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Abstract. The multiscale finite element method was developed by Hou and Wu [J. Comput.
Phys., 134 (1997), pp. 169-189] to capture the effect of microscales on macroscales for multiscale
problems through modification of finite element basis functions. For second-order multiscale partial
differential equations, continuous (conforming) finite elements have been considered so far. Efendiev,
Hou, and Wu [STAM J. Numer. Anal., 37 (2000), pp. 888-910] considered a nonconforming multiscale
finite element method where nonconformity comes from an oversampling technique for reducing
resonance errors. In this paper we study the multiscale finite element method in the context of
nonconforming finite elements for the first time. When the oversampling technique is used, a double
nonconformity arises: one from this technique and the other from nonconforming elements. An
equivalent formulation recently introduced by Chen [Numer. Methods Partial Differential Equations,
22 (2006), pp. 317-360] (also see [Y. R. Efendiev, T. Hou, and V. Ginting, Commun. Math. Sci., 2
(2004), pp. 553-589]) for the multiscale finite element method, which utilizes standard basis functions
of finite element spaces but modifies the bilinear (quadratic) form in the finite element formulation
of the underlying multiscale problems, is employed in the present study. Nonlinear multiscale and
random homogenization problems are also studied, and numerical experiments are presented.
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1. Introduction. Hou and Wu [18] introduced the multiscale finite element
method for numerical solution of multiscale problems that are described by par-
tial differential equations with highly oscillatory coefficients. The main idea of this
method is to incorporate the microscale information of a multiscale differential prob-
lem into finite element basis functions. It is through these modified bases and finite
element formulations that the effect of microscales on macroscales can be correctly
captured.

A convergence analysis of the method was given in [19] for a two-scale homoge-
nization problem with periodic coefficients. It was proven that the multiscale finite
element solution converges to the homogenized solution as h,e — 0, where h is the
mesh size and € is the small scale in the solution. The analysis also indicated that
a resonance error exists between the grid scale and the scales of the homogenization
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problem. This is a common feature in some numerical upscaling techniques. This
error represents a mismatch between the local construction of the multiscale basis
functions and the global nature of the continuous problem. An oversampling tech-
nique was analyzed in [16] to reduce the resonance error. The idea of this technique is
to construct the local basis functions over a domain with size larger than h to reduce
the boundary layer effect present in the first-order corrector of the local solution. The
oversampling technique results in a nonconforming multiscale method.

The multiscale finite element method and its oversampled version have been based
on continuous (conforming) basis functions for second-order partial differential equa-
tions. In this paper we study this method and its variations using nonconforming
finite elements. The nonconforming elements have been widely used in computational
mechanics and structural engineering due to the fact that they employ fewer degrees
of freedom than their conforming counterparts for the same partial differential prob-
lem. However, a convergence analysis for the nonconforming elements is more difficult
because of nonconformity. In fact, there is no general convergence theory available
for these elements [6]. If the oversampling technique is used in the setting of the
nonconforming elements, a double nonconformity arises. Here we show how the con-
vergence results obtained for the conforming multiscale method can be extended to
the nonconforming multiscale method.

The present analysis is based on an equivalent formulation recently introduced
by Chen [7] (also see [15]) for the multiscale finite element method, which utilizes
standard basis functions of finite element spaces but modifies the bilinear (quadratic)
form in the finite element formulation of the underlying multiscale problems. This
new formulation captures the macroscale structure of the solution of a differential
multiscale problem through the modification of this bilinear form. It is a general
approach that can handle a large variety of differential problems, periodic or non-
periodic, linear or nonlinear, and stationary or dynamic, and can be applied in a
variety of finite elements, conforming or nonconforming, and Galerkin or mixed, as
shown here.

The paper is organized as follows. In the next section we present a continuous
two-scale problem and the traditional nonconforming finite element method for it.
The multiscale finite element method using nonconforming basis functions is defined
in the third section. A homogenization theory is reviewed in the fourth section;
homogenization is used only in the convergence analysis. The convergence analysis
for the cases h < € and € < h is given in the fifth section. The extensions of
the nonconforming multiscale finite element method and its analysis to random and
nonlinear homogenization problems are described in the sixth and seventh sections,
respectively. Finally, numerical experiments are given in the last section. As a general
remark, the generic constant C' > 0 is assumed to be independent of the mesh size h
and the microscale € throughout this paper.

2. Preliminaries. Let € be a bounded domain in Rd7 1 < d < 3, with Lipschitz
boundary I'. For a subdomain D C €2, each integer m > 0, and each real number
1 <p < oo, W™P(D) indicates the usual Sobolev space of real functions that have all
of their weak derivatives of order up to m in the Lebesgue space LP(D). The norm
and seminorm of WP (D) are denoted by || ||m,p,p and |- |m p, b, respectively. When
p =2, W™P(D) is written as H™ (D) with the norm ||||,,,p and the seminorm |- |, p.
We also use the space

H(D) = {v e H'(D) : v|spp = 0}.
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We consider the second-order elliptic problem

-V - (a.Vu*) = in €,
(2.1) ( ) =1
ut =0 on T,

where f € L*(Q) is a given function and a. = (a;j(z/€)) is a symmetric, positive
definite, bounded tensor:

d

(2:2) alC? < Y ay(y)GaG <al¢f Yy, (eRY,

ij=1

for some positive constants a, and a*. In the first five sections we assume that a(y)
is smooth and periodic in y with period I = [0,1]¢. In problem (2.1), the multiscale
feature is reflected in the oscillatory nature of the coefficient a. for € < 1, which
represents the microscale. For simplicity, we consider the homogeneous Dirichlet
boundary condition in (2.1). Also, the subsequent methods and their analysis can be
given when a. is of the form (a;;(x,x/€)) (the locally periodic case) [9, 16] (see the
seventh section).
Let U = H}(Q). The variational form of (2.1) is to find u¢ € U such that

(2.3) (a.Vus, Vo) = (f,v) Yv e U,

where (-,-) denotes the inner product in L2(Q) or (L%(0))¢, as appropriate.

