1 ¼ a3), m1 in
this lemma is independent of o: If a1aa3; the proof in this lemma still works
if we work with the functions #c0ðsÞ and #c1ðsÞ in place of c0ðsÞ and c1ðsÞ;
respectively, as mentioned before. This remark applies to other positive
integers mi ði ¼ 2;y; 5Þ later.

Lemma 2.4 is now used to show that s is strictly bounded away from s� in
a smaller cylinder, as stated below.

Lemma 2.5. Suppose that the assumption of Lemma 2.3 is satisfied for some

cylinder ð0; %tÞ þ %QR: Then there is a positive integer m2 > m1 (independent of

o) such that either
o
2m2

pCRb=2

or

sðx; tÞ > s� þ
o

2m2þ1
; a:e: ðx; tÞAKR=8 
 ð�t̂; 0Þ:

The proof of this lemma can be completed by combining the techniques in
Lemma 2.3 and the argument in Lemma 6.2 in Chapter III of [17]. The
results obtained so far are summarized in the next proposition; i.e., the so-
called first alternative in [17] is established.

Proposition 2.1. There is a constant n0Að0; 1Þ; depending only on the data, and

a positive integer m2b1 (independent of o) such that if for some cylinder

ð0; %tÞ þ %QR it holds that

ðx; tÞAfð0; %tÞ þ %QRg j sðx; tÞos� þ
o
2m0




 


pn0j %QRj;
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then we have either

opC2m2Rb=2 ð2:18Þ

or

ess oscfsðx; tÞ j ðx; tÞA %QR=8gp 1�
1

2m2þ1

� �
o: ð2:19Þ

Proof. If (2.18) is violated, Lemma 2.5 implies that

ess inffs j ðx; tÞA %QR=8gXs� þ
o

2m2þ1
:

Hence,

ess supfs j ðx; tÞA %QR=8g � ess inffs j ðx; tÞA %QR=8g

pess supfs j ðx; tÞA %QR=8g � s� �
o

2m2þ1

p 1�
1

2m2þ1

� �
o;

which is the desired result. &

2.4. Proof of Theorem 2.1, Part II

We now analyze the case where the assumption of Lemma 2.3 is violated;

i.e., for every cylinder ð0; %tÞ þ %QR;

ðx; tÞAfð0; %tÞ þ %QRg j sðx; tÞos� þ
o
2m0




 


 > n0j %QRj:

Note that

sþ �
o
2m0

Xs� þ
o
2m0

for m0X2:

We can rewrite the above inequality as follows:

ðx; tÞAfð0; %tÞ þ %QRg j sðx; tÞ > sþ �
o
2m0




 


pð1� n0Þj %QRj; ð2:20Þ

which holds for all cylinders ð0; %tÞ þ %QR: In terms of (2.20), we examine the

behavior of s near sþ: Let us fix one of such cylinders with ‘‘vertex’’ ð0; %tÞ where

%tA �
R2

c1ð
o
2mÞ

þ
R2

c0ð
o

2m0þ2
Þ
; 0

" #
:

Lemma 2.6. Under (2.20), there is a time level tn in the interval

%t �
R2

c0ð
o

2m0þ2
Þ
; %t �

n0
2

R2

c0ð
o

2m0þ2
Þ

 !
;
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such that

xAKR j sðx; tnÞ > sþ �
o
2m0




 


p 1� n0
1� n0=2

jKRj:

This statement is a simple consequence of (2.20) (see Lemma 7.1 in

Chapter III of [17]). This lemma implies that at some time level tn the set

where s is close to sþ occupies only part of the cube KR: The next result
asserts that this does occur for all time levels in a small interval.

