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Abstract

In this paper we introduce a new control volume method for the discretization of a partial differential equation. The interpolation

in this method utilizes �bilinear�, spline, or weighted distance functions. We call this new method the control volume function ap-

proximation (CVFA) method. It can accurately approximate both the pressure and velocity in the simulation of multiphase flow in

porous media, effectively reduce grid orientation effects, and be easily applied to arbitrarily shaped control volumes. It is suitable for

hybrid grid porous media simulations. In this paper we focus on its development, numerical study, and comparison with a standard

control volume finite element method. A two-phase incompressible flow problem is used to show the efficiency and accuracy of the

CVFA.
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1. Introduction

The finite difference method has been widely used in

the numerical simulation of fluid flow in porous media.

However, this method causes numerical dispersion and

grid orientation problems [2,11]. It also possesses diffi-
culties in the treatment of complicated geometry and

boundary conditions. To overcome these deficiencies,

one has to utilize the intrinsic grid flexibility of the finite

element method [10], but this method does not conserve

mass locally [8]. Recently, the control volume finite el-

ement (CVFE) method has been developed to enforce

such a conservation property [12], but it often produces

inaccurate fluid velocities and cannot easily generate the
streamlines of fluid flow in porous medium simulations.

The reason is that the usual CVFE method uses linear

interpolation on each element to represent pressure, and

so leads to constant interpolation for velocity.

In this paper we introduce a new control volume

method for the discretization of a partial differential

equation. The interpolation in this method utilizes �bi-
linear�, spline, or weighted distance functions, instead of

polynomial functions employed in the CVFE. We call

this new method the control volume function approxi-
mation (CVFA) method. This new method has a clear

physical meaning in the treatment of the fluid flux in a

porous media flow simulation, and can accurately ap-

proximate both this flux and the pressure. The most

advantageous feature of the CVFA is that it has no re-

quirement on the shape of control volumes. Thus it is

very suitable for hybrid grid reservoir simulations. In

this paper we focus on the development and numerical
implementation of the CVFA and its comparison with

the CVFE. The numerical study shows that the CVFA

produces smaller approximation errors, has less grid

orientation effects, and can handle arbitrarily shaped

elements. A two-phase incompressible flow problem is

used to show the efficiency and accuracy of the CVFA.

The organization of this paper is as follows. In

the next section we introduce the CVFA and perform
numerical tests. In the third section we apply it to two-

phase incompressible flow in a porous medium. Con-

cluding remarks are given in the last section.
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2. The CVFA method

Throughout this paper, a two-dimensional domain X
is considered; an extension to the three-dimensional case

will be considered in future work.

2.1. Theoretical development

For the purpose of introduction, we consider the

model problem

�r � ðaðxÞrpÞ ¼ qðxÞ; x 2 X;

aðxÞrp � m ¼ gN ðxÞ; x 2 CN ;

p ¼ gDðxÞ; x 2 CD;

ð2:1Þ

where C ¼ CN [ CD is the boundary of X, CN \ CD ¼ ;,
a is a bounded, symmetric, and positive-definite tensor,

q and gN are integrable functions on X and CN , respec-
tively, gD is bounded on CD, and m is the outer unit

normal to C. Note that in the pure Neumann case, the

solution p to (2.1) is unique up to an additive constant,

and q and gN need to satisfy the compatibility conditionZ
X
qdxþ

Z
C
gN d‘ ¼ 0:

A partition Th of X consists of a set of (open) control

volumes Vi :

�XX ¼
[N
i¼1

�VVi ; Vi \ Vj ¼ ;; i 6¼ j;

where N is the total number of control volumes and �XX is
the closure of X. Different control volumes can have

different shapes; see Fig. 1. They can be generated from

basic triangular, quadrilateral, and/or elliptic elements;

they can also stand alone as the elements of a partition

of X. We define the boundary of each Vi by

oVi ¼
[Ni

k¼1

eik; ð2:2Þ

where Ni is the number of edges eik on oVi .
On each control volume Vi , we integrate the first

equation of (2.1) and use the divergence theorem to see
that

�
Z
oVi

arp � mi d‘ ¼
Z
Vi

qdx; i ¼ 1; 2; . . . ;N ; ð2:3Þ

where mi is the outer unit normal to oVi . On eik 
 oVi , an
interpolant ph is used to approximate p:

phðxÞ ¼
XRik
j¼1

pik;ju
i
k;jðxÞ; x 2 eik; i ¼ 1; 2; . . . ;N ; ð2:4Þ

where Rik is the number of interpolation nodes xi
k;j for eik

and these nodes can be located on or surrounding Vi ; see
Fig. 2. The basis functions ui

k;j are defined as follows:

ui
k;jðxÞ ¼

1 at the node xi
k;j;

0 at other nodes;

�
for j ¼ 1; 2; . . . ;Rik; k ¼ 1; 2; . . . ;Ni, and i ¼ 1; 2; . . . ;N .