For h > 0, let Tj be a regular, quasi-uniform macroscale partition of Q [6, 11],
where the mesh size h resolves the variations of €, f, and the slow variable of a.
Associated with T}, let U, C L%(2) be a finite element space such that for any
v € UN HYQ) there exists a vj, € Uy, satisfying the approximation property

(2.4) ||’U—’Uh||0’Q—|—h|’U—Uh|1’h < Chl‘vh’g, 1<i<r+1,

where |vl1n = (Xrer, [v130)'/% The traditional (nonconforming) finite element
method for (2.1) is to seek up, € Uy, such that

(2.5) Z (aeVup, Vu)r = (f,v) Yo € Up,.

TET,
A nonconforming finite element analysis [6, 11] shows that the error estimate holds:
(2.6) [uf —uplloo + hlu —uplin < CRHu ), 1<I<r+1.
Because the following regularity result for (2.1) holds [21],

(2.7) [ul2.0 < Ce [ fllog,

estimate |u€ —up|1,5 in (2.6) deteriorates for small e. One of the aims of this paper is
to introduce multiscale methods to derive improved error estimates.

3. The MsFEM. As discussed in the introduction, the multiscale finite element
method (MsFEM) developed in [3, 18] uses modified basis functions. In this section,
following [7], we define the MsFEM in an equivalent form, which utilizes standard
basis functions but modifies the bilinear form in (2.5).
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For any v € Uy, we define Rr(v) € HY(T), T € Ty, by

(acVRr(v),Vw), =0 Yw € Hy(T),

3.1) Rp(v) =v on OT.

The global operator R is then given by
R(’U)|T = RT(’U) Yv € Uh, TeT,.

It is easy to see that R(v) ¢ U, v € Uy,. Now the MSFEM for (2.1) is to seek uy € Uy,
such that

(3.2) > (acVR(un), VR(v))r = (f, R(v)) Vv € Up.
TET),

Note that the major difference between (2.5) and (3.2) lies in the modification
of the bilinear form, which needs the solution of local problems (3.1). It is through
these local problems and the finite element formulation that the effect of microscales
on macroscales can be correctly captured. Since these local problems are independent
of each other, they can be solved in parallel.

We will give a convergence analysis for (3.2). Throughout this paper we will
perform all proofs in detail for the lowest-order nonconforming finite element space
on triangles (respectively, simplices) [6, 12]. We point out that there is no technical
difficulty in extending all arguments to spaces of higher order and other types of
nonconforming finite elements [1, 6]. In the lowest-order case, the nonconforming
space Uy, is

Up = {v € L*(Q) : v|p is linear, T € Tj,; v is continuous at the midpoints of interior
edges (respectively, centroids of interior faces) and is zero at the
midpoints of edges (respectively, centroids of faces) on T'}.

The existence and uniqueness of a solution to (3.2) can be shown as in the con-
forming MSFEM [7]. Moreover, the following equivalence holds:

(33) Cl‘v‘l,T < |RT(U)|1,T < CQ|U|17T Yov € Uh,
and the solution uy, satisfies the stability result
(3.4) unlin + [R(un)lin < Cllfllo.o-

4. Homogenization theory. The convergence analysis for the case ¢ < h will
be different from that for h < € and will utilize a macroscopic model of (2.1). Here
we collect some results from the homogenization theory. The homogenized problem
of (2.1) reads as follows: Find Uy € U such that
(4.1) (AVU,, Vv) = (f,v) Yo e U,
where the homogenized matrix A = (A4;;) is given by

A= [ <aij<y> n f (kg;) <y>> dy

k=
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and 7 satisfies, with a periodic boundary condition in y,

d
. 9 .
(4.2) ~Vy - (aVyx) =) 9 y), yel, /x] (y) dy = 0.
=1

I

It is well known that A is symmetric and positive definite. We will assume that
X/ € Wheo(I), which is true if a;; € WHE(I), £ > 2 [21].
Define

d

oU
900
(4.3) U0+6E X T

Then simple algebraic manipulations give

(4.4) jz;aij (%) g;j = Zd: (Aij + 9ij (*)) ggj +€Z ai;x" <m> 8?;((;;]

where
(4.5) 9ii(y) = aij(y) + ) (aizaazj) (y) — Aij.

In matrix form, (4.4) is given by

U,
(4.6) acVu§ = AVUy + gVUy + e; QX - vaxo
where g = (gs5)-
Note that g;; is periodic in y and
/gij(y) dy =0,
I

by the definition of A. Also, note that

d

0

Z =—9i;(y) = 0.

= i
Hence there is a skew-symmetric matrix o (y) such that

i 5 '
J _
Gi (Y aj(y) dy=0
1= gk ok
Therefore, we see that
d
5U0 8 ; BUO ; X 82U0

s 5 (0) Bz, =« X\ (% (0 3y )~ (0) dmyame )
(47) Zg / ejgl{ Oz, (a 0x; Yik e O0x;0xy,
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Equations (4.3)—(4.7), together with (4.8) and (4.9) below, will be employed in the
subsequent analysis. It follows from [9, 25] that there is a constant C, independent
of €, such that

(4.8) lu® — Usllo,n < Ce(|Usl2,0 + [Uoli,0) -
The following lemma extends a similar result in [25]. Also, an analogous result was
shown for a Neumann problem in [9]. The proof for the Dirichlet problem (2.1) is
different from that for the Neumann problem [7].

LEMMA 4.1. Let Uy € H*(Q) N W1>(Q) and u$ be defined by (4.3). Then there

is a constant C, independent of € and €2, such that

20+ VelTT [Vl }

where |T'| is the length of T' (d =2) or its area (d =3).