Lemma 2.7. Under (2.20), there is a positive integer m3 > m0 (independent of

o) such that either

o
2m3

pCRb=2

or

xAKR j sðx; tÞ > sþ �
o
2m3




 


p 1�
n20
4

� �
jKRj

8tA %t � n0R2c�1
0

o
2m0þ2

� 	.
2; %t

h i
: ð2:21Þ

Proof. The proof is similar to that in Lemma 2.4. Set

Hþ
o ¼ ess sup s � sþ �

o
2m0

� 	� 	
þ
j ð0; %tÞ þ %QR

� �
p

o
2m0

and

C ¼ lnþ
Hþ

o

Hþ
o � ðs � ðsþ � o

2m0
ÞÞþ þ o

2m0þn

� �
;

where n is to be determined below. The cutoff function x/zðxÞ satisfies

zðxÞ ¼ 1 for xAKð1�sÞR and jrzjp
1

sR
on KR;

where sAð0; 1Þ: Multiply (1.5) by ðC2Þ0z2; and utilize the same argument as
in Lemma 2.4 to see that

ðC2ðtÞ; 1ÞKð1�sÞR
pðC2ðtnÞ; 1ÞKR

þ
Cn

s
c1ð

o
2m0

Þ
c0ð

o
2m0

Þ
jKRj:

Note that Cpn ln 2 and it vanishes on the set fsosþ � o
2m0

g: Hence, by
Lemma 2.6, we have

ðC2ðtÞ; 1ÞKð1�sÞR
pCn

nð1� n0Þ
1� n0=2

þ
c1ð

o
2m0

Þ
sc0ð

o
2m0

Þ

� �
jKRj: ð2:22Þ

On the set fxAKð1�sÞR j s > sþ � o
2m0þng;

C2
Xðn � 1Þ2 ln2 2;
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so it follows from (2.22) that

xAKð1�sÞR j s > sþ �
o

2m0þn




 



p

Cn

ðn � 1Þ2
nð1� n0Þ
1� n0=2

þ
c1ð

o
2m0

Þ
sc0ð

o
2m0

Þ

� �
jKRj: ð2:23Þ

Also, observe that

xAKR j s > sþ �
o

2m0þn




 


p xAKð1�sÞR j s > sþ �
o

2m0þn




 


þ KR\Kð1�sÞR


 



p xAKð1�sÞR j s > sþ �
o

2m0þn




 


þ dsjKRj:

Consequently, by (2.23), we see that

xAKR j s > sþ �
o

2m0þn




 


pC
n

n � 1

� 	2 1� n0
1� n0=2

þ
1

sn

c1ð
o
2m0

Þ
c0ð

o
2m0

Þ
þ ds

� �
jKRj:

Finally, choosing s and n appropriately generates the desired result. &

Since (2.20) is valid for all cylinders of the form ð0; %tÞ þ %QR; using (2.6),
(2.21) holds for all t in the interval

�
R2

c1ð
o
2mÞ

þ 1�
n0
2

� 	 R2

c0ð
o

2m0þ2
Þ
; 0

 !
:

Then, using (2.4), we see that (2.21) holds for all tAð� R2

2c1ð
o
2mÞ

; 0Þ: Therefore,

we work with cylinders of the type

Qm
R ¼ KR 
 �

R2

2c1

o
2m

� 	; 0
0
B@

1
CA:

Lemma 2.8. For every n2Að0; 1Þ there is a positive integer m4 > m3

(independent of o) such that either

o
2m4

pCRb=2

or

ðx; tÞAQm
R j sðx; tÞ > sþ �

o
2m4




 


pn2jQm
R j:

The proof of this lemma can be carried out by using the ideas of last
subsection and the argument in Lemma 8.1 in Chapter III of [17]. The same
remark applies to the following lemma (see Lemma 9.1 in Chapter III
of [17]).
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Lemma 2.9. There are constants s
*
Að0; 1Þ and m5 > m4 (independent of o)

such that either

o
2m5

pCRb=2

or

sðx; tÞosþ �
o

2m5þ1
; a:e: ðx; tÞAKR=8 
 �

s
*

c1ð
o
2mÞ

R

8

� �2

; 0

 !
:

Now we summarize the results of this subsection in the next proposition;
i.e., the second alternative is shown.

