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a b s t r a c t

The heterogeneous multiscale method (HMM) is a general method for efficient numerical
solution of problems with multiscales. It consists of two components: an overall
macroscopic solver for macrovariables on a macrogrid and an estimation of the missing
macroscopic data from the microscopic model. In this paper we present a state-of-the-
art review of the HMM with various macroscopic solvers, including finite differences,
finite elements, discontinuous Galerkin, mixed finite elements, control volume finite
elements, nonconforming finite elements, and mixed covolumes. The first four solvers
have been studied in the HMM setting; the others are not. As example, the HMM
with the nonconforming finite element macroscopic solver for nonlinear and random
homogenization problems is also studied here.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

E and Engquist introduced the heterogeneous multiscale method (HMM) for efficient numerical solution of problems
with multiscales [1] (also see a recent review of HMM [2]). This multiscale method consists of two components: an
overall macroscopic solver for macrovariables on a macrogrid and an estimation of the missing macroscopic data from
the microscopic model. Numerical experiments and analysis have shown the potential of the HMM when the macroscopic
solver uses finite difference and volume methods [3,1], finite element methods [4], mixed finite element methods [5], or
discontinuous Galerkin methods [6]. The purpose of this paper is to present the HMM with these macroscopic solvers in a
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unified framework so that it also applies to other numerical discretizationmethods such as nonconforming, control volume,
and mixed covolume finite element methods. These methods have not been studied in the HMM setting.
The finite difference HMM was studied in [3,1] from the original definition of finite differences. This method and the

finite volume HMM can be treated in the context of the discontinuous Galerkin HMM when the trial and test functions are
piecewise constants [6].
The analysis of the finite element HMM was given in detail in [4]. Here we generalize it to the control volume finite

element HMM. The standard finite element method does not conserve mass locally, but the control volume finite element
method does. With this generalization, the analysis also includes an application of the HMM to the finite element and finite
difference box methods [7,8].
We extend the analysis of themixed finite element HMM [5] to themixed covolume HMM. Themixed covolumemethod

has been developed in parallel to the mixed finite element method [9,10]. But it is often observed that the former produces
smaller solution errors [11]. In addition, unlike the latter that uses a primary grid, the mixed covolume method uses a
conservation law on a primary volume grid for a scalar variable and a constitutive law on a dual volume or covolume grid
for a vector variable.
The discontinuous Galerkin HMMwas studied in [6] for hyperbolic and parabolic problems. Herewe develop and study it

for elliptic homogenization problems as well. The discontinuous Galerkin method uses completely discontinuous piecewise
polynomials. Recently, there has been increased interest in this method because of its localizability and parallelizability [12,
13]. The nonconforming finite element method uses piecewise polynomial basis functions that are continuous at certain
points on interelement edges or faces [12,14]. It has received considerable attention in solid and fluid mechanics because it
involvesmuch fewer degrees of freedom than the standard (conforming) finite elementmethod. Herewe propose and study
the nonconforming finite element HMM. As example, in this paper we perform an error analysis in detail for this method
for linear and nonlinear periodic and random homogenization problems.
The paper is organized as follows. In the next section we present the HMM in an abstract framework. Then the

standard finite element, nonconforming finite element, control volume finite element, mixed finite element, mixed
covolume, discontinuous Galerkin, and finite difference HMMs are, respectively, described in the third to ninth sections.
The nonconforming finite element HMM for nonlinear and random homogenization problems is studied, respectively, in
the tenth and eleventh sections.
We end with a remark that closely related multiscale methods, the multiscale (or mixed) finite element methods were

developed in [15–17]. In particular, the multiscale finite element method (MsFEM) captures the effect of microscales on
macroscales through modified bases [17] or through the modification of bilinear (quadratic) forms in the finite element
formulation [5]. Its detailed analysis was carried out in [5,18–20]. As a general remark, the generic constant C is assumed
to be independent of the mesh size H and the microscale ε throughout this paper. Finally, for numerical experiments of the
HMMwith different macroscopic solvers, the reader should refer to [21,22].

2. The HMM

2.1. Preliminaries

LetΩ be a bounded domain in Rd, 1 ≤ d ≤ 3, with Lipschitz boundary Γ . For a subdomain D ⊂ Ω , each integerm ≥ 0,
and each real number 1 ≤ p ≤ ∞, Wm,p(D) indicates the usual Sobolev space of real functions that have all their weak
derivatives of order up tom in the Lebesgue space Lp(D). The norm and seminorm ofWm,p(D) are denoted by ‖ · ‖m,p,D and
| · |m,p,D, respectively. When p = 2,Wm,p(D) is written as Hm(D) with the norm ‖ · ‖m,D and the seminorm | · |m,D. We also
use the space

H10 (D) = {v ∈ H
1(D) : v|∂D = 0}.

