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1. Introduction. Hou and Wu [16] introduced the multiscale finite element
method for numerical solution of multiscale problems that are described by partial dif-
ferential equations with highly oscillatory coefficients. The main idea of this method
is to incorporate the microscale information of a multiscale differential problem into
finite element basis functions. It is through these modified bases and finite element
formulations that the effect of microscales on macroscales can be correctly captured.

The convergence analysis of the method was given in [17] for a two-scale linear
homogenization problem with periodic coefficients. It was proven that the multiscale
finite element solution converges to the homogenized solution as h, ε → 0, where h is
the mesh size and ε is the small scale in the solution. The analysis also indicated that
a resonance error exists between the grid scale and the scales of the homogenization
problem. This is a common feature in some numerical upscaling techniques. This
error represents a mismatch between the local construction of the multiscale basis
functions and the global nature of the continuous problem. An oversampling technique
was analyzed in [13] to reduce the resonance error. The idea of this technique is to
construct the local basis functions over a domain with size larger than h to reduce
the boundary layer effect present in the first order corrector of the local solution.

A convergence analysis of the multiscale finite element method and its oversam-
pled version for nonlinear problems was recently given by Efendiev [11] and Efendiev,
Hou, and Ginting [12], and error estimates were obtained for monotone operators
(see the next section). These monotone operators do not cover the nonlinear prob-
lem studied here, which is a natural extension of the usual linear homogenization
problems with highly oscillatory coefficients [5, 16, 17]. The primary goal of this pa-
per is to derive error estimates for the nonlinear problem under consideration. We
show that error estimates similar to those for linear homogenization problems hold
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for this problem as well. We also indicate how to extend this error analysis to random
homogenization problems.

The present analysis is based on an equivalent formulation for the multiscale fi-
nite element method recently introduced by Chen [5], which utilizes standard basis
functions of finite element spaces but modifies the bilinear (quadratic) form in the
finite element formulation of the underlying multiscale problems. This new formu-
lation captures the macroscale structure of the solution of a differential multiscale
problem through the modification of this bilinear form. It is a general approach that
can handle a large variety of differential problems, periodic or nonperiodic, linear
or nonlinear, and stationary or dynamic, as shown here. A similar idea using the
operator approach was employed by Arbogast [1].

The paper is organized as follows. In the next section we present a continuous
two-scale nonlinear problem, the multiscale finite element method, and existing error
estimates. Existence and uniqueness of a multiscale finite element solution is shown
in the third section. An improved error analysis is given in the fourth section. An
oversampling technique for the nonlinear problem is presented in the fifth section,
and a simple reconstruction trick to retrieve the microscopic information is described
in the sixth section. Finally, an extension to a random homogenization problem is
given in the seventh section. As a general remark, the generic constant C > 0 (with
or without a subscript) is assumed to be independent of the mesh size h and the
microscale ε throughout this paper.

2. Existing error estimates for nonlinear problems. Let Ω be a bounded
domain in R

d, 1 ≤ d ≤ 3, with Lipschitz boundary Γ. For a subdomain D ⊂ Ω,
each integer m ≥ 0, and each real number 1 ≤ p ≤ ∞, Wm,p(D) indicates the usual
Sobolev space of real functions that have all their weak derivatives of order up to m
in the Lebesgue space Lp(D). The norm and seminorm of Wm,p(D) are denoted by
‖ ·‖m,p,D and | · |m,p,D, respectively. When p = 2, Wm,p(D) is written as Hm(D) with
the norm ‖ · ‖m,D and the seminorm | · |m,D. We also use the space

W 1,p
0 (D) = {v ∈ W 1,p(D) : v|∂D = 0}, p > 1.

Again, when p = 2, it is written as H1
0 (D).

We consider the nonlinear problem

−∇ ·
(
aε∇uε

)
= f in Ω,

uε = 0 on Γ,
(2.1)

where aε = a(x, x/ε, uε) depends on the solution uε. In problem (2.1), the multiscale
feature is reflected in the oscillatory nature of the coefficient aε for ε 
 1, which
represents the microscale.

We assume that the coefficient a(x, y, z) is equicontinuous in z uniformly with
respect to x and y and periodic in y with period I = [0, 1]d. Furthermore, it satisfies

a∗|ζ|2 ≤
d∑

i,j=1

aij(x, y, q)ζiζj ≤ a∗|ζ|2 ∀x ∈ Ω, y, ζ ∈ R
d, q ∈ R,(2.2)

for some positive constants a∗ and a∗. Under such assumptions, the solution uε

of problem (2.1) converges weakly in U = W 1,p
0 (Ω) (p > 1) to the solution of the

homogenized equation [3]

−∇ ·
(
A(x, U0)∇U0

)
= f in Ω,

U0 = 0 on Γ,
(2.3)
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262 ZHANGXIN CHEN AND TATYANA Y. SAVCHUK

where the homogenized matrix A = (Aij) is

Aij(x, q) =
1

|I|

∫
I

(
aij(x, y, q) +

d∑
k=1

(
aik

∂χj

∂yk

)
(x, y, q)

)
dy ∀q ∈ R,

and χj satisfies, with a periodic boundary condition in y,

−∇y ·
(
a(x, y, q)∇yχ

j
)

=

d∑
i=1

∂

∂yi
aij(x, y, q), y ∈ I,∫

I

χj(x, y, q) dy = 0, q ∈ R.

(2.4)

The variational form of (2.3) reads as follows: Find U0 ∈ U such that

A(U0, v) ≡ (A(x, U0)∇U0,∇v) = (f, v) ∀v ∈ U .(2.5)

For h > 0, let Th be a regular, quasi-uniform macroscale triangulation of Ω [4, 7]
into simplices, where the mesh size h resolves the variations of Ω, f , and the slow
variable of aε. Associated with Th, let Uh ⊂ U be the finite element space of piecewise
linear functions over simplices so that for any v ∈ U ∩H2(Ω), there exists a vh ∈ Uh

satisfying the approximation property

‖v − vh‖0,Ω + h‖v − vh‖1,Ω ≤ Ch2|v|l,Ω.(2.6)

For any v ∈ Uh, we define its local solution RT (v) ∈ H1(T ), T ∈ Th, by

(a(x, x/ε, v)∇RT (v),∇w)T = 0 ∀w ∈ H1
0 (T ),

RT (v) = v on ∂T.
(2.7)

The global operator R is then given by

R(v)|T = RT (v) ∀v ∈ Uh, T ∈ Th.