As a result, we see that pik;j represents the pressure at the
jth interpolation node xi

k;j for eik. These basis functions

are supposed to satisfy the property:

XRik
j¼1

ui
k;jðxÞ ¼ 1; x 2 eik; k ¼ 1; 2; . . . ;Ni;

i ¼ 1; 2; . . . ;N : ð2:5Þ
This means that a constant pressure is also represented

by (2.3). This property is important in the local mass
conservation of the CVFA method discussed in this

section. It will be also used in establishing the important

relation (2.11) below.

Application of (2.2) to (2.3) yields

�
XNi

k¼1

Z
eik

arp � mik d‘ ¼
Z
Vi

qdx; i ¼ 1; 2; . . . ;N ; ð2:6Þ

where mik is the outer unit normal to the edge eik. By
substituting (2.4) into (2.6), we have

�
XNi

k¼1

XRik

j¼1

Z
eik

aðxÞpik;jrui
k;jðxÞ � mik dl ¼

Z
Vi

qdx;

i ¼ 1; 2; . . . ;N : ð2:7Þ
Set

T i
k;j ¼ �

Z
eik

aðxÞrui
k;jðxÞ � mik dl; Qi ¼

Z
Vi

qdx; ð2:8Þ

for j ¼ 1; 2; . . . ;Rik, k ¼ 1; 2; . . . ;Ni, and i ¼ 1; 2; . . . ;N .

Then (2.7) becomes

XNi

k¼1

XRik

j¼1

T i
k;jp

i
k;j ¼ Qi; i ¼ 1; 2; . . . ;N : ð2:9Þ

This is a linear system for pik;j.Fig. 1. A partition of X into control volumes.

Fig. 2. A control volume.
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We make a few remarks on the quantity T i
k;j. First, if

eik 
 CN in (2.6), then the flux on this edge is given by

gN ; if eik 
 CD, then the pressure in (2.7) on this edge is

given by gD. A Robin boundary condition (third or

mixed type) can also be easily incorporated into (2.6).
Second, T i

k;j is usually calculated with numerical inte-

gration (quadrature rules). Third, if a is a scalar a and

different on the two sides of an edge of Vi , across that

edge it can be approximated by the harmonic average

aðxÞ ¼ 2aþi ðxÞa�i ðxÞ
aþi ðxÞ þ a�i ðxÞ

; ð2:10Þ

where aþi and a�i indicate the values from the two sides.

If a is a tensor, this harmonic average can be used for

each component of a. The reason for using a harmonic

average is that for an inactive point (i.e., the point where

a ¼ 0), this average will give the same value (i.e., a ¼ 0).

Fourth, the standard upstream technique can be ex-
ploited in the computation of T i

k;j. Also, if a control

volume Vi contains a well (see the next section for a flow

problem), the upstream weighting technique should be

employed for Qi as well. Finally, T i
k;j satisfies the prop-

erty

XRik
j¼1

T i
k;j ¼ 0; k ¼ 1; 2; . . . ;Ni; i ¼ 1; 2; . . . ;N : ð2:11Þ

This can be easily seen from (2.5). It now remains to

construct the basis functions ui
k;j. Below we will con-

struct three kinds of basis functions.