Proposition 2.2. Suppose that for all cylinders of the type ð0; %tÞ þ %QR it holds

that

ðx; tÞAfð0; %tÞ þ %QRg j sðx; tÞ > sþ �
o
2m0




 


pð1� n0Þj %QRj:

Then there are constants s
*
Að0; 1Þ and m5 (independent of o) such that either

opC2m5Rb=2

or

ess osc sðx; tÞ j ðx; tÞAKR=8 
 �
s
*

c1ð
o
2mÞ

R

8

� �2

; 0

 !( )
p 1�

1

2m5þ1

� �
o:

This proposition can be shown as in Proposition 2.1 by using Lemma 2.9.
The two alternatives in Propositions 2.1 and 2.2 can be combined to prove
Theorem 2.1 with a standard fashion (see Proposition 3.1 in Chapter III
of [17]).

3. Stability of the weak solution

In this section, we prove stability results for the weak solution of the
previous section with respect to the boundary and initial data. Uniqueness
of this solution then follows trivially from this result. The stability results
heavily depend on the results established in the last section; especially, those
on the uniform boundedness of u in Theorems 2.4 and 2.6 are used.

3.1. Main stability results

For the next two results we need the assumption below. Its meaning will
be described in Section 3.3.
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(A11) There is a constant C > 0 such that

jjlðs1Þ � lðs2Þjj2L2ðOÞ þ
X3
i¼1

jjgiðs1Þ � giðs2Þjj
2
L2ðOÞpCðs1 � s2; y1 � y2Þ;

0py1; y2pyn; si ¼ SðyiÞ; i ¼ 1; 2:

Let ðs1; y1; p1; u1Þ and ðs2; y2; p2; u2Þ solve the system in (1.4) and (1.5) with

the boundary and initial data ðj1
1;j

1
2;j

1
3;j

1
4; s

1
0Þ and ðj2

1;j
2
2;j

2
3;j

2
4; s

2
0Þ;

respectively. Again, we first consider the Dirichlet boundary problem.

Theorem 3.1 (Stability in the Dirichlet case). In addition to the assumptions

of Theorem 2.4, if ðA11Þ is satisfied, then

jjs1 � s2jj
2
LNðJ;H�1ðOÞÞ þ

Z
J

ðs1 � s2; y1 � y2Þ dt

þ jjp1 � p2jj2LNðJ;L2ðOÞÞ þ jju1 � u2jj2LNðJ;L2ðOÞÞ

pCfjjj1
2 � j2

2jj
2
LNðJ;H1=2ðGÞÞ þ jjj1

4 � j2
4jj

2
L2ðJ;H1=2ðGÞÞ

þ jjs10 � s20jj
2
H�1ðOÞg:

The result for the corresponding Newmann boundary problem is stated as
follows:

Theorem 3.2 (Stability in the Newmann case). In addition to the assumptions

of Theorem 2.6, if ðA11Þ is satisfied, then

jjs1 � s2jj
2
LNðJ;H�1ðOÞÞ þ

Z
J

ðs1 � s2; y1 � y2Þ dt

þ jjp1 � p2jj2LNðJ;L2ðOÞÞ þ jju1 � u2jj2LNðJ;L2ðOÞÞ

pCfjjj1
1 � j2

1jj
2
LNðJ;H�1=2ðGÞÞ þ jjj1

3 � j2
3jj

2
L2ðJ;H�1=2ðGÞÞ

þ jjs10 � s20jj
2
H�1ðOÞg:

Corollary (Uniqueness). Under the assumptions of either Theorem 3.1 or

Theorem 3.2, the weak solution is unique.

3.2. Proof of Theorem 3.2

To fix the ideas, we show Theorem 3.2 in detail; the proof of Theorem 3.1
is remarked at the end of this section.

We introduce the bilinear form að�; �Þ on H1ðOÞ 
 H1ðOÞ:

aðv;wÞ ¼ ðkrv;rwÞ þ ðv;wÞ 8v; wAH1ðOÞ;

and the Green operator G : H�1ðOÞ-H1ðOÞ by

aðGv;wÞ ¼ ðfv;wÞ 8wAH1ðOÞ; vAH�1ðOÞ; ð3:1Þ
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where H�1ðOÞ is the dual to H1ðOÞ: Note that (3.1) implies
jjGvjjH1ðOÞpCjjvjjH�1ðOÞ: ð3:2Þ