It is easy to see that R(v) ∈ U , v ∈ Uh. Note that the local problem (2.7) is linear.
In the case without ambiguity in the context, the subscript T in R will be omitted.

Define

Ah(v, w) =
(
a(x, x/ε, v)∇R(v),∇R(w)

)
, v, w ∈ Uh.

The multiscale finite element method (MsFEM) for (2.1) is as follows: Find uh ∈ Uh

such that

Ah(uh, v) = (f, v) ∀v ∈ Uh.(2.8)

Note that the major difference between (2.8) and the standard Galerkin finite
element method lies in the modification of the bilinear form, which needs the solution
of local problems (2.7). It is through these local problems and the finite element
formulation that the effect of microscales on macroscales can be correctly captured.
Since these local problems are independent of each other, they can be solved in parallel.
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For a linear counterpart of problem (2.1) where the coefficient aε = a(x, x/ε) does
not depend on the solution uε, the following error estimate was obtained for method
(2.8) [5, 17]:

|uε −R(uh)|1,Ω ≤ C

{
(h + ε)‖f‖0,Ω +

√
ε

h
|U0|1,∞,Ω

}
,

‖uε −R(uh)‖0,Ω ≤ C

{
(h2 + ε)‖f‖0,Ω +

√
ε

h
|U0|1,∞,Ω

}
,

(2.9)

provided that U0 ∈ H2(Ω) ∩W 1,∞(Ω).
Recently, Efendiev, Hou, and Ginting [12] studied convergence of the MsFEM for

a nonlinear problem analogous to (2.1):

−∇ · a(x, uε,∇uε) = f.(2.10)

Under the assumptions that a(x, uε,∇uε) = a(x/ε,∇uε) and

|a(x, ξ)| ≤ C|ξ|p−1,

(a(x, ξ1) − a(x, ξ2), ξ1 − ξ2) ≥ C|ξ1 − ξ2|p,
(a(x, ξ), ξ) ≥ C|ξ|p,
|a(x, ξ1) − a(x, ξ2)| ≤ CH(ξ1, ξ2, p− 1 − s)|ξ1 − ξ2|s,

where s > 0 and p > 1, the following error estimate was derived (see [12, Theorem
3.2]):

‖u− uh‖p1,p,Ω ≤ C

(( ε
h

) s
(p−1)(p−s)

+
( ε
h

) p
p−1

+ h
p

p−1

)
.(2.11)

Obviously, the assumptions made on aε exclude the nonlinear problem (2.1). The
convergence result in [12] was obtained for the general nonlinear case (2.10); however,
there is no explicit convergence for the case considered in this paper because of very
weak assumptions made in the way the coefficients depend on uε. The aim of this
paper is to obtain error estimates for the MsFEM (2.8). In particular, we will derive
error estimates similar to (2.9) under much weaker assumptions on the coefficient aε
in (2.1). The error analysis is inspired by E [9] and E, Ming, and Zhang [10] for the
heterogeneous multiscale method.

3. Existence and uniqueness of a solution. It is known that the error anal-
ysis of the MsFEM for the case h < ε is different from that for the case h > ε. In the
former case, the MsFEM has error estimates similar to those for the traditional finite
element method [5, 17]. It is the latter case that is of interest and is being investigated
in this paper. The argument below requires that ε > 0 be sufficiently small.

Introduce the linearized differential operator at U0

L(U0)v = −∇ · (A(x, U0)∇v + v Ap(x, U0)∇U0) , v ∈ H1(Ω),

and the corresponding bilinear form

Â(U0; v, w) = (A(x, U0)∇v,∇w) + (vAp(x, U0)∇U0,∇w) ∀v, w ∈ H1(Ω),

where Ap(x, u) = ∇uA(x, u). We assume that this linearized operator is an isomor-
phism from H1

0 (Ω) to H−1(Ω), and so U0 is an isolated solution of (2.5) and there is
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264 ZHANGXIN CHEN AND TATYANA Y. SAVCHUK

h0 > 0 such that for 0 < h < h0 [19],

sup
w∈Uh

Â(U0; v, w)

‖w‖1,Ω
≥ C0‖v‖1,Ω ∀v ∈ Uh,(3.1)

where C0 > 0 is independent of h.
For any v, vh, w ∈ U , we define

R(v, vh, w) = A(vh, w) −A(v, w) − Â(v; vh − v, w).

If v, vh ∈ U satisfy ‖v‖1,∞,Ω + ‖vh‖1,∞,Ω ≤ M , then it follows from [20] that

(3.2)

|R(v, vh, w)| ≤ C(M)
(
‖eh‖2

0,2p + ‖eh∇eh‖0,p

)
‖∇w‖0,q, eh = v − vh,

1

p
+

1

q
= 1.

It follows from the definition of R and (2.5) that uh ∈ Uh is the solution of (2.8)
if and only if

Â(U0;U0 − uh, w) = R(U0, uh, w) + Ah(uh, w) −A(uh, w) ∀w ∈ Uh.(3.3)

Define

E(v, w) = Ah(v, w) −A(v, w) ∀v, w ∈ Uh,

and

E = max
v∈Uh∩W 1,∞(Ω),w∈Uh

|E(v, w)|
‖v‖1,Ω‖w‖1,Ω

.