2.1.1. ‘Bilinear’ function approximation
The interpolation nodes in the approach of this sub-

section are the centers of control volumes. Consider an

edge ei1 of a control volume Vi with center xi. The value

of p at any point x on ei1 can be obtained by its values at

the nodes xi; x
i
1; x

i
2, and xi

3, as shown in Fig. 3. The three

latter nodes are the centers of the control volumes ad-

jacent to Vi . Introduce points xi
1i and xi

23 which lie on the

line segments xi
1xi and xi

2x
i
3, respectively, and satisfy

jxi
1 � xi

1ij
jxi � xi

1ij
¼ jxi

2 � xi
23j

jxi
3 � xi

23j
;

where j � j indicates the distance. The values at xi
1i and

xi
23 are obtained by �linear� interpolation:

piðxi
1iÞ ¼ piðxi

1Þ þ
jxi

1i � xi
1j

jxi � xi
1j

piðxiÞ
�

� piðxi
1Þ
�
;

piðxi
23Þ ¼ piðxi

2Þ þ
jxi

23 � xi
2j

jxi
3 � xi

2j
piðxi

3Þ
�

� piðxi
2Þ
�
:

Now, applying �linear� interpolation again, the value of p
at x is found by

piðxÞ ¼ piðxi
1iÞ þ

jx� xi
1ij

jxi
23 � xi

1ij
piðxi

23Þ
�

� piðxi
1iÞ
�

¼
X3
k¼0

ui
1;kp

i
k; ð2:12Þ

where pi0 ¼ piðxiÞ and

ui
0;1 ¼

jxi
1i � xi

1j
jxi � xi

1j
1

�
� jx� xi

1ij
jxi

23 � xi
1ij

�
;

ui
1;1 ¼ 1

�
� jxi

1i � xi
1j

jxi � xi
1j

�
1

�
� jx� xi

1ij
jxi

23 � xi
1ij

�
;

ui
2;1 ¼ 1

�
� jxi

23 � xi
2j

jxi
3 � xi

2j

�
jx� xi

1ij
jxi

23 � xi
1ij
;

ui
3;1 ¼

jxi
23 � xi

2j
jxi

3 � xi
2j

jx� xi
1ij

jxi
23 � xi

1ij
:

Representation (2.12) can be extended to other edges eij
of Vi :

piðxÞ ¼
X3
k¼0

ui
k;jp

i
kþj�1:

Note that these functions are defined in terms of dis-

tances and look like bilinear functions in form. That is
why we have quoted �bilinear�.

We point out a difference between the �bilinear�
function approximation in the CVFA and the linear

polynomial approximation in the CVFE. The latter

method is based on control volumes which are generated

from triangles. Let points 0; 1; . . . ; 5 be vertices of tri-

angles (see Fig. 4). They are the centers of control vol-

umes. In the CVFE [12,17], the velocity vector
u ¼ �aðxÞrp at the interface ac is calculated by linear

polynomial interpolation which involves the values of p
at points 0, 1 and 2. In fact, the calculation of u at all

Fig. 3. A bilinear approximation. Fig. 4. Interpolation points for the CVFA.
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interfaces ac; bc, and dc in the CVFE involves only

points 0, 1 and 2. In contrast, in the CVFA the calcu-

lation of u at ac from the above construction involves

the values of p at points 0, 1, 2 and 3. Similarly, the

calculation of u at bc and dc involves 0, 1, 2 and 4, and 0,
1, 2 and 5, respectively. In this manner, the fluxes on the

interfaces between control volumes are guaranteed to be

continuous. Also, since the CVFA uses higher order

interpolation, the calculation of u is more accurate than

that in the CVFE.

2.1.2. Spline function approximation

It is well known that spline functions have good
smoothness properties and have been used in many

areas [16]. Here we utilize them to define our interpola-

tion functions. First, we define

xi
k;jðxÞ ¼ aik;j þ bik;jx1 þ cik;jx2 þ

XRik

l¼1

f i
k;j;lh

i
k;j;lðxÞ;

x ¼ ðx1; x2Þ 2 eik; ð2:13Þ

where aik;j; b
i
k;j; c

i
k;j; f

i
k;j;l 2 R, and

hik;j;lðxÞ ¼ 2ðrik;j;lÞ
2
ln rik;j;l;

rik;j;lðx1; x2Þ ¼ ððx1 � xi1;k;lÞ
2 þ ðx2 � xi2;k;lÞ

2Þ1=2;

with xi
k;l ¼ ðxi1;k;l; xi2;k;lÞ being the node coordinates,

j; l ¼ 1; 2; . . . ;Rik, i ¼ 1; . . . ;N . These spline functions

are required to satisfy these properties:

• nodal values:

xi
k;jðxÞ ¼

1 at the node xi
k;j;

0 at other nodes;

�

• zero total force:

XRik
l¼1

f i
k;j;l ¼ 0;

• and zero total force moment:

XRik
l¼1

f i
k;j;lx

i
k;l ¼ 0:

It can be checked that these three constraints can be

used to determine the coefficients aik;j; b
i
k;j; c

i
k;j, and f i

k;j;l

with an appropriate choice of the interpolation nodes

xi
k;j. In general, these nodes are the centers of control

volumes. For the simplest spline approach, we can use
four neighboring nodes to interpolate p and u, as in

Section 2.1.1. For higher order interpolation, we use

more nodes.