Lemma 3.1. Under the assumptions of Theorem 2.6, with tAJ we have
jju1 � u2jjL2ðOÞ

pCðjjlðs1Þ � lðs2ÞjjL2ðOÞ þ jjg1ðs1Þ � g1ðs2ÞjjL2ðOÞ þ jjj1
1 � j2

1jjH�1=2ðGÞÞ:

Proof. It follows from (1.4) and (1.8) that

ðklðs1Þr½p1 � p2�;r½p1 � p2�Þ þ ðk½lðs1Þ � lðs2Þ�rp2;r½p1 � p2�Þ

þ ðg1ðs1Þ � g1ðs2Þ;r½p1 � p2�Þ þ ðj1
1 � j2

1; p1 � p2ÞG ¼ 0: ð3:3Þ

Then, by the definition of V ; Poincare’s inequality, assumptions (A1) and
(A2), and Theorem 2.6, we see that

jjrðp1 � p2ÞjjL2ðOÞ

pCðjjlðs1Þ � lðs2ÞjjL2ðOÞ þ jjg1ðs1Þ � g1ðs2ÞjjL2ðOÞ þ jjj1
1 � j2

1jjH�1=2ðGÞÞ:

Now the desired result follows from the definition of u: &

Lemma 3.2. Under the assumptions of Theorem 2.6, with tAJ we have

jjðs1 � s2ÞðtÞjj
2
H�1ðOÞ þ

Z t

0

ðs1 � s2; y1 � y2Þ dt

pe1

Z t

0

fjju1 � u2jj2L2ðOÞ þ jjg2ðs1Þ � g2ðs2Þjj
2
L2ðOÞ

þ jjg3ðs1Þ � g3ðs2Þjj
2
L2ðOÞg dt

þ C jjs10 � s20jj
2
H�1ðOÞ þ

Z t

0

jjj1
3 � j2

3jj
2
H�1=2ðGÞ dt

� �
:

Proof. It follows from (1.5) and (1.8) that

ðf@t½s1 � s2�;Gðs1 � s2ÞÞ þ ðj1
3 � j2

3;Gðs1 � s2ÞÞG
þ ðkr½y1 � y2�;rGðs1 � s2ÞÞ þ ðk½g2ðs1Þ � g2ðs2Þ�;rGðs1 � s2ÞÞ

þ ðu1½g3ðs1Þ � g3ðs2Þ�;rGðs1 � s2ÞÞ

þ ð½u1 � u2�g3ðs2Þ;rGðs1 � s2ÞÞ ¼ 0: ð3:4Þ

By (3.1), observe that

ðf@t½s1 � s2�;Gðs1 � s2ÞÞ ¼ 1
2
@tjjs1 � s2jj2H�1ðOÞ:

Also, by (3.1), notice that

ðkr½y1 � y2�;rGðs1 � s2ÞÞ

¼ aðy1 � y2;Gðs1 � s2ÞÞ � ðy1 � y2;Gðs1 � s2ÞÞ

Xðf½y1 � y2�; s1 � s2Þ � jjy1 � y2jjL2ðOÞjjs1 � s2jjH�1ðOÞ:
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The desired result then follows from assumption (A3), (3.2), Theorem 2.6,
and Gronwall’s inequality. &

We now see that Theorem 3.2 follows from Lemmas 3.1 and 3.2 and
assumption (A11). Remark that while we have only proven the Newmann
problem, the proof for the Dirichlet case is similar. In this case, we define the

bilinear form að�; �Þ on H1
0 ðOÞ:

aðv;wÞ ¼ ðkrv;rwÞ 8v; wAH1
0 ðOÞ:

The Green operator G : H�1ðOÞ-H1
0 ðOÞ is defined as before, with H�1ðOÞ

being the dual to H1
0 ðOÞ: With these and an obvious modification on the

boundary terms in (3.3) and (3.4) (see [14]), Theorem 3.1 can be similarly
shown.