The following equivalence will be used [5]:

C ′
1|v|1,T ≤ |RT (v)|1,T ≤ C ′

2|v|1,T ∀T ∈ Th, v ∈ Uh.(3.4)

To prove existence and uniqueness of a solution to (2.8), we introduce the projection
of U0 into Uh through the linearized bilinear form Â:

Â(U0;PhU0, v) = Â(U0;U0, v) ∀v ∈ Uh.(3.5)

It follows from (3.1) that PhU0 exists and is unique for 0 < h < h0, and it satisfies [8]

‖U0 − PhU0‖1,∞,Ω ≤ Ch, ‖U0 − PhU0‖1,Ω ≤ Ch(3.6)

if U0 ∈ W 2,∞(Ω). When U0 ∈ W 2,p(Ω) (p > d), it holds that

‖U0 − PhU0‖1,∞,Ω ≤ Ch1−d/p.(3.7)

Finally, for a given x ∈ Ω, we define the discrete Green function Gx
h ∈ Uh by

Â(U0; v,G
x
h) = ∂v(x) ∀v ∈ Uh,(3.8)

where ∂v indicates any of the partial derivatives ∂v/∂xi (i = 1, 2, . . . , d). This function
satisfies

‖Gx
h‖1,1,Ω ≤ C| lnh|.(3.9)
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Theorem 3.1. Assume that L is an isomorphism from H1
0 (Ω) to H−1(Ω) and

U0 ∈ U ∩W 2,p(Ω) with p > d. In addition, assume that E is bounded and there are
constants C1 and h1 such that for 0 < h ≤ h1,

E
1/2| lnh| ≤ C1.(3.10)

Then problem (2.8) has a solution uh satisfying

‖uh − PhU0‖1,∞,Ω ≤ E
1/2

+ h1−d/p,

‖uh − U0‖1,∞,Ω ≤ C
(
E

1/2
+ h1−d/p

)
.

(3.11)

Furthermore, if, for all v1, v2 ∈ Uh∩W 1,∞(Ω) and w ∈ Uh with ‖v1‖1,∞,Ω+‖v2‖1,∞,Ω ≤
M , there is a constant ζ0(M), with 0 < ζ0 < 1, such that

|E(v1, w) − E(v2, w)| ≤ ζ0(M)‖v1 − v2‖1,Ω‖w‖1,Ω,(3.12)

then this solution uh is locally unique.
Proof. We define the nonlinear mapping L : Uh → Uh by

Â(U0;L(v), w) = Â(U0;U0, w) −R(U0, v, w) + A(v, w) −Ah(v, w) ∀w ∈ Uh.

This mapping is continuous using (3.1) and (3.2). We also define the set

B =
{
v ∈ Uh : ‖v − PhU0‖1,∞,Ω ≤ E

1/2
+ h1−d/p

}
.

Note that, by (3.5),

Â(U0;L(v) − PhU0, w) = −R(U0, v, w) + A(v, w) −Ah(v, w) ∀w ∈ Uh.

Choosing w = Gx
h in this equation and applying (3.2), (3.7), (3.9), and (3.10), we see

that, with v ∈ B and ‖v‖1,∞,Ω ≤ M ,

‖L(v) − PhU0‖1,∞,Ω ≤ C(M)
(
‖U0 − v‖2

1,∞,Ω + E
)
| lnh|

≤ C(M)
(
‖U0 − PhU0‖2

1,∞,Ω + ‖PhU0 − v‖2
1,∞,Ω + E

)
| lnh|

≤ C(M)
(
h2−2d/p + E

)
| lnh|.

Because v ∈ B and E is bounded (e.g., E ≤ C1), we see that

‖v‖1,∞,Ω ≤ ‖v − PhU0‖1,∞,Ω + ‖PhU0‖1,∞,Ω

≤ E
1/2

+ C(U0) ≤ C1/2
1 + C(U0) ≡ C0.

(3.13)

Combining these two inequalities, we have

‖L(v) − PhU0‖1,∞,Ω ≤ C(C0)
(
h2−2d/p + E

)
| lnh|.

Defining C1 = 1/C(C0), it follows from (3.10) that

‖L(v) − PhU0‖1,∞,Ω ≤ E
1/2

+ C(C0)h
2−2d/p| lnh|.

Thus there is a constant h2 such that for 0 < h ≤ h2, we obtain

‖L(v) − PhU0‖1,∞,Ω ≤ E
1/2

+ h1−d/p.
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Set h1 = min(h0, h2). Then, for 0 < h ≤ h1, we see that L(B) ⊂ B. The Brouwer
fixed point theorem means that there is a uh ∈ B such that L(uh) = uh.

To prove the uniqueness, let u1
h and u2

h be two solutions of (2.8). Then it follows
from (3.3) that

Â(U0;u
2
h − u1

h, w) = Â(U0;U0 − u1
h, w) − Â(U0;U0 − u2

h, w)

= R(U0, u
1
h, w) −R(U0, u

2
h, w) + E(u1

h, w) − E(u2
h, w).

(3.14)

Because both u1
h and u2

h are in the set B, it follows from (3.13) that ‖u1
h‖1,∞,Ω +

‖u2
h‖1,∞,Ω ≤ 2C0, which, together with (3.1), (3.12), (3.14), and Poincaré’s inequality,

implies that

‖u1
h − u2

h‖1,Ω ≤ ζ0(2C0)‖u1
h − u2

h‖1,Ω.

Since ζ0 < 1 via assumption, then u1
h = u2

h. Therefore, the solution uh is locally
unique.

4. Improved error estimates for nonlinear problems. The main result in
this section is stated in the next theorem. The multiscale finite element solution uh

used below refers to the one that satisfies the conditions in Theorem 3.1. To avoid
unnecessary techniques, we perform an error analysis when system (2.7) is replaced
by

(a(xT , x/ε, v(xT ))∇RT (v),∇w)T = 0 ∀w ∈ H1
0 (T ),

RT (v) = v on ∂T,
(4.1)

where xT is any point in T ∈ Th (e.g., the barycenter of T ).
Theorem 4.1. Let U0 and uh be the solutions of (2.5) and (2.8), respectively,

and U0 ∈ W 2,∞(Ω). Then there is h0 > 0 such that for 0 < h < h0,

‖U0 − uh‖1,Ω ≤ C

(
h +

√
ε

h

)
, ‖U0 − uh‖1,∞,Ω ≤ C

(
h +

√
ε

h

)
| lnh|,(4.2)

provided that ε/h is sufficiently small.
This theorem can be shown by combining the next two propositions.
Proposition 4.2. In addition to the assumptions of Theorem 3.1, let U0 ∈

W 2,∞(Ω). Then there are constants C2 (see the proof below) and h0 > 0 such that if
C1 < C2 and 0 < h < h0, then

‖U0 − uh‖1,Ω ≤ C
(
h + E

)
, ‖U0 − uh‖1,∞,Ω ≤ C

(
h + E

)
| lnh|.(4.3)

Proposition 4.3. Under the assumptions of Theorem 4.1, if
√
ε/h| lnh| is suf-

ficiently small, then conditions (3.10) and (3.12) hold. Moreover,

E ≤ C

√
ε

h
.(4.4)

Proof of Proposition 4.2. Taking w = PhU0 − uh in (3.3) and using (3.1), (3.2),
and (3.6), we see that

‖PhU0 − uh‖1,Ω ≤ C
(
‖U0 − uh‖2

1,4,Ω + E + h
)
.(4.5)
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Applying an interpolation inequality, we have

‖U0 − uh‖2
1,4,Ω ≤ ‖U0 − uh‖1,Ω‖U0 − uh‖1,∞,Ω,(4.6)

which, together with (3.6) and (3.13), yields

‖PhU0 − uh‖1,Ω ≤ C3

(
E

1/2
+ h1−d/p

)
‖PhU0 − uh‖1,Ω + C

(
h + E

)
.