Now, the basis functions ui
k;j are expressed as

ui
k;jðxÞ ¼

xi
k;jðxÞPRik

l¼1 xi
k;lðxÞ

; x 2 eik:

Since there is no limit on the shape of control volumes,
this approach is suitable for unstructured grid reservoir

simulations.

2.1.3. Distance weighted approximation

We now introduce a simple approach to construct

basis functions. This approach appears the most flexible

on the choice of the shape of control volumes. To each

control volume Vi , we associate with a circle of radius Ri

which encloses the nodes xi
k;j; j ¼ 1; 2; . . . ;Rik. In gen-

eral, this circle is centered at the center of gravity of Vi .
For each node xi

k;j, we define the distance function (see

Fig. 5).

rik;jðxÞ ¼ jx� xi
k;jj; x 2 eik; j ¼ 1; 2; . . . ;Rik;

k ¼ 1; 2; . . . ;Ni; i ¼ 1; 2; . . . ;N :

We now define the basis functions ui
k;j by

ui
k;jðxÞ ¼

wi
k;jðxÞ
wi
kðxÞ

for x 6¼ xi
k;j;

1 for x ¼ xi
k;j;

(

where

wi
k;jðxÞ ¼ 1

 
� Ri

rik;jðxÞ

!�

; wi
kðxÞ ¼

XRik

j¼1

wi
k;jðxÞ; � > 0:

Again, thanks to the use of distance functions, the def-

inition of these basis functions does not have a specific
requirement on the shape of control volumes, and the

nodes can be the centers of control volumes.

2.2. Numerical example I

We first numerically check convergence rates of the

CVFA. To compare with the CVFE, the control vol-

umes used are generated from triangles, as noted earlier.
In (2.1), let X ¼ ð0; 1Þ � ð0; 1Þ be the unit square, a be

the identity tensor, and

qðxÞ ¼ 2p2 cosðpx1Þ cosðpx2Þ:
The boundary condition is

rp � m ¼ 0; x1 ¼ 0 and x1 ¼ 1; x2 2 ð0; 1Þ;
p ¼ cosðpx1Þ; x2 ¼ 0; x1 2 ð0; 1Þ;
p ¼ � cosðpx1Þ; x2 ¼ 1; x1 2 ð0; 1Þ:

Fig. 5. A distance weighted approximation.
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Then the exact solution to (2.1) is p ¼ cosðpx1Þ cosðpx2Þ.
We have also experimented with other examples, and

results similar to those presented have been observed.

Two types of norms are used to check the conver-

gence rates:

kvkL1ðXÞ ¼ max
x2X

jvðxÞj; kvkL2ðXÞ ¼
Z

X
jvðxÞj2 dx

� �2

:

The spline function approximation approach in Section

2.1.2 is used in the CVFA, and the interpolation nodes
consist of the centers of control volumes. We use the

simplest spline approach (Section 2.1.2) to compare with

the CVFE. The numerical errors and the corresponding

convergence rates for p and its gradient u ¼ rp are

shown in Tables 1–4 for the CVFA and CVFE, where ph
and uh are the approximate solutions of p and u, re-

spectively, h is the space step size in the x- and y-direc-
tions for the base triangulation, and the rate is the

convergence rate in the corresponding norm. From these

computational results, we see that the convergence rates

for p and u are asymptotically of order Oðh2Þ and OðhÞ
for both the CVFA and CVFE. However, from this and

other numerical experiments (not reported here) we have

observed that the approximation errors in the CVFA
are smaller than those in the CVFE.