3.3. Sufficient conditions for assumption (A11)

Let Z represent one of the quantities l and gi ði ¼ 1; 2; 3Þ: It is clear that if
Z satisfies that

jZðs1Þ � Zðs2Þj2pCðs1 � s2Þðy1 � y2Þ 80py1; y2pynðxÞ;

a:e: on OT ; ð3:5Þ

then assumption (A11) is true for Z: A necessary and sufficient condition for
(3.5) to hold is that

jZsj
2pCaðsÞ 8sA½0; 1�; a:e: on OT : ð3:6Þ

Inequality (3.6) means that Zs vanishes with a: Below we examine the
conditions on Z so that (3.5) or (3.6) holds.

Proposition 3.1. Assume that ZAC1½0; 1�; Zsð0Þ ¼ Zsð1Þ ¼ 0; Zs is Lipschitz

continuous at 0 and 1, and assumption ðA3Þ is satisfied with 0pa1; a4p2: Then

there is a constant C > 0 such that ð3:5Þ holds.

Proof. With d as in assumption (A3), let s1 and s2 satisfy 0ps1odo1�
dos2p1: Then, by (A3), we see that

y2 � y1 ¼
Z s2

s1

aðxÞ dxX
Z 1�d

d
aðxÞ dxXC3ð1� 2dÞ;

so

jZðs2Þ � Zðs1Þj2p max
0psp1

Z2s ðs2 � s1Þ
2p

max0psp1 Z2s
C3ð1� 2dÞ

ðs2 � s1Þðy2 � y1Þ:

That is, (3.5) is true.
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We now consider the case where 0ps1odos2p1� d: It follows from
(A3) that

y2 � y1 ¼
Z s2

s1

aðxÞ dxX
Z s2

s1

xa1 dx ¼
1

a1 þ 1
ðsa1þ12 � sa1þ11 Þ: ð3:7Þ

Also, by the mean value theorem, there are s1oz1; z2os2 such that

Zðs2Þ � Zðs1Þ ¼ Zsðz1Þðs2 � s1Þ and

sa1þ12 � sa1þ11 ¼ ða1 þ 1Þza12 ðs2 � s1Þ: ð3:8Þ

Note that

za12 ¼
1

s2 � s1

Z s2

s1

xa1 dxX
1

2

s2 þ s1

2

� 	a1
X
1

2

z1
2

� �a1

;

i.e.,

z1p2
1þ 1

a1z2: ð3:9Þ

Apply (3.7)–(3.9) and the assumptions in the theorem to see that

jZðs2Þ � Zðs1Þj2 ¼ Z2s ðz1Þðs2 � s1Þ
2ðy2 � y1Þ

�1ðy2 � y1Þ

p ða1 þ 1ÞZ2s ðz1Þðs
a1þ1
2 � sa1þ11 Þ�1ðs2 � s1Þ

2ðy2 � y1Þ

pCz21ðz
a1
2 Þ

�1ðs2 � s1Þðy2 � y1Þ

pCz2�a1
2 ðs2 � s1Þðy2 � y1Þ:

Other cases can be handled analogously. &

4. Stabilization of the weak solution

We now obtain stabilization results on the asymptotic behavior of the
weak solution as t-N: This section is independent of the last section. The
results in Section 2 are needed; in particular, the uniform boundedness of s

and u are utilized.

4.1. Main stabilization results

The stationary problem corresponding to (1.4), (1.5), and (1.8) is

%u ¼ �kðlð%sÞr %p þ g1ð%sÞÞ; r � %u ¼ 0; xAO;

f@t %s �r � fkðr%yþ g2ð%sÞÞ þ %ug3ðsÞg ¼ 0; xAO;
ð4:1Þ
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with the boundary conditions

%u � n ¼ %j1ðxÞ; xAGp
1;

%p ¼ %j2ðxÞ; xAGp
2;

�fkðr%yþ g2ðsÞÞ þ %ug3ð%sÞg � n ¼ %j3ðxÞ; xAGy
1;

%y ¼ yn; xAGy
2:

ð4:2Þ

Note that the phase mobility functions lw and l0 satisfy [8,10]

lwð0Þ ¼ 0 and l0ð1Þ ¼ 0: ðA:12Þ

Also, if the following assumption holds:

%j1 ¼ %j3; ðA:13Þ

by (1.6) and (A.12) we can easily see that the stationary problem in (4.1) and
(4.2) has the solution ð %p; %s � 1Þ where %p satisfies