In the mixed finite element method, we will exploit the space
H(div,D) =

{
τ ∈ (L2(D))d : ∇ · τ ∈ L2(D)

}
, 1 ≤ d ≤ 3,

with the usual norm
‖τ‖H(div,D) =

{
‖τ‖20,D + ‖∇ · τ‖

2
0,D

}1/2
, τ ∈ H(div,D).

For a rectangle D, we indicate by C∞per(D) the set of C
∞ periodic functions with period D, and byH1per(D) the closure of C

∞
per(D)

under the H1-norm. For a given space H(D), we indicate by H̄(D) the subspace of H(D)with zero integral mean over D.
In this and next seven sections, we consider the second-order elliptic problem

−∇ ·
(
aε∇uε

)
= f inΩ,

uε = 0 on Γ ,
(2.1)

where f ∈ L2(Ω) is a given function and aε =
(
aijx, x/ε

)
is a symmetric, positive definite, bounded tensor:

a∗|η|2 ≤
d∑
i,j=1

aij(x, y)ηiηj ≤ a∗|η|2 ∀y, η ∈ Rd, (2.2)
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for some positive constants a∗ and a∗. In the next seven sections, we assume that a(x, y) is smooth and periodic in y with
period Y = [−1/2, 1/2]d. In problem (2.1), the multiscale feature is reflected in the oscillatory nature of the coefficient aε
for ε � 1, which represents the microscale. For simplicity, we consider the homogeneous Dirichlet boundary condition
in (2.1).

2.2. The HMM

A standard numerical method consists of discretizing the microscopic model (2.1) over the entire domainΩ . To capture
the effect of the scales of interest, a large number of discretized equations are required if ε is small compared with the
characteristic length of Ω . The primary idea of the HMM is to use both microscopic and macroscopic equations or models
even if the latter are not explicitly known. Suppose that a microscopic process, such as quantum mechanics or molecular
dynamics, describes the microscopic state variable uε , which is defined on a microscopic domain, and that a macroscopic
process describes a macroscopic state variable U0, which is defined on a macroscopic domain. The two processes and
state variables are connected by the compression and reconstruction operators, Q and R: Quε = U0, RU0 = uε , with the
property QR = I , where I is the identity operator. For example, when the microscopic process is described by kinetic
theory and themacroscopic process is described by hydrodynamics, the compression operatormaps the one-particle phase-
space distribution function to the conserved mass, momentum, and energy densities; the reconstruction operator does the
opposite and is generally not unique [1]. The purpose is to approximate accurately the macroscopic state of the underlying
system by using a macroscopic grid that resolves its large scale.
The HMM consists of two components: an overall macroscopic solver for the macroscopic state variable U0 on a

macroscopic grid and an estimation of the missing macroscopic data from the microscopic model. The macroscopic solver
can be any reasonable numerical discretization method that will be concentrated on in this paper. If a macroscopic model
with a coefficient A existed

−∇ ·
(
A∇U0

)
= f inΩ, (2.3)

then an accurate approximation to the macroscopic variable U0 would be sought through Eq. (2.3). That is, for H > 0, let
TH be a partition of Ω into elements {T }, and, associated with TH , a macroscopic solver can be chosen to solve (2.3) for an
approximation UH :

L(UH) = F . (2.4)
In the absence of an explicit representation such as (2.3), the missing macroscopic data for the macroscopic solver (2.4)
must be estimated from the microscopic model (2.1). For each T ∈ TH , let {xl} be certain points in T , and let ul be some
approximation to uε on xl + εY . Then we estimate the missing macroscopic data at xl through some type of approximation
schemeL:

L(UH) ≈ L(ul). (2.5)
The approximation ul is usually obtained by solving the original Eq. (2.1) on a small grid of xl+εY , which resolves the ε-scale.
Because the number of the ε-cells xl + εY is finite and the microscopic cell problems are independent, these problems can
be solved in a parallel fashion. In this paper we will focus on the choice of various macroscopic solversL and the estimation
(2.5) of the missing macroscopic data for these solvers.