2.3. Numerical example II

We now consider an example which the CVFE can-

not easily handle:

� Dp ¼ dðx� x0Þ; x 2 X;

p ¼ 0; x 2 C;
ð2:14Þ

Table 1

Numerical results for p in the CVFA

1=h kp � phkL1ðXÞ Rate kp � phkL2ðXÞ Rate

2 0.31147353 – 0.18388206 –

4 0.11490560 1.4387 4.8526985E)02 1.9219

8 3.2336764E)02 1.8292 1.2107453E)02 2.0029

16 8.3515844E)03 1.9531 3.0019570E)03 2.0199

32 2.1060989E)03 1.9875 7.4598770E)04 2.0087

64 5.2769621E)04 1.9968 1.8585293E)04 2.0050

Table 2

Numerical results for u in the CVFA

1=h ku� uhkL1ðXÞ Rate ku� uhkL2ðXÞ Rate

2 1.35576698 – 1.00055733 –

4 0.79144271 0.7766 0.40574242 1.3022

8 0.41524124 0.9305 0.15380230 1.3995

16 0.21064551 0.9791 6.3754123E)02 1.2705

32 0.10577494 0.9938 2.8906865E)02 1.1411

64 5.2954964E)02 0.9982 1.3795696E)02 1.0672

Table 3

Numerical results for p in the CVFE

1=h kp � phkL1ðXÞ Rate kp � phkL2ðXÞ Rate

2 0.35502877 – 0.18584850 –

4 0.11549486 1.6201 5.8970002E)02 1.6561

8 3.3079427E)02 1.8038 1.5744807E)02 1.9051

16 8.7789616E)03 1.9138 4.0029721E)03 1.9757

32 2.2525012E)03 1.9625 1.0049860E)03 1.9939

64 5.6991337E)04 1.9827 2.5151431E)04 1.9985

Table 4

Numerical results for u in the CVFE

1=h ku� uhkL1ðXÞ Rate ku� uhkL2ðXÞ Rate

2 1.8475225 – 1.2560773 –

4 1.3093706 0.4967 0.68846096 0.8675

8 0.70851284 0.8860 0.35305205 0.9635

16 0.36116394 0.9721 0.17767979 0.9906

32 0.18145106 0.9931 8.8985854E)02 0.9976

64 9.0834342E)02 0.9983 4.4511228E)02 0.9994
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where X ¼ fx 2 R2 : jxj � 1g is the unit circle and

dðx� x0Þ is the Dirac delta function with center x0. The

exact solution of (2.14) is Green�s function

pðxÞ ¼ 1

2p
ln

jx� x0j
jx0jjx� x�

0j

� �
; ð2:15Þ

where x�
0 is the image of x0 with respect to C:

x�
0 ¼

1

jx0j2
x0:

For this problem, circular grids (Fig. 6) are the most

appropriate. However, as noted, the CVFE cannot

easily and accurately treat this type of grid. The flexi-

bility of the CVFA on the shape of elements enables us

to employ them. The numerical errors kp � phkL2ðXÞ and

the corresponding convergence rates for the CVFA bi-

linear function approach are presented in Table 5, where

the uniform refinement in the radial and angular direc-
tions is measured by hr ¼ 1=Nr and hh ¼ 2p=Nh, and

x0 ¼ 0:5epi=6. From this table, we see that the conver-

gence rate in this norm is asymptotically of order OðhÞ.
The reduction in the rate is due to the reduction in the

regularity of the solution to (2.14) (see (2.15)). Because

of the nature of the solution (2.15), we are not able to

use the k � kL1ðXÞ-norm.

3. Application to two-phase flow in porous media

In this section we apply the CVFA in the previous

section to two-phase flow in porous media. The model

presented is for the general multi-dimensional case.

3.1. The two-phase model

For the flow of two incompressible, immiscible fluids

in a porous medium X 
 Rdðd � 3Þ, the mass balance

equation for each of the fluid phases is [3,14]

/
oðqasaÞ

ot
þr � ðqauaÞ ¼ qaqa; a ¼ w; o; ð3:1Þ

where a ¼ w denotes the wetting phase (e.g., water),

a ¼ o indicates the nonwetting phase (e.g., oil), / is the

porosity of the medium, and qa; sa; ua, and qa are, re-

spectively, the density, saturation, volumetric velocity,

and external volumetric flow rate of the a-phase. The
volumetric velocity ua is given by Darcy�s law

ua ¼ � jjra

la

rðpa � qagZÞ; a ¼ w; o; ð3:2Þ

where j is the absolute permeability of the porous me-

dium, pa; la, and jra are the pressure, viscosity, and
relative permeability of the a-phase, respectively, g de-

notes the gravitational constant, Z is the depth, and the

z-coordinate is in the vertical downward direction. In

addition to (3.1) and (3.2), the customary property for

the saturations is

sw þ so ¼ 1; ð3:3Þ
and the two phase pressures are related by the capillary
pressure function