(4.9) |u¢ —ujlio <C {€|UO

5. Convergence analysis. For the nonconforming finite element method con-
sidered, it is known that the Céa lemma is no longer valid. Strang’s second lemma [23]
can be easily shown by using assumption (2.2) and (3.2) [6, 11].

LEMMA 5.1. Let u® and up be the respective solutions of (2.3) and (3.2). Then

there is a constant C' > 0, independent of h and €, such that
(5.1)

|u® — R(up)|1n < C{vien(i |u® — R(v)|1,n
oy [Dren [ TR, = G R

wEUp, w0 |wl1,n

In (5.1), the first term in the right-hand side is referred to as the approximation
error, and the second term is called the consistency error. The latter error stems from
nonconformity.

5.1. The case h < €. In the case h < ¢, the traditional nonconforming finite
element method and the MSFEM behave similarly. In fact, the error bound (2.6)
holds for (3.2). For completeness, we show the error estimate for this case.

THEOREM 5.2. Let u® and up, be the respective solutions of (2.3) and (3.2). Then
there is a constant C' > 0, independent of h and €, such that

Ch?
(5.2) lu® — R(un) oo + hlu® — R(up)|1,n < T||f|

0,Q-
Proof. Define the conforming finite element space
Vi, ={veU: v|rislinear, T € Ty}

Because V}, C Uy, it follows from Theorem 2.5 in [7] that the approximation error in
(5.1) can be estimated as follows:

Ch?
5.3 inf [u®—R S — :
(5.3) nf |u ()10 < - I fllo.0
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It thus suffices to bound the consistency error in (5.1). By using Green’s formula and
(2.1), for w € Uy, we see that

3" [(aeVus, VRy(w)) . — (f, Rr(w))r]

TeTh

= Z [((JLGVu6 v, RT(w))aT — (V - (aeVus), RT(w))T — (f, RT(w))T]

TeT),

= Z (aEVu6 -V, RT(w))aT’

TET)

where v is the outward unit normal to 9T. Thus, by the definition of Ry (w) in (3.1)
(i.e., Ry(w) = w on OT),

(5.4) > [(aeVus, VRr(w)), = (f, Rr(w))r] = Y (acVu - v,w),,.

TeTh TETh

Consequently, application of the standard convergence argument for the nonconform-
ing finite element method under consideration [6, 11] to (5.4) yields

(5.5) Z [(a€Vu€,VRT(w))T — (f, Rr(w))r]| < Chlu‘|z,0|w|i,n-
TeT

Therefore, combine (2.7), (5.1), (5.3), and (5.5) to obtain the desired result (5.2) for
the norm | - |1,,. A standard duality argument for the nonconforming method [6, 11]
can be applied to obtain the L%-estimate in (5.2). 0

5.2. The case € < h. The convergence analysis for the case ¢ < h is very
different from that for A < €. In the present case, the homogenization theory in the
fourth section will be used.

For any w € Uy, define

(5.6) Q(w)zw—l—eZX —,

where the function x* is defined in (4.2), k =1,2,...,d.
LEMMA 5.3. Let R(w) and Q(w) be defined by (3.1) and (5.6), respectively. Then

(5.7) |R(w) — Q(w)|jo.r < Cehd™ P w|y o, T €Ty, we Uy,
and
(5.8) IR(w) — Q)17 < Ceh?* Mwly o, T €T, we Uy

Proof. On each T € T}, we define a boundary corrector 6. by
-V - (acVh.) =0 inT,
(5.9) 4L ow
HE:—eZX Er on OT.
k=1
It can be checked that

(5.10) a.VQ(w) = AVw + gVw, T €Ty,
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By combining (3.1), (5.9), and (5.10), we see that

(5.11) R(w) — Q(w) = 0., xeT.
Thus it suffices to estimate 0..
Note that
d ow _
10clor < Ce| S x| < Ceh™ VP |wly o,
k=1 0,0T

which gives (5.7). Next, applying a maximum principle to (5.9) yields [21]
(5.12) 10cll0,00,7 < Celw]1,00,7-
Also, an interior estimate [2] implies that
0|17 < Chz[|0c]|o,r,
which, together with (5.12), gives

(5.13) 0el1.7 < Cehyl* ™ |wly 07

Finally, by (5.11) and (5.13), the desired result (5.8) follows. d

The proof of the next lemma can be found in [9].

LEMMA 5.4. Let v € L®(R%) (d =2 or 3) be a periodic function with respect to
I and its average over I be zero. Then, for any w € HY(T) N L*(T), T € Ty,

/Tv (%) w(zx) dx

We now derive error estimates for the case € < h.
THEOREM 5.5. Assume that Uy € H*(Q)NWH(Q). Ifu® € U and uy, € Uy, are
the respective solutions of (2.3) and (3.2), then the error estimates hold:

‘UE_R(Uh)ll,Q SC{(}L+€) \/5 |[]0|17OO)Q}7
{02+ 110+ [5 100l

Proof. Again, since the conforming finite element space V}, is a subspace of Uy, it
follows from Theorem 2.9 in [7] that the approximation error in (5.1) can be estimated
by

516l = R <O+ Ol oo+ 5 [Oohma).

veUy,

(5.14)

d —
< Ce{hg Pl r + hE wllo.or

(5.15)

[ — R(un)

so it is sufficient to estimate the consistency error in (5.1).
By (5.6), for w € U, we see that

(5.17)

(acVu, VRT(w)) —(f7RT( Nt
= (acVus, V[Rr(w) — Q(w)]) Ry (w) — Q(w))r + (acVu, V), — (f, w)r

<aevu ezvxkaw> (f, Zx’“aw>T
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We estimate each term in the right-hand side of (5.17). First, by using (5.8), we see
that