3. Standard finite element methods

The most obvious choice for the macroscopic solverL is the standard finite element method. The original finite element
HMM was developed in [1], and its detailed analysis was given in [4]. If we had the macroscopic model (2.3), the next step
in the finite element methods would be to evaluate the bilinear form

a(U0, V ) = (A∇U0,∇V ), (3.1)
by some numerical quadrature:

a(U0, V ) ≈
∑
T∈TH

|T |
∑
xl∈T

ωl(A∇U0) · ∇V (xl), (3.2)

where (·, ·) denotes the inner product in L2(Ω) or (L2(Ω))d, as appropriate, ωl > 0 and xl are the quadrature weights and
points in T , and |T | is the area or volume of T . In the absence of such an explicit expression, we must estimate the value of
the integrand in (3.1) at these quadrature points.
To explain the idea of the finite element HMM, for H > 0, let TH be a regular, quasi-uniform macroscale partition of Ω

into triangles, where the mesh size H resolves the variations ofΩ , f , and the slow variable of aε . Define
VH = {v ∈ H10 (Ω) : v|T ∈ Pr(T ), T ∈ TH},

where Pr(T ) is the set of polynomials of degree at most r ≥ 1 defined on triangle T .
For each T ∈ TH and xl ∈ T , we denote by Vl the linear approximation of V ∈ VH at xl; i.e.,
Vl(x) = V (xl)+∇V (xl) · (x− xl).
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Also, set
∆l = xl + εY .

Now, for any V ∈ VH we define vεl ∈ Vl + H̄
1
per(∆l) by(

aε∇vεl ,∇w
)
∆l
= 0 ∀w ∈ H1per(∆l), (3.3)

and approximate

(A∇U) · ∇V (xl) ≈
1
|∆l|

(
aε∇uεl ,∇v

ε
l

)
∆l
,

where uεl corresponds to U ∈ VH through (3.3).
For any U, V ∈ VH , we introduce the bilinear form

aH(U, V ) =
∑
T∈TH

∑
xl∈T

ωl
|T |
|∆l|

(
aε∇uεl ,∇v

ε
l

)
∆l
.

Now, the finite element HMM is to seek UHMM ∈ VH such that
aH(UHMM, V ) = (f , V ) ∀V ∈ VH . (3.4)

Comparing the finite element HMM (3.4) with the standard finite element methods, one sees the modification of the
bilinear form in the former, which needs the solution of local problems (3.3). It is through these local problems and the
finite element formulation that the effect of microscales on macroscales can be correctly captured. As noted, because these
local problems are independent of each other, they can be solved in parallel.
For the quadrature formula (3.2), we assume the rth-order numerical quadrature rule [23]:∫

T
v(x)dx = |T |

L∑
l=1

ωlv(xl) ∀v ∈ P2r−2(T ), T ∈ TH , (3.5)

where ωl > 0, l = 1, 2, . . . , L. For the case r = 1 we assume that this rule holds for v ∈ P1(T ).
It can be seen [4] that (3.4) admits a unique solution, which satisfies
‖UHMM‖1,Ω ≤ C‖f ‖−1,Ω . (3.6)

Moreover, if (3.5) holds and U0 is sufficiently smooth, it can be proven [4] that

‖U0 − UHMM‖1,Ω ≤ C(ε + Hr),

‖U0 − UHMM‖0,Ω ≤ C(ε + Hr+1),
(3.7)

where U0 ∈ H10 (Ω) is the solution of the homogenized problem

(A∇U0,∇V ) = (f , V ) ∀V ∈ H10 (Ω), (3.8)
the homogenized matrix A = (Aij) is given by

Aij(x) =
1
|Y |

∫
Y

(
aij(x, y)+

d∑
k=1

(
aik
∂χ j

∂yk

)
(x, y)

)
dy, (3.9)

and χ j satisfies

−∇y ·
(
aε∇yχ j(x, y)

)
=

d∑
i=1

∂

∂yi
aij(x, y), y ∈ Y ,

∫
Y
χ j(x, y)dy = 0. (3.10)

It is well known that A is symmetric and positive definite. We will assume that χ j(x, ·) ∈ W 1,∞(Y ), which is true if
aij(x, ·) ∈ W 1,`(Y ), ` > 2 [24].
It follows from (3.7) that the finite element HMM solution UHMM provides a good approximation to the macroscopic

solution U0. We can introduce a simple reconstruction trick to retrieve the microscopic information from UHMM. We define

uεH = UHMM + ε
d∑
k=1

χ k
∂UHMM
∂xk

. (3.11)

Then it can be checked [4] that(∑
T∈TH

|uε − uεH |
2
1,T

)1/2
≤ C(
√
ε + Hr),

‖uε − uεH‖0,Ω ≤ C(ε + H
r+1).