pcðx; swÞ ¼ po � pw: ð3:4Þ
Finally, we define qa in (3.1) by

qa ¼
X
l

qðlÞa dðx� xðlÞÞ; a ¼ w; o;

where qðlÞa indicates the volume of the fluid produced or

injected per unit time at the lth well, xðlÞ, for phase a and

d is the Dirac delta function. Following [15], qðlÞa can be

defined by

qðlÞa ¼ 2pjjraDLðlÞ

la lnðr
ðlÞ
e =rðlÞc Þ

ðpðlÞ � pa � qagðZðlÞ � ZÞÞ; ð3:5Þ

where DLðlÞ is the length of the lth well, pðlÞ is the flowing
bottom hole pressure at the (datum level) depth ZðlÞ; rðlÞe

is the equivalent radius, and rðlÞc is the radius of the lth
well.

In this paper Eqs. (3.1)–(3.5) are solved in an im-

proved implicit pressure-explicit saturation (IMPES)

manner. To separate the pressure and saturation equa-

tions, we introduce the phase mobility functions

kaðx; saÞ ¼ jraðx; saÞ=la; a ¼ w; o;

and the total mobility

kðx; sÞ ¼ kw þ ko;

where s ¼ sw ¼ 1� so. The fractional flow functions are

defined by

faðx; sÞ ¼ ka=k; a ¼ w; o:

Following [1,4], we define the global pressure as

Fig. 6. A circular grid.

Table 5

Numerical results for the CVFA for test II

ðNr;NhÞ kp � phkL2ðXÞ Rate

(8,12) 4.13287534E)03 –

(16,24) 2.88767285E)03 0.5172

(32,48) 1.49421476E)03 0.9595

(64,96) 7.51098130E)04 0.9923
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p ¼ po �
Z s

fw
opc
os

� �
ðx; nÞdn: ð3:6Þ

Finally, we define the total velocity

u ¼ uw þ uo: ð3:7Þ
Now, under the assumption that the fluids are incom-

pressible we apply (3.3) and (3.7) to (3.1) to see that

r � u ¼ qðp; sÞ � qw þ qo; ð3:8Þ
and (3.4), (3.6), and (3.7) to (3.2) to obtain

u ¼ �jðkðsÞrp þ c1ðsÞÞ; ð3:9Þ
where

c1 ¼ �kwrxpc þ k
Z s

rx fw
opc
os

� �
ðx; nÞdn

� kwqwð þ koqoÞgrZ:

Similarly, apply (3.4), (3.6), (3.9), and the constant

densities to (3.1) and (3.2) with a ¼ w to obtain

/
os
ot

þr � jfwðsÞkoðsÞ
opc
os

rs
��

þ c2ðsÞ
�
þ fwðsÞu



¼ qwðp; sÞ; ð3:10Þ

where

c2 ¼ rxpc � ðqo � qwÞgrZ:

In (3.8) and (3.10), the well terms are now defined in

terms of the global pressure p and saturation s:

qðlÞa ðp; sÞ ¼ 2pjjraDLðlÞ

la lnðr
ðlÞ
e =rðlÞc Þ

ðpðlÞ � p � ca � qagðZðlÞ � ZÞÞ;

ð3:11Þ
where

co ¼
Z s

fw
opc
os

� �
ðx; nÞdn;

cw ¼
Z s

fw
opc
os

� �
ðx; nÞdn � pc:

The pressure equation is given by (3.8) and (3.9), while

the saturation equation is described by (3.10). They

determine the main unknowns p; u, and s. The model is

completed by specifying boundary and initial condi-

tions. In this paper we consider no flow boundary con-

ditions

u � m ¼ 0; x 2 C;

jfwðsÞkoðsÞ
opc
os

rs
��

þ c2ðsÞ
�
þ fwðsÞu



� m ¼ 0;

x 2 C:

ð3:12Þ
The initial condition is given by

sðx; 0Þ ¼ s0ðxÞ; x 2 X: ð3:13Þ
The differential system has a clear structure; the pressure

equation is elliptic for p and the saturation equation is

parabolic for s. The parabolic equation is degenerate in

the sense that the capillary diffusion coefficient can be

zero. These two equations are nonlinear. The mathe-

matical properties of this system such as existence,

uniqueness, regularity, and asymptotic behavior of so-

lutions have been studied in [5,6].