%u ¼ �kðlð1Þr %p þ g1ð1ÞÞ; r � %u ¼ 0; xAO;

%u � n ¼ %j1ðxÞ; xAGp
1;

%p ¼ %j2ðxÞ; xAGp
2:

ð4:3Þ

We also have y � yn:
As mentioned before, system (4.3) corresponds to the physical case where

the wetting phase completely displaces the nonwetting phase which initially
occupied the domain O: Physically, that is not possible in practice because of
nonzero residual saturations. Mathematically, this is possible since we can
appropriately normalize the saturations.
We now show that the solution to the transient problem in (1.4), (1.5),

(1.8), and (1.9) converges to the solution to the stationary problem in (4.3)
as t-N: Toward that end, we assume that
(A14) There is a constant C > 0 such that

jg2ðs1Þ � g2ðs2Þj þ jg3ðs1Þ � g3ðs2ÞjpCjy1 � y2j;

0py1; y2pyn; si ¼ SðyiÞ; i ¼ 1; 2:

This assumption can be remarked as for (A11) in Section 3.3. For the
Dirichlet problem, we also need the assumption

j2 � %j2AL1ðð0;NÞ;H1ðOÞÞ; j4 � ynAL1ðð0;NÞ 
 GÞ;

limt-N jjj2 � %j2jjH1ðOÞ ¼ 0:
ðA:15Þ

Theorem 4.1 (Stabilization in the Dirichlet case). Suppose that the assump-

tions of Theorem 2.4 and ðA:12Þ–ðA:15Þ are satisfied. Then

lim
t-N

fjjs � 1jjL1ðOÞ þ jjp � %pjjL2ðOÞ þ jju � %ujjL2ðOÞg ¼ 0:
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For a corresponding result in the Newmann case, we need the assumption

j1 � %j1; j3 � %j3AL1ðð0;NÞ 
 GÞ; lim
t-N

jjj1 � %j1jjL1ðGÞ ¼ 0: ðA:16Þ

Theorem 4.2 (Stabilization in the Newmann case). Suppose that the

assumptions of Theorem 2.6, ðA:12Þ–ðA:14Þ; and ðA:16Þ are satisfied. Then

lim
t-N

fjjs � 1jjL1ðOÞ þ jjp � %pjjL2ðOÞ þ jju � %ujjL2ðOÞg ¼ 0:

4.2. Proof of Theorems 4.1 and 4.2

A stabilization result was shown in [18] under abstract assumptions on the
coefficients of a two-phase flow problem. In particular, when these
assumptions were applied to the coefficient aðsÞ; it was required to have a
degeneracy only near one:

aðsÞ ¼ Cð1� sÞa3 ;

for a3X2: In this subsection, we prove Theorems 4.1 and 4.2 under the
general assumption (A3) on aðsÞ:Moreover, the assumptions imposed in [18]
are weakened here.

Lemma 4.1. Let assumption ðA3Þ be satisfied. Then, with am ¼ maxfai : i ¼
1;y; 4g; there is a positive constant C such that

ðs1 � s2Þ
1þampCðy1 � y2Þ; si ¼ SðyiÞ; i ¼ 1; 2; 0pypyn:

This lemma can be shown in the same fashion as in Proposition 3.1.

Lemma 4.2. Let the nonnegative functions H1ðtÞ and gðtÞ satisfy the

differential inequality
dg

dt
þ g2pH1ðtÞ; gð0Þ ¼ g0 > 0;

where H1AL1ð0;NÞ: Then we have

gðtÞpF ðtÞ � e
�
R t

0
f ðtÞ dt

g0 þ
Z t

0

e

R t

0
f ðzÞ dz

H1ðtÞ dt
� �

-0 as t-N;

where the nonnegative function f ðtÞ is the solution of the differential equation
df

dt
þ f 2 ¼ H1ðtÞ; f ð0Þ ¼ g0: ð4:4Þ

Proof. Let f ðtÞ satisfy (4.4). Obviously, gðtÞpf ðtÞ for tAð0;NÞ since
H1ðtÞX0: Also, we can easily see that the solution f has the representation

f ðtÞ ¼ e
�
R t

0
f ðtÞ dt

g0 þ
Z t

0

e

R t

0
f ðzÞ dz

H1ðtÞ dt
� �

:

These facts yield the desired result. &
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We now consider the auxiliary problem

@tv þ Hðx; tÞr � ðkrvÞ þ Iðx; tÞ � rv ¼ �ZHðx; tÞv ðx; tÞAOT ;

krv � n ¼ 0 ðx; tÞAGy
1 
 J;

v ¼ 0 ðx; tÞAGy
2 
 J;

vðx;TÞ ¼ v0ðxÞX0 xAO;

ð4:5Þ

where Hðx; tÞ ¼ H0ðx; tÞ þ e1Xe1; H0; IACa;a=2ðOT Þ; v0AC2þaðOÞ; and Z is a
positive constant. For this problem, we have the next result. For its proof,
see Lemma 2 in [18].

Lemma 4.3. Let jI jpCH with C independent of x; t; and e1: Then there exists

Z0 such that for all 0oZpZ0 the solution v to (4.5) satisfies

0pvðx; tÞpjjv0jjCðOÞ þ 1 ðx; tÞAOT ;

ðkrv;rvÞpC0ðTÞoN;

e1

Z
J

ðw;r � ðkrvÞÞ dt










p ffiffiffiffi

e1
p

C0ðTÞjjwjjL2ðOT Þ 8wAL2ðOT Þ:

Moreover, for properly chosen v0 we have

jkrv � njpC; ðx; tÞAGy
2 
 J:

We are now in a position to prove Theorems 4.1 and 4.2.

Proof of Theorems 4.1 and 4.2. Let v be determined by (4.5) with the
coefficients given below. Without loss of generality, let jOj ¼ 1 and 0pvp1
(otherwise, consider O=jOj and v=fjjv0jjCðOÞ þ 1g below). Then it follows

from (1.5), (1.8), (4.1), and (4.2) that

@tðfð1� sÞ; vÞ � ðfð1� sÞ; @tvÞ þ ðkrðyn � yÞ;rvÞ

þ ðk½g2ð1Þ � g2ðsÞ�;rvÞ þ ðu½g3ð1Þ � g3ðsÞ�;rvÞ þ ð½ %u � u�g3ð1Þ;rvÞ

þ ð %j3 � j3; vÞGy
1
¼ 0:

Apply Green’s formula to the third term in the left-hand side of the above
equation. Also, by (1.6) and (A.12), we see that g3ð1Þ ¼ �1: Consequently,
by (1.4), (4.3), and (4.5), we obtain

@tðfð1� sÞ; vÞ � ðfð1� sÞ; @tvÞ � ðyn � y;r � ðkrvÞÞ

þ ðyn � y; krv � nÞGy
2
þ ðk½g2ð1Þ � g2ðsÞ� þ u½g3ð1Þ � g3ðsÞ�;rvÞ

þ ð %j1 � j1; vÞGp

1
þ ð %j3 � j3; vÞGy

1
¼ 0:
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That is,

@tðfð1� sÞ; vÞ � ðfð1� sÞ; @tv þ Hr � ðkrvÞ þ I 0rvÞ

þ ðyn � y; krv � nÞGy
2
þ ð %j1 � j1; vÞGp

1
þ ð %j3 � j3; vÞGy

1

þ e1ðfð1� sÞ;r � ðkrvÞÞ ¼ 0;

where

H ¼ ðyn � yÞ=ffð1� sÞg þ e1;

I 0 ¼ fk½g2ð1Þ � g2ðsÞ� þ u½g3ð1Þ � g3ðsÞ�g=ffð1� sÞg:

Denote by fphg a sequence of functions that are infinitely differentiable on
OT such that

jjrph �rpjjL2ðOÞ-0 as h-0þ:

With u replaced by uh; we define I � I 0h in (4.5). Now, by Lemma 4.3, we see

that

@tðfð1� sÞ; vÞ þ Zðyn � y; vÞpCfjjI 0 � I 0hjjL2ðOÞjjrvjjL2ðOÞ þ jjyn � j4jjL1ðGy
2Þ