(5.18) (acVus, VIR (w) — Qw)]) 4| < Ceh™* M|y 7wy 0.7

Also, by applying (5.7), we have

(5.19) |(f, Rr(w) — Q(w))r| < Cens™ V| fllo,r

w|1,oo,T~
Next, by using relation (4.6), we write

(5.20)
(aeVu, Vw)T — (f,w)r = (aV[u® —ui], Vw)p + (acVui, Vw), — (f,w)r
= (acV[u® = ug], Vw)y + (AVUo, Vw) 7 — (f, w)r

d
oUy
+(gVUo, Vw)p + € (,; aeXk - Va—xk, Vw) ]

It is clear that

(5.21) |(aeVu® —ufl], Vw)p| < Clu® —u

1,r|wlh, 7

Application of the standard convergence argument for the nonconforming finite ele-
ment method [6] gives

(5.22) > [(AVUy, Vw)y — (f,w)1]

TETh

< Ch|Up|2,0|w|1,n-

It follows from (5.14) that

(523) |(gVUO, Vw)T| S Ce {hgw/Z‘Uoh,T + hgleUO”l,oo,T} |w 1,00,T-

Obviously, it holds that

d
€ <Z AeXk * V%, Vw)
T

(5.24) < CelUpl2,r|wly,r.

k=1 k
Now, substituting (5.21)—(5.24) into (5.20) implies that

Z [(aCVuE,Vw)T — (f,w)ﬂ

TETy,

(5.25) < c{ > (= wihrlwh,r + e (Ul + 14 Ul 1) o

TeT
w|17h}.

1,00,T>

+(h + €)|U0|27Q
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Again, by using relation (4.6), we write

ow
(aEVu € Z ka 0y )
T

k=1
d ow d ow
= (aEV[uE - uﬂ,zvyxka > + (aEVui, Zvyxkam>
k=1 T k=1 T
4 ow ¢ ow
= <a€V[uE - uﬂ,zvyxka ) + (AVUO, Zvyxkaxk>
T k=1 T
duw My & ow
(oo dimat gt ) (Yo VRS wa )
= T k=1 k=1 T

and an argument similar to that for (5.25) yields

| <a€Vu ez ka g;u >
k

< C{W —uili,r|wlir + €lUol2,r|wli,r

(5.26)

+e (hcé/z\Uob,T + th_l\Uoh,oo,T) |w|1,oo,T}-

Finally, it is easy to see that

d ow
o [COAEIE
k=1 T

Now, combine (5.16)—(5.19), (5.25)—(5.27), and Lemmas 4.1 and 5.1 to obtain the
desired result in the norm |- | in (5.15). A duality argument in the nonconforming
setting [6, 11] can be employed to obtain the L?-estimate in (5.15). d

5.3. An oversampling technique. Note that estimates (5.15) deteriorate when
€ is of the same order as the mesh size h. This phenomenon reveals a “resonance er-
ror” between the grid scale h and the scale € of the continuous problem (2.1). The
resonance is due to a mismatch between the local solution of (3.1) and the global
solution of (2.1) on the boundary of each T € T},, which produces a boundary layer.
Since this layer is thin, we can sample in a (local) domain with size larger than h
and utilize only the interior sampled information. In this manner, the influence of
the boundary layer in the larger domain can be greatly reduced. In this subsection,
we extend this technique for the conforming MsFEM [16, 18] to the MSFEM in the
present nonconforming finite element setting in order to reduce the resonance error
n (5.15).

For each T € T}, we indicate by S(T) a macroelement which contains T' and
satisfies the following condition: There are positive constants C; and Cs, independent
of h and €, such that hg < C1hp and dist(9S, 9T) > Cahy, where hg is the diameter
of S. For each v € Uy(T) (the restriction of U, to T'), we extend it to Up(S) as
follows. Let {¢7 19 and {47 }{™" be the respective bases of Uy (T) and Uy, (S). Set

d+1 d+1

T.T T TS
vlr = ZQ‘ o, ¢ = ZQ‘j%‘ 7.
i=1 j=1
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Then we define v € Uy(S) by

U
+
=

~_ T TS
v = ¢ Ci 5
1

0.
Now, for any v € Uy, we define Rg(v) € HY(S), T C S, T € Ty, by
(acVRs(v),Vw)g =0  Yw € HJ(S),
Rg(v) =0 on 9S.
The global operator R is defined by
R(v)|r = Rs(v)|r Vv € Uy, T € Ty,
The oversampled MSFEM for (2.1) is to seek uj, € Uy, such that

(5.29) Y (acVRsir)(un), VRsry(v))p = > (£ Rsy(v)), Vv € Up.
TeETh TeETh

(5.28)

A stability analysis for (5.29) can be done in the same fashion as for (3.2). Fur-
thermore, Strang’s second lemma can be proven as for Lemma 5.1.

LEMMA 5.6. Let u® and uy, be the respective solutions of (2.3) and (5.29). Then
there is a constant C' > 0, independent of h and €, such that

|u€ — R(uh)|1,h < C{vienl};; |u6 _ R('U)|1,h
IanJwJMiVRﬂwhw<ﬂRAMhm}
+ sup ,

’LUGUh,,’Ll);éO |w|1,h

where S = S(T), T € Tj.

By using this lemma and an analogous proof as for Theorem 5.5 (also see The-
orem 2.15 in [7]), we can show the next theorem. Here we consider only the case
e < h.

THEOREM 5.7. Assume that Uy € H2(Q)NWL°(Q). Ifu¢ € U and uy, € Uy, are
the respective solutions of (2.3) and (5.29), then the error estimates hold:

1n € C{(h+Olfloe+ (Ve+ 1) 0ol }
e = R(un)lo.e < € {(h? + O floa+ (Ve + 1) Vol }

We remark that, while these estimates improve those in (5.15), resonance persists.

|u® = R(un)

6. A random homogenization problem. In the previous sections we have
assumed that the coefficient a. in problem (2.1) has the form a(z/€) or a(z,x/€) and
a(x,y) is periodic in y. In many problems such as in porous media flows [8], this
coefficient is often random. In this section we indicate how to extend the multiscale
finite element analysis performed for (2.1) to a multiscale problem with a random
coefficient.