We end this section with two remarks. First, the
global pressure p in (3.6) is used. The use of this variable

reduces the coupling between pressure and saturation

equations [7]. It is also convenient in the treatment of

wells, as in (3.11). Second, in the case where fw and pc
depend only on s, it follows from (3.4) and (3.6) that

krp ¼ kwrpw þ korpo:

This implies that the global pressure is the pressure that

would produce the flow of a fluid (with mobility k) equal
to the sum of the flows of fluids w and o.

3.2. The discretization

It follows from (3.8) and (3.9) that

�r � jðkðsÞrp½ þ c1ðsÞÞ� ¼ qðp; sÞ:
This pressure equation is solved implicitly:

�r � jnðkðsnÞrpn½ þ c1ðsnÞÞ� ¼ qðpn; snÞ; ð3:14Þ
where pn represents the value of p at time level tn. On

each control volume Vi , as in (2.3) we have

�
Z
oVi

jnðkðsnÞrpn þ c1ðsnÞÞ � mi d‘ ¼
Z
Vi

qðpn; snÞdx;

i ¼ 1; 2; . . . ;N ; ð3:15Þ

to which the CVFA in Section 2.1 can apply.

The saturation Eq. (3.10) is solved explicitly in time:

/
snþ1 � sn

Dtnþ1
þr � jnfwðsnÞkoðsnÞ

opnc
os

rsn
��

þ c2ðsnÞ
�

þ fwðsnÞun



¼ qwðpn; snÞ;

where Dtnþ1 is the time step at level tnþ1 and

un ¼ �jnðkðsnÞrpn þ c1ðsnÞÞ:
Again, as in (2.3) we see that, for i ¼ 1; 2; . . . ;N ,Z

Vi

/
snþ1 � sn

Dtnþ1
dxþ

Z
oVi

jnfwðsnÞkoðsnÞ
�

� opnc
os

rsn
�

þ c2ðsnÞ
�
þ fwðsnÞun



� mi d‘

¼
Z
Vi

qwðpn; snÞdx: ð3:16Þ

An improved IMPES procedure [9] is used to solve

(3.15) and (3.16). This procedure utilizes an adaptive
control strategy on the choice of the time step for the

saturation and takes a much larger time step for the

pressure than for the saturation. Through a stability

analysis and a comparison with a simultaneous solution

procedure, we have shown that this improved procedure

is effective and efficient for the numerical simulation of
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two-phase flow and it is capable of solving two-phase

coning problems [9].

3.3. Numerical example III

This test is chosen to check the applicability of the

CVFA to two-phase (water and oil) flow in a hetero-

geneous porous medium. The absolute permeability j of

this heterogeneous medium is randomly chosen. The

porosity is / ¼ 0:2, and the reservoir dimensions are

1000� 1000� 100 ft3 (the flow is two-dimensional; i.e.,

it is uniform in the z-direction and the gravity is ig-
nored). There are 25 wells in this model: 13 injection and

12 production wells (see the location of wells in Fig. 9).

The bottom hole pressures at injection and production

wells are 3700 and 3500 psi, and the water and oil vis-

cosities are 0.4 and 6.0 cp, respectively. The relative

permeability data are given in Table 6 and the capillary

pressure is zero. Piecewise linear interpolation is used

for the permeabilities. No flow boundary conditions are
used in this example, as in (3.12).

Since the CVFA method has no requirement on the

shape of elements, we use the present two-phase flow

model to show the validity of this method for rectan-

gular grids by comparing it with the standard control

volume finite difference (based on the five point stencil)

method (CVFD). Fig. 7 presents the oil and water

production rates Qo and Qw (versus time in days) cal-

culated by the CVFA method using the �bilinear� func-
tion and distance weighted (with the power factor

� ¼ 1:08) approximation approaches and the CVFD
method, where CVFA-wd, CVFA-bl, and CVFD-5 in-

dicate the CVFA-distance weighted, CVFA-bilinear

function, and CVFD-five point approaches, respec-

tively. The choice of � depends on the underlying dif-

ferential problem and is empirical. The grid size is

chosen to be 50 ft between the centers of two control

volumes, the choice of time steps is given as in [9], and

the initial condition is s0 ¼ 0:2. The corresponding water
cut Fw and oil recovery rate Vo are displayed in Fig. 8,

where Fw ¼ Qw=ðQw þ QoÞ. From these figures we see

that the numerical results from different methods match

very well. As an illustration, the saturation distribution

by the CVFA method with the bilinear function ap-

proximation is shown in Fig. 9.