þ jj %j1 � j1jjL1ðGp

1
Þ þ jj %j3 � j3jjL1ðGy

1Þ

þ
ffiffiffiffi
e1

p
CðTÞg:

Letting h-0 and e1-0; we see that

@tðfð1� sÞ; vÞ þ Zðyn � y; vÞpH1ðtÞ; ð4:6Þ

where

H1ðtÞ ¼ Cfjjyn � j4jjL1ðGy
2Þ
þ jj %j1 � j1jjL1ðGp

1
Þ þ jj %j3 � j3jjL1ðGy

1Þ
g:

By Lemma 4.1, the Jensen inequality, and the facts that 0psp1 and
0pvp1; observe that

ðyn � y; vÞXCðð1� sÞ1þam ; vÞXCð1� s; vÞ1þam

XCðfn; amÞðfð1� sÞ; vÞmaxf2;1þamg:

Let g ¼ ðfð1� sÞ; vÞ: Then (4.6) reduces to

@tg þ Cðfn; amÞgmaxf2;1þamgpH1ðtÞ;

with g0 ¼ Cðjjv0jjCðOÞ þ 1Þ: Now, apply Lemma 4.2 to see that

gðTÞ ¼ ðfð1� sÞ; v0ÞðTÞpF ðTÞ;
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where F ðTÞ is given as in this lemma. Choose v0 in (4.5) such that

v�10 ALpðOÞ; 0opo1: Then it follows from the Hölder inequality that

jj1� sjjL1ðOÞpCfjjv�10 jjLpðOÞF ðTÞgp=ðpþ1Þ-0 as T-N:

Apply Poincare’s inequality to have

jjp � %pjjL2ðOÞpCðjjrðp � %pÞjjL2ðOÞ þ jjj2 � %j2jjH1ðOÞÞ:

Also, as in Lemma 3.1, by the uniform boundedness of p and rp we have

jjrðp � %pÞjjL2ðOÞpCðjj1� sjjL1ðOÞ þ jjj1 � %j1jjL1ðGp

1
ÞÞ:

Therefore, the theorem follows. &

5. An example

In this section, we present an example to show typical regularity of the
saturation. Namely, we consider the so-called porous medium equation

@ts � Dsm ¼ 0; m > 1:

This equation can be equivalently rewritten in form (1.5):

@ts �r � ðmsm�1rsÞ ¼ 0; m > 1; ð5:1Þ

so we see that the diffusion coefficient aðsÞ is msm�1 and the variable y equals
sm: Obviously, (5.1) is degenerate at zero. Note that (1.5) reduces to (5.1) if
g2 ¼ g3 ¼ 0 and f ¼ 1: Also, Eq. (5.1) often arises in the flow of a gas in
porous media. To see this, ignoring certain constants, the gas flow is
governed by

@trþr � ðrvÞ ¼ 0; v ¼ �rp; r ¼ pg; ð5:2Þ

where r is the density, p the pressure, v the velocity, and g a (constant) ratio
of specific heats. These equations are the mass conservation, Darcy’s law,
and equation of state [8,25], respectively. Eliminating v and p in (5.2), we
obtain

@tr�
1

1þ g
Dðr1þ1=gÞ ¼ 0:

Rescaling t by 1=ð1þ gÞ leads to (5.1) with s ¼ r: Hence we see that one of
the advantages of writing the two-phase flow equations (1.1) in (1.4) and
(1.5) is that the analysis also applies to the single-phase flow.
Beginning from a delta function of integral G at the original, the exact

solution to (5.1) is of the form [7,24]

uðjxj; tÞ ¼ max 0; t�a G�
aðm � 1Þ
2dm

jxj2

t2a=d

� �1=ðm�1Þ( )
;
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where a ¼ 1=ðm � 1þ 2=dÞ: Fig. 1 shows an example of this solution in two
dimensions. It is radially symmetric and has compact support. Also, the
solution contains an interface where the gradient is discontinuous. With the
present choice of the initial datum, (5.1) corresponds to the flow case with a
point source.
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