Let (D, F, P) be a probability space and a(y,w) = (ai;(y,w)) be a random field,
y € RY w € D, whose statistics is invariant under integer shifts. Furthermore, let a
satisfy the uniform ellipticity condition (2.2); i.e.,

d
(6.1) alCl* < Y ai(y.w)GG < a'lC]? Ywe D, y,( eRY,

4,J=1
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for some positive constants a. and a*. Problem (2.1) now takes the form

(6.2) v (a(z/e,w)Vu) = f  inQ,
ut =0 on I

As in (4.2), let x7 satisfy [20]

d
(6.3) Y, (aly, @) Vo) = 3 %aij(y7w),

i=1 7!

and V7 is assumed to be stationary under integer shifts. y’ is generally not sta-
tionary. Define the average operator with respect to the measure P (mathematical
expectation):

0 =E[ o) d

The homogenized coefficient A is given by
(6.4) A= (a(T+ V),

where 7 is the identity matrix and x = (x',x?,...,x%)7T. With this coefficient, the
variational formulation of the homogenized problem is defined as in (4.1).

For the convergence analysis in the random case, we will use an important mixing
condition [17]. For a subdomain B C R¢, denote by ®(B) the o-algebra generated
by the parameters {a(y,w) : y € B}. Let (; and {5 be two random variables that are
measurable with respect to ®(B;) and ®(Bs), respectively. We assume that

(6.5) IE((1G2) — E(GQ)E(G)| < e C4stBrB2), JEC2, [EC3.

This type of exponential decay condition is often used for geostatistical models.

Note that the definition of the MSFEM (3.2) does not utilize any periodicity or
macroscopic model. Thus, in the random case it can be defined in the same manner
as in the periodic case; that is, (3.1) and (3.2) remain the same.

We now obtain error estimates for the case € < h. For the conforming multiscale
finite element method, error estimates were obtained between the multiscale finite
element solution and the homogenized solution Uy [10, 14]. For the present non-
conforming method, we derive similar estimates. For this, we write Strang’s second
lemma (Lemma 5.1) in terms of Up.

LEMMA 6.1. Let up, and Uy be the respective solutions of (3.2) and (4.1), with A
given by (6.4). Then there is a constant C > 0, independent of h and €, such that
(6.6)

U0 = Rl < € inf 100~ Ry
veUp

+ sup I ZTGTh [(GEVUo, VRT(w))T - (fv RT(w))T] | }
weUp,w#0 |w|1,h

THEOREM 6.2. Let up, and Uy be the respective solutions of (3.2) and (4.1), where
the homogenized coefficient A is now given by (6.4), and Uy € H?(2) N WhHee(Q).
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Then, under condition (6.5), we have

E (U~ Run)in < € (h+ (£)),

(6.7) an
B < 2 h
E |Uo = R(up)llo < C (h * (h) ) ’
where
6 — 12\ .
) 25_8>\ Zfd— 37
- 1

forany 0 < A < 1/2.

Proof. Again, since the conforming finite element space V}, is a subspace of Uy,
it follows from Theorem 7.6 in [10] that the approximation error in (6.6) can be
estimated by

(6.8) E inf [Up— Rl <C{n+(5)"},

so it is sufficient to estimate the consistency error in (6.6).
We write
(6.9)
> [(acVUs, VRr(w)) , — (f, Rr(w))r]

TETh

=Y ((ac = A) VU, VRr(w)) .+ > [(AVUs, VRr(w)), — (f, Rr(w))r] .

TeET, TeTh

Let Py, denote the standard Lagrange interpolation operator from U into Up,. Note
that

> ((ae = A) VU, VRr(w)),,

TEeT),
> ((ae = A)V[Uy = Pillo], VRr(w)) .+ Y ((ac = A) VP,Uo, VR (w)) .
TEeT TeTy

By applying an approximation property of P, the first term in the right-hand side of
this equation can be estimated as

(6.10) > ((ae — A) V[Uy — PolUo], VR (w)),,

TeTy,

< Ch|Uplz2,0|w|1,h.

The second term involves the convergence of a. to the homogenized matrix A. In
exactly the same argument as in the conforming finite element method (see Proposi-
tion 7.8 in [10] or Theorem 1.3 in [14]), under condition (6.5), we have

(6.11) > ((ae = A) VP Uy, VRr(w)),,

TeT

€ K
<0 (5) Wolialwla:
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Next, by using Green’s formula and (4.1), for w € U, we see that

S [(AVUs, VRy(w)) . — (f, Rr(w))r]

TET

Z [(AVUO sV, RT(w))BT - (V . (AVU()), RT(w))T - (f> RT(w))T]

TeTy,

> (AVUy - v, Rr(w))

TeTh

Consequently, by the definition of Rr(w) in (3.1) (i.e., Rp(w) = w on 97T),

> [(AVU, VRr(w) , = (f, Re(w))r] = > (AVUy - v,w) .

TEeT), TeTy

Hence, application of the standard convergence argument for the nonconforming finite
element method [6, 11] implies that

(612) Z [(AVU(), VRT(U/))T — (f7 RT(’LU))T] é Ch|U(]‘27Q|U)|17h.

TeT),

Finally, applying (6.8)—(6.12) in (6.6) generates the first result in (6.7). The second
result in (6.7) follows from a standard duality argument for the nonconforming finite
element method [6, 11]. 0

While estimates are given only in terms of Uy — R(uyp), they can also be shown
for the error u® — R(uyp) (see section 7.3).