3.4. Numerical example IV

This test uses a homogeneous model to see the grid

orientation effect of the CVFA. The absolute perme-

ability j is 100 md. Other data are the same as those for

the first flow model except the dimensions of the porous

medium and the well schemes. Two cases are designed

for this test. For case one, the dimensions are

1050� 866� 100 ft3, and there are five wells: one in-
jection located at the center (525.00 ft, 433.00 ft) and

four production wells located at (75.00 ft, 779.42 ft),

(975.00 ft, 779.42 ft), (75.00 ft, 86.60 ft), and (975.00 ft,

86.60 ft). For case two, the dimensions are 1050�
1050� 100 ft3, the location of the injection well is

(525.00 ft, 525.00 ft) (the center), and the four produc-

tion wells are located at (25.00 ft, 1025.00 ft), (1025.00 ft,

1025.00 ft), (25.00 ft, 25.00 ft), and (1025.00 ft, 25.00 ft).

Table 6

Relative permeability data

s jrw jro

0.22 0 1

0.3 0.07 0.4

0.4 0.15 0.125

0.5 0.24 0.0649

0.6 0.33 0.0048

0.8 0.65 0

0.9 0.83 0

1 1 0
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Fig. 7. Oil and water production rates Qo and Qw.
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It can be seen that the four production wells are the
same distance from the injection well in both cases.

We use the saturation profiles and water break-

through times to check the grid orientation effects. The

control volumes for case one are based on the Voronoi

grid [13] (Fig. 10), while the control volumes for case

two are generated from a triangular grid (Fig. 11). Both

the CVFA and CVFE methods are applied to the two

cases. Figs. 10 and 11 show the saturation profiles by the
CVFA. From Fig. 10, we see that the water front is a

circle for this grid system. This implies that water

spreads in the same speed in all directions, and thus the

Voronoi grid does not have an orientation effect. Fig. 11

shows that the front is not a circle; in particular, it has a

preference to certain directions. Hence flow in the sec-

ond grid system is sensitive to the grid orientation.

These phenomena can also be seen fromTable 7. For case
one, the water break-through times of all production
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Fig. 8. Water cut Fw and oil recovery rate Vo for model one.

Fig. 9. Saturation distribution computed by the CVFA.

Fig. 10. The saturation of case one by the CVFA.

Fig. 11. Saturation for case two calculated by the CVFA.
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wells are the same: 217 days for both the CVFA and
CVFE. For case two, the water break-through times of

the second and third wells are 87 days and 90.5 days

shorter than those of the first and fourth wells by

the CVFA and CVFE, respectively. Thus we see that the

CVFA is slightly better than the CVFE in reducing the

grid orientation effect. The streamlines for case one by

the CVFA are illustrated in Fig. 12. From our numerical

experiments we have observed that the CVFA can easily
generate streamlines, which are very useful in under-

standing the essentials of oil recovery processes.

4. Concluding remarks

We have introduced a new control volume method.

This method is based on function approximations, so we
call it the control volume function approximation

method. We have studied three function approxima-

tions: �bilinear�, spline, and distance weighted. The spline

shape functions are the most useful from our numerical

experience because the distance weighted approach in-

volves the choice of a power factor and the bilinear

approach is valid only for four interpolation nodes. Our

numerical tests show that this new method produces
smaller approximation errors in the approximation of

both the pressure and velocity than the CVFE. The two-

phase flow simulation experiments demonstrate that the

CVFA is also better in reducing grid orientation effects.

The most advantageous feature of the CVFA is that it

has no requirement on the shape of elements (see the

numerical test II). It is particularly suitable for hybrid

grid porous medium simulation, which can correctly

describe the features of fluid flow near wells, faults, and
irregular boundaries. The treatment of these features

by the CVFA is being investigated.
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Fig. 12. Streamlines for case one calculated by the CVFA.

Table 7

Water break-through times

Method Gird Well 1

(day)

Well 2

(day)

Well 3

(day)

Well 4

(day)

CVFA Case 1 217.0 217.0 217.0 217.0

CVFA Case 2 380.0 293.0 293.0 380.0

CVFE Case 1 217.0 217.0 217.0 217.0

CVFE Case 2 386.5 296.0 296.0 386.5
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