Choosing w = Gx
h in (3.3) and using (3.2), (3.6), and (3.9), we have

‖PhU0 − uh‖1,∞,Ω ≤ C4(E + h)| lnh|‖PhU0 − uh‖1,∞,Ω

+ C
(
‖U0 − uh‖2

1,∞,Ω + E + h
)
| lnh|.

From (3.6), (3.7), and (3.10) it follows that

‖PhU0 − uh‖1,∞,Ω ≤ C4(E
1/2

+ h1−d/p)| lnh|‖PhU0 − uh‖1,∞,Ω

+ C
(
E + h

)
| lnh|.

Now, we set

C2 = min

(
| lnh|
2C3

,
1

2C4

)
and choose h0 such that E

1/2| lnh| ≤ C2. With these two choices, we obtain

‖PhU0 − uh‖1,Ω ≤ C
(
E + h

)
,

‖PhU0 − uh‖1,∞,Ω ≤ C
(
E + h

)
| lnh|,

which, together with (3.6), gives the desired result.
Proposition 4.3 can be proven from the next three lemmas.
Lemma 4.4. For v, w ∈ Uh, we have

(4.7)

|R(v) −R(w)|1,T ≤ C (‖v − w‖0,∞,T [|v|1,T + |w|1,T ] + |v − w|1,T ) , T ∈ Th.

Proof. It follows from (2.2) and (4.1) that

(4.8)

C|R(v) −R(w)|21,T ≤
(
a
(
xT ,

x

ε
, v(xT )

)
∇[R(v) −R(w)],∇[R(v) −R(w)]

)
T

≡ J1 + J2,

where

J1 =
(
a
(
xT ,

x

ε
, v(xT )

)
∇R(v) − a

(
xT ,

x

ε
, w(xT )

)
∇R(w),∇(v − w)

)
T
,

J2 = −
([

a
(
xT ,

x

ε
, v(xT )

)
− a
(
xT ,

x

ε
, w(xT )

)]
∇R(w),∇[R(v) −R(w)]

)
T
.

Note that

J1 =
([

a
(
xT ,

x

ε
, v(xT )

)
− a
(
xT ,

x

ε
, w(xT )

)]
∇R(v),∇(v − w)

)
T

+
(
a
(
xT ,

x

ε
, w(xT )

)
∇[R(v) −R(w)],∇(v − w)

)
T
.
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As a result, using (2.2), we bound J1 and J2 as follows:

|J1| ≤ C (‖v − w‖0,∞,T |R(v)|1,T + |R(v) −R(w)|1,T ) |v − w|1,T ,
|J2| ≤ C‖v − w‖0,∞,T |R(w)|1,T |R(v) −R(w)|1,T .

Substituting these two bounds for J1 and J2 into (4.8) and using (3.4) implies the
desired result (4.7).

For v, w ∈ Uh, we define

Q(v) = v(x) + ε

d∑
k=1

χk
(
xT ,

x

ε
, v(xT )

) ∂v

∂xk
(x),

Q(w) = w(x) + ε

d∑
k=1

χk
(
xT ,

x

ε
, w(xT )

) ∂w

∂xk
(x).

Set θε(v) = R(v) −Q(v) and θε(w) = R(w) −Q(w). Note that

−∇ ·
(
a
(
xT ,

x

ε
, v(xT )

)
∇θε(v)

)
= 0 in T,

θε(v) = −ε

d∑
k=1

χk
(
xT ,

x

ε
, v(xT )

) ∂v

∂xk
on ∂T,

(4.9)

and an analogous definition can be given for θε(w). These two quantities satisfy [5, 17]

|θε(v)|1,T ≤ C

√
ε

h
|v|1,T , |θε(w)|1,T ≤ C

√
ε

h
|w|1,T ,(4.10)

which hold because ∇v and ∇w are piecewise constant.
Lemma 4.5. For v, w ∈ Uh, we have

(4.11)

|θε(v) − θε(w)|1,T ≤ C

√
ε

h
(‖v − w‖0,∞,T [|v|1,T + |w|1,T ] + |v − w|1,T ) , T ∈ Th.

Proof. Let ξε ∈ C∞
0 (T ), 0 ≤ ξε ≤ 1, be a cut-off function in T such that ξε = 1

outside a ε-neighborhood of the boundary ∂T and |∇ξε| ≤ Cε−1 with C independent
of ε and T . Define, for v ∈ Uh,

ϕε(v) = θε(v) + ε

d∑
k=1

χk
(
xT ,

x

ε
, v(xT )

) ∂v

∂xk
(1 − ξε),

and a similar meaning can be given for ϕε(w), w ∈ Uh. Calculations show that

C|ϕε(v) − ϕε(w)|1,T
≤ max

x∈T
|a
(
xT , x/ε, v(xT )

)
− a
(
xT , x/ε, w(xT )

)
| (|ϕε(v) − θε(v)|1,T + |ϕε(w)|1,T )

+ max
x∈T

|a
(
xT , x/ε, w(xT )

)
| |ϕε(v) − θε(v) − ϕε(w) + θε(w)|1,T

and

|ϕε(v) − θε(v)|1,T ≤ C

√
ε

h
|v|1,T , |ϕε(w) − θε(w)|1,T ≤ C

√
ε

h
|w|1,T .
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Also, using (4.10), we see that

|ϕε(w)|1,T ≤ |ϕε(w) − θε(w)|1,T + |θε(w)|1,T ≤ C

√
ε

h
|w|1,T .