7. A nonlinear problem. In this section we extend the MsFEM in the non-
conforming finite element setting discussed in the earlier sections to the nonlinear
problem

-V - (a.Vu*) = in €,
(7.1) ( ) =1
ut =0 on T,
where a. = ac(z,z/€e,u°) now depends on the solution u®. We assume that the

coefficient ac(z,y,z) is equicontinuous in z uniformly with respect to z and y and
periodic in y with period I = [0, 1]¢. Furthermore, it satisfies inequality (2.2). Under
such assumptions, the solution u¢ converges weakly in U = VVO1 P(Q) (p > 1) to the
solution of the homogenized equation [5]

V- (A(z,Up)VU) = f  in©,

(7.2)
U() =0 on F,

where the homogenized matrix A = (A4;;) is

d .
1 NG
Aij(z,q) = m/j <aij(:v7y,q)+ > (aika;(k) (a?,ywz)) dy VYgeR
k=1

and x7 satisfies, with a periodic boundary condition in ¥,

d
; 0
_vy . (ae(l’yy,Q)va]) = Z 7%3‘(%97@7 Y S I?
(7.3) = Ovi

/Ixj(w,y,q) dy =0, g€R.
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As in (4.1), the variational form of (7.2) reads as follows: Find Uy € U such that
(7.4) (A(z,Up)VUy, Vv) = (f,v) Vv € U.

Let U, C L%(2) be the nonconforming finite element space defined in the third
section. For any v € Uy, we define its local solution Rr(v) € HY(T), T € Ty, by

(aec(z,x/e,v)VRr(v), Vw)p =0 Yw € Hy(T),

7.5
(7:5) Rp(v) =v on OT.
Now the MSFEM for (7.1) is the following: Find uj, € Uj, such that
(7.6) Z (ae(x,x/e,uh)VR(uh),VR(U))T = (f,v) Yov € Uy,
TeT,

Note that the local problem (7.5) is linear.

Whenever bilinear (quadratic) forms and norms involving partial derivatives are
evaluated on the nonconforming finite element space U}, they are understood in the
piecewise sense, as in the definition of the norm | - |1 . Introduce the linearized
differential operator at Uy,

L(Up)v ==V - (A(z,Up) Vv + v Ap(z,Uy) V) , ve HY(Q),

and the corresponding bilinear form

A(Uy; v, w) = (A(z, Up) Vv, Vw) + (vA,(x, Uy) VUy, V) Yo, w € HY(Q),

where A,(z,u) = V,A(z,u). We assume that this linearized operator is an isomor-
phism from H}(Q) to H~1(), so Uy is an isolated solution of (7.2), and there is
ho > 0 such that, for 0 < h < hg [6, 22],

(7.7) sup A(Uo; v, w)

> Col|lv|1,0 Yv € Up,
weln  lwl1,e

where Cy > 0 is independent of h.
For any v,v1,w € U, we define

R(v,v1,w) = Avy, w) — A(v, w) — A(v; 01 — v, w).
If v,v1 € U satisty ||v]|1,00,0 + [V1]l1,00,0 < M, then it follows from [24] that
1 1
(7.8) [R(v,01,w)| < C(M) (llell§ 2 + leVellop) IVwllog, — e=v—uvy, PR

It follows from the definition of R and (7.4) that u;, € U}, is the solution of (7.6)
if and only if

A(Uo; Up — up, w) = R(Uo, un, w) + [A(Up, w) — (f, w)]
+ [Ap(up, w) — A(up, w)] Yw € Uy,

where Ap(un, w) =Y ey, (ac(z,z/e,un)VR(up), VR(w))r. Define
E(v,w) = Ap(v,w) — A(v, w) Yo, w € Uy,

(7.9)

and
|E(v, w)]|

E= max —_
veU,nWhe (),wely, ||v]1,allw|.a
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7.1. Existence and uniqueness of a solution. To prove the existence and
uniqueness of a solution to (7.6), we introduce the projection of Uy into Uy, through
the linearized bilinear form A:

(7.10) A(Uy; PyUy,v) = A(Uy; Up,v) Yo € Up,.

It follows from (7.7) that P,Uj exists, is unique for 0 < h < hg, and satisfies [13]
(7.11) U — PUsll1,00,0 < Ch, ||Up — PaUo|l1,0 < Ch

if Uy € W2>(Q). When Uy € W2?(R) (p > d), it holds that

(7.12) |Uo — PuUoll1,00,0 < CRIY/P.

Finally, for a given = € €, we define the discrete Green’s function G € U by

(7.13) A(Up; v, G}) = dv(z) Yv € Up,

where dv indicates any of the partial derivatives dv/dx; (i = 1,2,...,d). This function
satisfies

(7.14) 1G]

1,1, S C| ln h|.

THEOREM 7.1. Assume that L is an isomorphism from H(Q) to H=1(Q) and
Up € UNW?2P(Q), with p > d. In addition, assume that there are constants Cy and
ho such that, for 0 < h < hg,

(7.15) B’ < ).
Then problem (7.6) has a solution uy, satisfying

—1/2 _
llun — PoUo|l1,000 < E / + pl=dlr,

(7.16) f
lun — Uoll1,00,0 < C (E1/2 + hl_d/”) .