(3.12)

In the subsequent sections we will extend the standard finite element macroscopic solver to other solvers.
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4. Nonconforming finite element methods

The most obvious extension for the macroscopic solver defined in the previous section is to the nonconforming finite
element methods. The nonconforming finite element HMM has not been considered before. Compared with the standard
(conforming) finite element methods analyzed in the previous section, finite element spaces used in the nonconforming
methods employ fewer degrees of freedom, particularly for a fourth-order differential equation problem. To see the idea,
however, throughout this section we will perform all proofs in detail for the lowest-order nonconforming finite element
space on triangles (respectively, simplices) [12,25] for the second-order problem (2.1).Wepoint out that there is no technical
difficulty in extending all arguments to spaces of higher order and other types of nonconforming finite elements [26,12]. In
the lowest-order case, the nonconforming finite element space VH is

VH = {V ∈ L2(Ω) : V |T ∈ P1(T ), T ∈ TH; V is continuous at the midpoints of interior
edges (respectively, centroids of interior faces) and is zero at the
midpoints of edges (respectively, centroids of faces) on Γ }.

In the present case, if we had the macroscopic model (2.3), we would evaluate the bilinear form

aH(U, V ) =
∑
T∈TH

(A∇U,∇V )T ,

by the numerical quadrature

aH(U, V ) ≈
∑
T∈TH

|T |(A∇U) · ∇V (xT ),

where xT is the barycenter of T ∈ TH . In the absence of an explicit expression for A, we must estimate the missing data at
xT , which are obtained by solving a microscale problem on a microscopic cell:

∆T = xT + εY .

For any V ∈ VH , we define vεT ∈ V + H̄
1
per(∆T ) by(

a(xT , x/ε)∇vεT ,∇w
)
∆T
= 0 ∀w ∈ H1per(∆T ). (4.1)

Furthermore, for any U, V ∈ VH , we introduce the bilinear form

aH(U, V ) =
∑
T∈TH

|T |
|∆T |

(
aε∇uεT ,∇v

ε
T

)
∆T
,

where uεT corresponds to U ∈ VH through (4.1). Then the nonconforming finite element HMM can be defined as in (3.4). In
addition, existence and uniqueness of the solution UHMM ∈ VH can be shown as in the conforming case. In particular, the
following coercivity and continuity of aH(·, ·) can be shown using assumption (2.2) and Eq. (4.1):

aH(V , V ) ≥ C1|V |2H ∀V ∈ VH ,
aH(U, V ) ≤ C2|U|H |V |H ∀U, V ∈ VH ,

(4.2)

where the constants C1 and C2 are independent ofH and |V |H =
(∑

T∈TH
‖∇V‖20,T

)1/2
. It follows from (4.2) that the stability

result (3.6) holds as well. Below we focus on an error analysis of the nonconforming finite element HMM.
For the nonconforming finite element methods, it is known that the Céa lemma is no longer valid. The next Strang’s

second lemma [27] can be easily shown using (4.2) [12,14].

Lemma 4.1. Let U0 and UHMM be the respective solutions of (3.8) and the nonconforming HMM solution. Then there is a constant
C > 0, independent of H and ε, such that

|ΠHU0 − UHMM|H ≤ C
{
inf
V∈VH
|ΠHU0 − V |H + sup

W∈VH ,W 6=0

|aH(ΠHU0,W )− (f ,W )|
|W |H

}
, (4.3)

whereΠH is the standard interpolation operator into VH .

In (4.3), the first term on the right-hand side is referred to as the approximation error, and the second term is called the
consistency error. The latter error stems from nonconformity.

Theorem 4.2. Let U0 andUHMM be the respective solutions of (3.8) and the nonconformingHMMsolution. Then there is a constant
C > 0, independent of H and ε, such that

|U0 − UHMM|H ≤ C(ε + H)‖f ‖0,Ω ,

‖U0 − UHMM‖0,Ω ≤ C(ε + H2)‖f ‖0,Ω .
(4.4)
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Proof. Because the conforming P1 finite element space is a subspace of VH , we see that

inf
V∈VH
|ΠHU0 − V |H ≤ |ΠHU0 − U0|H + inf

V∈VH
|U0 − V |H ≤ CH|U0|2,Ω , (4.5)

so it suffices to bound the consistency error in (4.3).
It follows from (3.10) that the solution of the cell problem (4.1) has the explicit expression

vεT = V + ε
d∑
j=1

χ j(xT , x/ε)
∂V
∂xj
, (4.6)

which, together with (3.9), implies that

1
|∆T |

∫
∆T

a(xT , x/ε)∇vεT = A(xT )∇V , V ∈ VH . (4.7)

Consequently, we see that

|T |
|∆T |

(
a(xT , x/ε)∇uεT ,∇v

ε
T

)
∆T
= (A(xT )∇U,∇V )T , U, V ∈ VH , T ∈ TH . (4.8)