Observe that

ϕε(v) − θε(v) − ϕε(w) + θε(w)

= ε

d∑
k=1

(
χk
(
xT ,

x

ε
, v(xT )

)
− χk

(
xT ,

x

ε
, w(xT )

)) ∂v

∂xk
(1 − ξε)

+ ε

d∑
k=1

χk
(
xT ,

x

ε
, w(xT )

) ∂(v − w)

∂xk
(1 − ξε).

Consequently, by the continuity of {χk}dk=1, we see that

|ϕε(v) − θε(v) − ϕε(w) + θε(w)|1,T ≤ C

√
ε

h
(‖v − w‖0,∞,T |v|1,T + |v − w|1,T ) .

Combining these inequalities gives the desired result (4.11).
The next lemma indicates that E(·, ·) has certain continuity with respect to its

first argument.
Lemma 4.6. For v1, v2, w ∈ Uh satisfying ‖v1‖1,∞,Ω + ‖v2‖1,∞,Ω ≤ M , we have

|E(v1, w) − E(v2, w)| ≤ C(M)

√
ε

h
‖v1 − v2‖1,Ω|w|1,Ω, T ∈ Th.(4.12)

Proof. Define l = [h/ε], and let Ilε be the cube of size lε at xT . By the definition
of R(v1) and the relation that R(v1) = θε(v1) + Q(v1), we see that(
a
(
xT , x/ε, v1(xT )

)
∇R(v1),∇R(w)

)
T

=
(
a
(
xT , x/ε, v1(xT )

)
∇R(v1),∇w

)
T

=
(
a
(
xT , x/ε, v1(xT )

)
∇[θε(v1) + Q(v1)],∇w

)
T
.

Also, note that

1

|Ilε|

(
a
(
xT ,

x

ε
, v1(xT )

)
∇Q(v1),∇w

)
Ilε

= ∇w · A
(
xT , v1(xT )

)
∇v1.

Then E(v1, w) − E(v2, w) can be split as follows:

E(v1, w) − E(v2, w) =
∑
T∈Th

(E(v1, w) − E(v2, w)) |T =
∑
T∈Th

(J3 + J4),(4.13)

where

J3 =
(
a
(
xT ,

x

ε
, v1(xT )

)
∇θε(v1) − a

(
xT ,

x

ε
, v2(xT )

)
∇θε(v2),∇w

)
T
,

J4 =
(
a
(
xT ,

x

ε
, v1(xT )

)
∇Q(v1),∇w

)
T

− |T |
|Ilε|

(
a
(
xT ,

x

ε
, v1(xT )

)
∇Q(v1),∇w

)
Ilε

−
(
a
(
xT ,

x

ε
, v2(xT )

)
∇Q(v2),∇w

)
T

− |T |
|Ilε|

(
a
(
xT ,

x

ε
, v2(xT )

)
∇Q(v2),∇w

)
Ilε

.
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It follows from Lemma 4.5 that

|J3| ≤ C

√
ε

h

(
‖v1 − v2‖0,∞,T [|v1|1,T + |v2|1,T ] + |v1 − v2|1,T

)
|w|1,T .(4.14)

The term J4 can be rewritten as follows:

J4 = −
(

|T |
|lε|d − 1

)(
a
(
xT ,

x

ε
, v1(xT )

)
∇Q(v1) − a

(
xT ,

x

ε
, v2(xT )

)
∇Q(v2),∇w

)
T

+
|T |
|lε|d

(
a
(
xT ,

x

ε
, v1(xT )

)
∇Q(v1) − a

(
xT ,

x

ε
, v2(xT )

)
∇Q(v2),∇w

)
T\Ilε

.

Then it can be bounded by

|J4| ≤ C
ε

h
(‖v1 − v2‖0,∞,T [|v1|1,T + |v2|1,T ] + |v1 − v2|1,T ) |w|1,T .(4.15)

Applying an inverse inequality, we see that

‖v1 − v2‖0,∞,T |v1|1,T ≤ Ch
−d/2
T ‖v1 − v2‖0,Th

d/2
T ‖v1‖1,∞,T(4.16)

= C‖v1 − v2‖0,T ‖v1‖1,∞,T ,

since ∇v1|T is a constant. A similar result holds for ‖v1−v2‖0,∞,T |v2|1,T . Substituting
(4.14)–(4.16) into (4.13) implies the desired result.

Proof of Proposition 4.3. Taking v2 = 0 in (4.12) generates (4.4). Also, if√
ε/h| lnh| is sufficiently small, E

1/2| lnh| can be made smaller than any given thresh-

old, and so (3.10) holds. Finally, choose ζ0(M) = C(M)
√
ε/h. Then if

√
ε/h| lnh| is

sufficiently small, ζ0(M) < 1, and thus (3.12) is verified.

5. An oversampling technique. Note that estimates (4.2) deteriorate when
ε is of the same order as the mesh size h. This phenomenon reveals a “resonance
error” between the grid scale h and the scale ε of the continuous problem (2.1). This
resonance is due to a mismatch between the local solution of (2.7) and the global
solution of (2.1) on the boundary of each T ∈ Th, which produces a boundary layer.
Since this layer is thin, we can sample in a (local) domain with size larger than h
and utilize only the interior sampled information. In this manner, the influence of the
boundary layer in the larger domain can be greatly reduced. In this section, we extend
an oversampling technique for linear problems [13, 16] to the nonlinear problem (2.1)
in order to reduce the resonance error in (4.2).

For each T ∈ Th, we indicate by S(T ) a macroelement which contains T and
satisfies the following condition: There are positive constants C3 and C4, independent
of h and ε, such that hS ≤ C3hT and dist(∂S, ∂T ) ≥ C4hT . For each v ∈ Uh(T ), we
extend it to Uh(S) as follows. Let {φT

i }d+1
1 and {ψS

i }d+1
1 be the respective bases of

Uh(T ) and Uh(S). Set

v|T =

d+1∑
i=1

cTi φ
T
i , φT

i =

d+1∑
j=1

cTijψ
S
j |T .

Then we define v̂ ∈ Uh(S) by

v̂ =

d+1∑
i,j=1

cTi c
T
ijψ

S
j .
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Now, for any v ∈ Uh, we define RS(v) ∈ H1(S), T ⊂ S, T ∈ Th, by

(a(x, x/ε, v̂)∇RS(v),∇w)S = 0 ∀w ∈ H1
0 (S),

RS(v) = v̂ on ∂S.
(5.1)

The global operator R is defined by

R(v)|T = RS(v)|T ∀v ∈ Uh, T ∈ Th.