Furthermore, if, for all vi,va € U, N WH(Q) and w € Uy, with ||v1]1,000 +
[lv2ll1,00.0 < M, there is a constant (o(M), with 0 < (o/Co < 1, such that

(717) |E(v1,w) — E(’Ug,’w)| S <0H1)1 — U2|

1,9Hw||1,97

then this solution wuy, is locally unique, where Cy is given by (7.7).
Proof. We define the nonlinear mapping L : Uy, — Up:

A(Ug; L(v), w) = A(Uy; Uy, w) — R(Up, v, w) + A(v,w) — Ap, (v, w) Yw € Up,.
This mapping is continuous by using (7.7) and (7.8). We also define the set
B= {v €Un: |Jv— PulUlhcon <E'* + hl—d/p} :
Note that, by (7.10),

A(Uy; L(v) — PLUy,w) = =R (U, v,w) + A(v, w) — Ap (v, w) Yw € Up,.
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By choosing w = G7 in this equation and applying (7.8), (7.12), (7.14), and (7.15),
we see that, with v € B and ||v[|1,00,0 < M,
I£(v) = Pulollr,c0.0 < C(M) (U = vlff o0 + E) [l
< C(M) (U — PrUo ioo,Q + || PnUo — U”ioo,ﬂ + E) [Inh|
< (M) (hZ’Qd/” +E) In |

S El/Q + h/:lfd/p7

which implies that £(B) C B with an appropriate choice of C;. The Brouwer fixed
point theorem means that there is a u; € B such that L(up) = uy,.

To prove the uniqueness, let u} and u? be two solutions of (7.6). Then it follows
from (7.7) that, with u}, = (1 — t)us + tuj,

[ A(ul s ul — u2, w) dt

C’oHu;lL — ui 1,0 < sup 0
wely, wll1,0
< up MAluhw) — Al w)|
wel), w10

Note that, by (7.7),

A(up, w) — A(uj, w) = [A(up, w) — Ap(up,w)] — [A(up, w) — Ap(uj, w)] .
Consequently, by using (7.17), we see that
Go

g, = uillne < 2 lup — uilhe.

Co

A

Since (p/Cy < 1 via assumption, uj = ui. Therefore, the solution uy is locally
unique. 0

7.2. Error estimates. The multiscale finite element solution w; in the next
theorem refers to the one that satisfies the conditions in Theorem 7.1. In the previous
sections both of the cases h < € and h > € were analyzed for convergence of the linear
MsFEM. Here we focus on the case € < h, where € > 0 is assumed sufficiently small.

THEOREM 7.2. Let Uy and uy be the solutions of (7.4) and (7.6), respectively,
and Uy € W2>(Q). Then there is hg > 0 such that, for 0 < h < hog,

€ €
mw)mwwmnsc@+¢0,n%—wmmﬂgo@+J0mmL

provided that €/h is sufficiently small.
Proof. By taking w = P,Up — up, in (7.9) and using (7.7), (7.8), and a similar
argument as for (6.12), we see that

(7.19) |1 PaUo — unll1.0 < C (|Uo — unllfaq +E+h).

As in the conforming case (see Proposition 4.3 in [10]), it can be shown that

(7.20) E< O\/E,
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provided that h and €/h are sufficiently small. Also, by applying an interpolation
inequality, we have

(7.21) 106 = unllf 4,0 < 106 — unll1.0llUo — unll1.00.0-

Consequently, combining (7.19)—(7.21) and using (7.11) and Theorem 7.1 yields the
first result in (7.18).
By choosing w = G in (7.9) and using (7.8), (7.11), and (7.14), we see that

HPhUO — uh||170079 < CEHD h|HPhU0 — uh||170079 +C (”UO — up,

3 o0+ E+h)[Inhl.
By applying (7.20), if €/h is sufficiently small, it follows that
| PnUo — unlli,co0 < C (100 — unlf oo + E+ h) [Inhl.
As a result, by applying Theorem 7.1, we obtain
1Uo — unll1,00,0 < C (HPhUo —Uoll1,00,0 + (E—i— h) |lnh|) ,

which, together with (7.11), implies the second inequality in (7.18). d

7.3. Approximation to u€. Theorem 7.2 shows that the multiscale finite el-
ement solution wuy of (7.6) is a good approximation of the macroscopic solution Up.
We now consider an approximation to the solution u¢ of (7.1).

For each T € Ty, let zp be the barycenter of T' and wuy be the solution of (7.6).
Note that

d
x Ju
(722) VRT(uh) = Vuy, + Z Vyx’“ (.’ET, 7,uh(.’ET)> J, T eTy,.
P € Tk
Define the first-order approximation of u{ by
d x oU,
€ __ k - hd’)
ui =Uy +€;X (x, 6,Uo(z)) 02y
Clearly,
d
U, 8)(’“ an 8U0
.2 ¢ = k ky Y20 YX YH0 A vaad N
(7.23)  VuS VUoJr;{(er +V,xF) S0 T G0 Do VU + ex vamc
Combining (7.22) and (7.23) gives
(7.24)
[u§ = R(up)|i,r < C (|Uo = unlr,r + € [|Uoll2r + 10613 4.7])
d
B (g T Uk (2 Uy
+ ,; |:va ($T7 Eyuh(xT)> Vyx (337 o UU(CC))} 2 .

< C{|Uo —upli,r + U0 — unl1,00 700|117

+(e+h) (I0oll2,r + 1Uol13 4.7 + [Uol1,00,7|Uo

1,T)}.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/01/14 to 136.159.119.111. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

THE MULTISCALE FINITE ELEMENT METHOD 535

Fic. 1. A triangulation of a unit square.

A classical estimate for u® — u§ [4, 5, 25] gives
(7.25) lu® — uf]l1.0 < Cye.

Finally, by combining (7.18), (7.24), and (7.25), we obtain the next theorem.
THEOREM 7.3. Let u® be the solution of (7.1), R(up) be defined by (7.22), and
Uy € W2°(Q). Then there is hg > 0 such that, for 0 < h < hg,

(7.26) |u¢ — R(up)|1,n < C (h +Ve+ ﬁ) In

provided that €/h is sufficiently small.

8. Numerical experiments. Numerical experiments are not available for the
MSsFEM defined in the equivalent formulation (3.2) even in the conforming case. Be-
fore numerical experiments are presented for the nonconforming MsFEM, we first give
them for the conforming MSFEM in formulation (3.2). The focus here is to check the
accuracy theory established in the previous sections. More numerical results will be
reported in our future research.