The oversampled MsFEM for (2.1) is to seek uh ∈ Uh such that∑
T∈Th

(
a(x, x/ε, uh)∇RS(T )(uh),∇RS(T )(v)

)
T

= (f, v) ∀v ∈ Uh.(5.2)

The existence and uniqueness of a solution to (5.2) can be shown in Theorem 3.1.
Furthermore, combining the error analysis in the previous section and that for the
oversampled MsFEM for linear problems given in [5, 13], the following improved error
estimates can be shown as in Theorem 4.1.

Theorem 5.1. Let U0 and uh be the solutions of (2.5) and (5.2), respectively,
and U0 ∈ W 2,∞(Ω). Then there is h0 > 0 such that for 0 < h < h0,

‖U0 − uh‖1,Ω ≤ C
(
h +

ε

h

)
, ‖U0 − uh‖1,∞,Ω ≤ C

(
h +

ε

h

)
| lnh|,(5.3)

provided that ε/h is sufficiently small.

Note that while these estimates improve those in (5.15), resonance persists.

6. Approximation to uε. Theorems 4.1 and 5.1 show that the multiscale finite
element solution uh of (2.8) is a good approximation of the macroscopic solution U0.
We now consider an approximation to the solution uε of (2.1).

Define R(uh) as the solution of (4.1) with v replaced by uh:

(a(xT , x/ε, uh(xT ))∇RT (uh),∇w)T = 0 ∀w ∈ H1
0 (T ),

RT (v) = uh on ∂T.
(6.1)

Applying (2.4), RT (uh) satisfies

∇RT (uh) = ∇uh +

d∑
k=1

∇yχ
k
(
xT ,

x

ε
, uh(xT )

) ∂uh

∂xk
+ ∇θε(uh), T ∈ Th.(6.2)

Also, define the first order approximation of uε
1 by

uε
1 = U0 + ε

d∑
k=1

χk
(
x,

x

ε
, U0(x)

) ∂U0

∂xk
.

Clearly,

∇uε
1 = ∇U0 +

d∑
k=1

{(
ε∇χk + ∇yχ

k
) ∂U0

∂xk
+ ε

∂χk

∂U0

∂U0

∂xk
∇U0 + εχk∇∂U0

∂xk

}
.(6.3)
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Combining (6.2) and (6.3) gives

(6.4)

|uε
1 −R(uh)|1,T ≤ C

(
|U0 − uh|1,T + ε

[
‖U0‖2,T + ‖U0‖2

1,4,T

])
+ |θε(uh)|1,T

+

∥∥∥∥∥
d∑

k=1

[
∇yχ

k
(
xT ,

x

ε
, uh(xT )

)
−∇yχ

k
(
x,

x

ε
, U0(x)

)] ∂U0

∂xk

∥∥∥∥∥
0,T

≤ C

{
|U0 − uh|1,T + |U0 − uh|1,∞,T |U0|1,T + |θε(uh)|1,T

+ (ε + h)
(
‖U0‖2,T + ‖U0‖2

1,4,T + |U0|1,∞,T |U0|1,T
)}

.

A classical estimate for uε − uε
1 [2, 3, 22] gives

‖uε − uε
1‖1,Ω ≤ C

√
ε.(6.5)

Finally, combining (4.2), (4.10), (6.4), and (6.5), we obtain the next theorem.
Theorem 6.1. Let uε be the solution of (2.1), R(uh) be defined by (6.1), and

U0 ∈ W 2,∞(Ω). Then there is h0 > 0 such that for 0 < h < h0,

|uε −R(uh)|1,Ω ≤ C

(
h +

√
ε +

√
ε

h

)
| lnh|,(6.6)

provided that ε/h is sufficiently small.
Note that estimate (6.6) is similar to (2.9) obtained for a linear counterpart of

(2.1). The oversampling technique discussed in the previous section can also be applied
to (6.1).

7. A random homogenization problem. In the previous sections we have
assumed that the coefficient aε in (2.1) is periodic. In many problems such as in
porous media flows [6], this coefficient is often random. In this section we extend
the multiscale finite element analysis performed for the nonlinear problem (2.1) to a
multiscale problem with a random coefficient.

Let (D,F, P ) be a probability space and a(y, ω) =
(
aij(y, ω)

)
be a random field,

y ∈ R
d, ω ∈ D, whose statistics is invariant under integer shifts. Furthermore, let a

satisfy the uniform ellipticity condition (2.2); i.e.,

a∗|ζ|2 ≤
d∑

i,j=1

aij(y, ω)ζiζj ≤ a∗|ζ|2 ∀ω ∈ D, y, ζ ∈ R
d,(7.1)

for some positive constants a∗ and a∗. Problem (2.1) now takes the form

−∇ ·
(
a(x/ε, ω)∇uε

)
= f in Ω,

uε = 0 on Γ.
(7.2)

7.1. Homogenization results. We collect some homogenization results for
problem (7.2), following [21]. As in (2.4), let χj satisfy [18]

−∇y ·
(
a(y, ω)∇yχ

j
)

=

d∑
i=1

∂

∂yi
aij(y, ω),(7.3)

and ∇χj is assumed to be stationary under integer shifts. χj is generally not sta-
tionary.
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Define the average operator with respect to the measure P (mathematical expec-
tation)

〈v〉 = E

∫
[0,1]d

v(y) dy.

Also, define

[v]m ≡ [v;m] =
1

md

∫
[0,m]d

v(y) dy.

The homogenized coefficient A is given by

A = 〈a(I + ∇χ)〉 ,(7.4)

where I is the identity matrix and χ = (χ1, χ2, . . . , χd)T .
For any ρ > 0, we consider the auxiliary problem

−∇y · (a(y, ω)∇yu) + ρu =

d∑
i=1

∂gi
∂yi

,(7.5)

where

gi ∈ {v :
〈
v2
〉
≤ G2}, i = 1, 2, . . . , d,

with v a random field whose statistics is stationary under integer shifts.
For each fixed realization of {a(y, ·)}, let ηx be the diffusion process generated by

−∇y · (a(y, ω)∇y) and starting from x at t = 0, and let Mx be the expectation with
respect to ηx. Set

Γ(s) =

∫ s

0

e−ρτ
d∑

i=1

∂gi
∂yi

(
η(τ)

)
dτ.

It is known [14] that the solution of problem (7.5) is

uρ(x) = MxΓ(∞).

Lemmas 7.1–7.3 and 7.5 below can be found in [21] and Lemma 7.4 in [10]. Note
that the homogenization results in [21] may be overestimated because they are based
on the Green function estimates that are not required for the computation of effective
coefficients. Because of this, the convergence result here may be overestimated as
well.

Lemma 7.1. For the solution uρ of (7.5), there are constants C > 0, independent
of ρ, such that 〈

|∇uρ|2
〉

+ ρ
〈
u2
ρ

〉
≤ C

〈
|g|2
〉
,〈

(MxΓ(∞))
2
〉1/2

≤ CG2

ρ
,〈

Mx (Γ(∞) − Γ(s))
2
〉
≤ CG2

ρ
e−2sρ,

(7.6)

where g = (g1, g2, . . . , gd)
T .
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Due to the presence of the lower order term ρu, the Green function associated
with the differential operator −∇y ·(a(y, ω)∇y)+ρ in the left-hand side of (7.5) decays
exponentially with a rate of order O(

√
ρ). To be specific, define

Bρ =
{
x ∈ R

d : ‖x‖∞ ≤ ρ−
1
2 |ln ρ−1|1/2}

,

where ‖x‖∞ = max{|xi|, i = 1, 2, . . . , d}.
Lemma 7.2. Let t be the first exit time of Bρ starting at x ∈ Bρ, and define

ûρ(x) = MxΓ(t). Then, if ρ is small enough,

E

∫
‖x‖∞≤10

|uρ(x) − ûρ(x)|2 dx ≤ CG2e−C| ln ρ−1|2 ,

E

∫
‖x‖∞≤1

|∇uρ(x) −∇ûρ(x)|2 dx ≤ CG2e−C| ln ρ−1|2 .

Lemma 7.3. Let {a1, g1} and {a2, g2} be two sets of data satisfying

{a1(y), g1(y)} = {a2(y), g2(y)}, y /∈ B,

where B ⊂ R
d is a domain, and u1

ρ and u2
ρ be the respective solutions of (7.5) associated

with {a1, g1} and {a2, g2}. Then∫
Rd

|u1
ρ(x) − u2

ρ(x)|2 dx ≤ C

ρ

∫
Rd

(
G2 + |∇u1

ρ(x)|2
)
IB(x) dx,

where IB is the indicator function of B.

For a subdomain B ⊂ R
d, denote by Φ(B) the σ-algebra generated by the param-

eters {a(y, ω) : y ∈ B}. Let ζ1 and ζ2 be two random variables that are measurable
with respect to Φ(B1) and Φ(B2), respectively. We will use the exponential decay
condition

|E(ζ1ζ2) − E(ζ1)E(ζ2)| ≤ e−Cdist(B1,B2)
√

Eζ2
1

√
Eζ2

2 .(7.7)

This type of exponential decay condition is often used for geostatistical models [15].

Lemma 7.4. Under condition (7.7), we have

E [uρ;m]
2 ≤ C

(
G2

ρ

(
| ln ρ−1|2
ρ1/2m

)
+ e−C| ln ρ−1|2

)
.

Lemma 7.5. Let χρ =
(
χ1
ρ, χ

2
ρ, . . . , χ

d
ρ

)T
, where χi

ρ is the solution of (7.5) with

g = (ai1, ai2, . . . , aid)
T
.

Under condition (7.7), for any 0 < λ < 1/2, we have

|A − 〈a(I + ∇χρ)〉 | ≤ Cρ(d−2−2λ)/(4+d),

where | · | represents a matrix norm.
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7.2. The MsFEM. Note that the definition of the MsFEM (2.8) does not utilize
any periodicity or macroscopic model. Thus, in the random case it can be defined in
the same manner as in the periodic case. That is, for any v ∈ Uh, we define its local
solution RT (v) ∈ H1(T ), T ∈ Th, by

(aε∇RT (v),∇w)T = 0 ∀w ∈ H1
0 (T ),

RT (v) = v on ∂T.
(7.8)

Define

Ah(v, w) =
∑
T∈Th

(
aε∇RT (v),∇RT (w)

)
T
, v, w ∈ Uh.

Then the MsFEM for (7.2) is as follows: Find uh ∈ Uh such that

Ah(uh, v) = (f, v) ∀v ∈ Uh.(7.9)

Theorem 7.6. Let U0 and uh be the respective solutions of (2.5) and (7.9), where
the homogenized coefficient A is now given by (7.4), and U0 ∈ W 2,∞(Ω). Then, under
condition (7.7), we have

E ‖U0 − uh‖1,Ω ≤ C
(
h +

( ε
h

)κ)
,

E ‖U0 − uh‖0,Ω ≤ C
(
h2 +

( ε
h

)κ)
,

E ‖U0 − uh‖1,∞,Ω ≤ C
(
h +

( ε
h

)κ)
| lnh|,

(7.10)

where

κ =

⎧⎪⎨⎪⎩
6 − 12λ

25 − 8λ
if d = 3,

1

2
if d = 1

for any 0 < λ < 1/2.
Note that the case d = 2 remains open. This theorem can be proven by combining

the next two propositions. As in the nonlinear case in the third section, define

E = max
v,w∈Uh

|Ah(v, w) −A(v, w)|
|v|1,Ω|w|1,Ω

.

Proposition 7.7. Let U0 and uh be the respective solutions of (2.5) and (7.9),
and let U0 ∈ W 2,∞(Ω). Then

‖U0 − uh‖1,Ω ≤ C
(
h + E

)
,

‖U0 − uh‖0,Ω ≤ C
(
h2 + E

)
.

(7.11)

Furthermore, if there is a constant C5 such that E| lnh| < C5, then there is a constant
h0 such that for any 0 < h < h0,

‖U0 − uh‖1,∞,Ω ≤ C
(
h + E

)
| lnh|.(7.12)
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Proposition 7.8. Under condition (7.7), we have

EE ≤ C
( ε
h

)κ
,(7.13)

where κ is defined as in Theorem 7.6.
As in (3.8), for a given x ∈ Ω, we define the Green function Gx ∈ H1

0 (Ω) and its
discrete counterpart Gx

h ∈ Uh by

A(Gx, v) = ∂v(x) ∀v ∈ H1
0 (Ω),

A(Gx
h, v) = ∂v(x) ∀v ∈ Uh.