8.1. Conforming finite elements. The domain () is assumed to be a unit
square, which is triangulated into 2(m + 1)? triangles as shown in Figure 1. To solve
the local problem (3.1), each triangle is divided into (n + 1)? smaller equal triangles.
The traditional conforming P; finite element method directly used to solve problem
(2.1) on the fine grid requires memory of order O(n?m?), while MSFEM’s memory is
of order O(n? +m?), so there is a significant reduction in memory. We are interested
in incorporating as much fine-scale information into the solution as possible, and thus
m is usually much larger then n.

Ezxample 1. The first example exploits a rapidly varying coeflicient a.:

1
© 2+ L5sin(2n(zy + x2)/€)’

Qe

which is plotted in Figure 2 for e = 0.08. The right-hand side function f is chosen in
such a way that an analytic solution results. As an example, for u = x223 — 2329 —
123 + 2179 and n = 8, the convergence results in the H', L% and L* norms are
given in Table 1 for the MSFEM. These estimates are in good agreement with our

theory; the numerical H' estimates are better than theoretical ones.
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Fic. 2. The plot of ae in Example 1 with ¢ = 0.08.

TABLE 1
Convergence results for Example 1 with e = 0.08 and n = 8.

m H! Rate L? Rate L Rate
9 2.8571e-04 - 3.1162e-04 - 5.1649e-4 -
19 | 8.3350e-05 | 1.78 | 1.0640e-04 | 1.55 | 2.7913e-4 | 0.89
39 | 2.4409e-05 | 1.77 | 2.8078e-05 | 1.92 | 6.4062e-5 | 2.12
79 | 6.7166e-06 | 1.86 | 7.1565e-06 | 1.97 | 1.4142e-5 | 2.18

TABLE 2
Convergence results for Example 2 with e = 1/60 and n = 8.

m ot Rate L? Rate L Rate
9 2.1028e-2 - 2.4252e-2 - 4.6161e-2 -

19 | 5.2847e-3 | 1.99 | 5.6493e-3 | 2.10 | 1.3671e-2 | 1.76
39 | 1.3644e-3 | 1.95 | 1.4472e-3 | 1.96 | 3.5562e-3 | 1.94
79 | 3.4496e-4 | 1.98 | 3.5427e-4 | 2.03 | 9.0519e-4 | 1.97

Example 2. To test our method further, we consider a different choice of the
rapidly oscillating coefficient:
_ 1.5+sin(2rwy/e) 1.5+ sin(2m2/€)
1.5 +sin(2rwa/e) 1.5+ sin(27zy Je)

+ sin(4a323) + 1.

Qe
For this example, the analytic solution is v = sin(27z1) sin(27z2), and the convergence

results are presented in Table 2. Similar results as those in Example 1 are obtained;
here the numerical H' estimates are of order two, which is superconvergence.
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TABLE 3
Convergence results for Example 3 with ¢ = 0.08 and n = 8.

Traditional FEM MsFEM
m L? Rate L? Rate
9 1.1760-+00 - 4.1913e-2 -

19 | 2.64244-00 | -1.16 1.0698e-2 | 1.97
39 | 1.2723+00 | 1.05 2.8077e-3 | 1.93
79 2.3862e-1 2.41 8.1074e-4 | 1.79

TABLE 4
Convergence results for the nonconforming MsFEM with ¢ = 0.08 and n = 8.

m H? Rate L? Rate L Rate
9 3.0277e-05 - 1.1367e-04 - 0.0057 -

19 | 6.5849e-06 | 2.20 1.2809e-05 | 3.14 0.0015 1.93
39 | 1.5790e-06 | 2.06 1.5208e-06 | 3.07 | 3.6452e-04 | 2.04
79 | 3.8324e-07 | 2.04 1.8527e-07 | 3.03 | 9.1115e-05 | 2.00

Example 3. In the third example, we compare the traditional finite element
method and MSFEM for numerically solving (2.1) with

1
(2 + 1.8sin(27z1 /€))(2 + 1.8sin(2mz2 /€))

Ae =

For the analytic solution u = cos(2mx1) cos(2mxs), the comparison is given in Table 3,
which indicates the superiority of MsFEM.

8.2. Nonconforming finite elements. We now present numerical experiments
for the nonconforming multiscale finite element method (3.2).

Ezample 4. As an example, we only consider problem (2.1) with the rapidly
oscillating coefficient:

1
T 24 sin((z1 + 22)/€)

Qe

For the analytic solution u = sin(2mx;)sin(zz2), the convergence results in the H!
(discrete), L2, and L° norms are given in Table 4 for the MSFEM. For this particular
example, superconvergence is observed for both the H' and L? errors.

Ezxample 5. Finally, we test the MsFEM with the oversampling technique as
presented in section 5.3, where problem (2.1) has the following data:

~ 14+0.9sin(2rx1/e) 14 0.9sin(2mx2/€)
© 14+0.9sin(2rza/e) 14+ 0.9sin(27x, /€)’

f=-1

€

The exact solution of this test example is unknown, so the coarse mesh solutions
obtained by the oversampled nonconforming MsFEM are compared with the solution
up, obtained by using the standard conforming method over the mesh nm = 1264.
For a fixed ¢/h = 0.5, the error estimates in the L? norm are given in Table 5, which
shows a first-order convergence.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/01/14 to 136.159.119.111. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

938

(1]

Z. CHEN, M. CUIL, T. Y. SAVCHUK, AND X. YU

TABLE 5
Convergence results for the oversampled nonconforming MsFEM with e/h = 0.5 and n = 8.

m € L2 Rate
9 1/20 2.2344e-04 -
19 1/40 1.1271e-04 | 0.9874
39 1/80 5.5832e-05 | 1.0135
79 | 1/160 | 2.7822e-05 | 1.0049
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