(7.14)

They satisfy

‖Gx −Gx
h‖1,1,Ω ≤ C, ‖Gx

h‖1,1,Ω ≤ C| lnh|.(7.15)

Below Ph indicates the standard Lagrange interpolation operator from H1
0 (Ω) into

Uh.
Proof of Proposition 7.7. It follows from the first Strang lemma [7] that

‖U0 − uh‖1,Ω ≤ C inf
v∈Uh

(
‖U0 − v‖1,Ω + sup

w∈Uh

|A(v, w) −Ah(v, w)|
‖w‖1,Ω

)
.

Taking v = PhU0 and using the definition of E implies the first inequality in (7.11).
The second inequality in (7.11) follows from a standard duality argument [4, 7].

To prove (7.12), using (7.14), we see that

∂(U0 − uh)(x) = A(Gx, U0 − PhU0) + A(Gx, PhU0 − uh)

= A(Gx −Gx
h, U0 − PhU0) + A(Gx

h, U0 − uh)

= A(Gx −Gx
h, U0 − PhU0) + Ah(uh, G

x
h) −A(uh, G

x
h)

= A(Gx −Gx
h, U0 − PhU0) + (Ah(PhU0, G

x
h) −A(PhU0, G

x
h))

+ (Ah(uh − PhU0, G
x
h) −A(uh − PhU0, G

x
h)) ,

which, together with (7.15), gives

‖U0 − uh‖1,∞,Ω ≤ C‖U0 − PhU0‖1,∞,Ω + |Ah(PhU0, G
x
h) −A(PhU0, G

x
h)|

+ |Ah(uh − PhU0, G
x
h) −A(uh − PhU0, G

x
h)| .

(7.16)

Applying (7.15) again and an inverse inequality, we have

|Ah(PhU0, G
x
h) −A(PhU0, G

x
h)| ≤ CE| lnh|‖U0‖2,∞,Ω.(7.17)

A similar argument yields

|Ah(uh − PhU0, G
x
h) −A(uh − PhU0, G

x
h)|(7.18)

≤ CE| lnh| (‖U0 − uh‖1,∞,Ω + h‖U0‖2,∞,Ω) .

Substituting (7.17) and (7.18) into (7.16) implies that

‖U0 − uh‖1,∞,Ω ≤ C
(
h + E| lnh| + E| lnh|‖U0 − uh‖1,∞,Ω

)
.(7.19)

If E| lnh| < C5 = 1/(2C), the desired result (7.12) follows from (7.19).
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Proof of Proposition 7.8. Let m = h/(2ε), and let χj
m be the solution of (7.3) on

[0,m]d, with the boundary condition χj
m = 0 on ∂[0,m]d. Set χm = (χ1

m, χ2
m, . . . , χd

m)T .
um
ρ can be similarly defined using (7.5). Then it follows from the definition of E that

E = |A − [a(I + ∇χm)]m| ≤ C(F1 + F2 + F3),(7.20)

where

F1 = |A − [a(I + ∇uρ)]m|,
F2 = |[a(I + ∇uρ) − a(I + ∇um

ρ )]m|,
F2 = |[a∇(um

ρ − χm)]m|.

Note that

F1 = |A − 〈a(I + ∇uρ)〉 + [ϕ]m|,

where ϕ = 〈a(I + ∇uρ)〉 − a(I + ∇uρ). It follows [21] that

E|[ϕ]m| ≤
√

E[ϕ]2m ≤ C

(
| ln ρ−1|2
ρ1/2m

)d/2

,

which, together with Lemma 7.5, gives

EF1 ≤ C

(
Gρ(d−2−2λ)/(4+d) +

(
| ln ρ−1|2
ρ1/2m

)d/2
)
.(7.21)

Let tm be the first exit time of the domain [0, 2m]d. Then u2m
ρ = MxΓ(tm), and

for any s > 0,

|uρ − u2m
ρ | =

∣∣Mx

(
Γ(∞) − Γ(tm)

)∣∣
≤ Mx {|Γ(∞)| + |Γ(tm)| : tm ≤ s}

+ Mx

{
e−sρMρ(s)|Γ(∞) − Γ(tm)| : tm > s

}
≤ C

(
Mx

(
(Γ(∞))2 + (Γ(tm))2

))1/2 (
Px{tm ≤ s}1/2 + e−sρ

)
.

Because Px{tm ≤ s} ≤ e−Cm2/s, we see that

E
[
|uρ − u2m

ρ |2
]
2m

≤ CG2

ρ

(
e−Cm2/s + e−sρ

)2

,

whose optimization in s gives

E
[
|uρ − u2m

ρ |2
]
2m

≤ CG4

ρ2
e−Cmρ1/2

.

Now, it follows from standard interior estimates that

EF2 ≤ C
(
E
[
|∇(uρ − um

ρ )|2
]
m

)1/2

≤ C

m

(
E
[
|uρ − u2m

ρ |2
]
2m

)1/2

(7.22)

≤ CG2

mρ
e−Cmρ1/2

.
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Also, in an argument similar to that for F1, we have

EF3 ≤ C

(
G2ρ(d−2−2λ)/(4+d) +

(
| ln ρ−1|2
ρ1/2m

)d/2
)
.(7.23)

Finally, substituting (7.21)–(7.23) into (7.20) generates

EE ≤ C

(
G2ρ(d−2−2λ)/(4+d) +

(
| ln ρ−1|2
ρ1/2m

)d/2

+
G2

mρ
e−Cmρ1/2

)
.

Optimizing in ρ with respect to the first two terms of this inequality, we see that

ρo = m−(2d)/(d+4β),

where β = (d− 2 − 2λ)/(d + 4). Consequently, we obtain

EE ≤ C

(
| lnm|d
mκ

+
G2

mρ0
e−Cmρ

1/2
0

)
≤ C

| lnm|d
mκ

,(7.24)

where

κ =
d/2

1 + d(d+4)/4
d−2−2λ

, 0 < λ <
1

2
.

Absorbing the factor | lnm|d into mκ in (7.24) yields the desired result (7.13) for
d = 3.

For d = 1, a direct evaluation gives

EE
2 ≤ C

m
,

where C is independent of m, which yields (7.13) with κ = 1/2.
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