Let uε0 correspond toΠHU0 through (4.1). Then, using (4.8), we write

aH(ΠHU0,W )− (f ,W ) =
∑
T∈TH

|T |
|∆T |

(
aε∇uε0,∇w

ε
T

)
∆T
− (f ,W )

=

∑
T∈TH

|T |
|∆T |

(
{a(x, x/ε)− a(xT , x/ε)} ∇uε0,∇w

ε
T

)
∆T

+

∑
T∈TH

{(A(xT )∇ΠHU0,∇W )T − (A(x)∇U0,∇W )T }

+

∑
T∈TH

(A(x)∇U0,∇W )T − (f ,W ). (4.9)

Each of the terms in (4.9) can be estimated as follows. First, we have∣∣∣∣∣∑
T∈TH

|T |
|∆T |

(
{a(x, x/ε)− a(xT , x/ε)} ∇uε0,∇w

ε
T

)
∆T

∣∣∣∣∣ ≤ Cε∑
T∈TH

|T |
|∆T |
|ΠHU0|1,∆T |W |1,∆T ≤ Cε|U0|1,Ω |W |H .

Second, we see that∣∣∣∣∣∑
T∈TH

{(A(xT )∇ΠHU0,∇W )T − (A(x)∇U0,∇W )T }

∣∣∣∣∣ ≤ C (ε + H) ‖U0‖2,Ω‖W‖H .
Third, application of the standard convergence argument for the nonconforming finite element method under
consideration [12] yields∣∣∣∣∣∑

T∈TH

(A(x)∇U0,∇W )T − (f ,W )

∣∣∣∣∣ ≤ CH|U0|2,Ω‖W‖H .
Substituting these three inequalities into (4.9), we see that

|aH(ΠHU0,W )− (f ,W )| ≤ C (ε + H) ‖U0‖2,Ω‖W‖H ,

which, together with (4.3) and (4.5), gives the first inequality in (4.4). The second inequality can be shown using a standard
duality argument for the nonconforming finite element methods [12]. �

The microscopic information can be retrieved as in the conforming case. That is, with uεH defined as in (3.11), it can be
shown that

|uε − uεH |H ≤ C(
√
ε + H)‖f ‖0,Ω

‖uε − uεH‖0,Ω ≤ C(ε + H
2)‖f ‖0,Ω .
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Fig. 1. A control volume Vi (dashed).

5. Control volume finite element methods

Another closely related class of discretizationmethods are the control volume finite element (CVFE)methods for solution
of partial differential equations. Control volumes are constructed from base elements such as triangles or rectangles
(see Fig. 1), and the CVFE methods are then defined in terms of an integral formulation of the differential equations on
the boundaries of these volumes [28]. These methods are also referred to as the box methods [7] or as finite volume
element methods [29]. Regardless of their physical interpretations, the CVFE methods can be mathematically treated as
Petrov–Galerkin methods with trial function spaces associated with certain finite element spaces and test spaces related
to control volumes. They lie somewhere between the finite element and finite difference methods. It is well known that
the standard finite element methods do not conserve mass locally (at the element level). The CVFE methods conserve mass
locally on control volumes.
The CVFE methods can be chosen as the macroscopic solver in the HMM for solution of multiscale problems. However,

because they are usually implemented in terms of the standard finite element methods by using an equivalence relation
between these two methods [7,28], we only need to estimate the missing macroscopic data at the quadrature points of a
triangle or rectangle, which can be carried out exactly in the sameway as in the third section. Thuswe omit the development
of the CVFE-HMM.

6. Mixed finite element methods

In this section we extend the finite element HMM to the mixed finite element methods. The mixed finite element HMM
was analyzed in detail in [5]. In the porous media flow application, for example, uε in (2.1) represents a pressure, and the
variable qε = −aε∇uε represents a fluid velocity. The reason for using themixedmethods is, among others, that the variable
qε is the primary variable in which one is interested. Then the mixed methods are developed to approximate both uε and qε
simultaneously and to give a high-order approximation of both variables.
Again, for H > 0, let TH be a regular, quasi-uniform macroscale partition of Ω . Associated with TH , let VH ⊂ V =

H(div,Ω) andWH ⊂ L2(Ω) be the classical mixed finite element Raviart–Thomas (if d = 2) [30], Nedelec (if d = 3) [31],
Brezzi–Douglas–Fortin–Marini [32], Brezzi–Douglas–Marini (if d = 2) [33], Brezzi–Douglas–Durán–Fortin (if d = 3) [34],
or Chen–Douglas [35] spaces for second-order partial differential equations. These spaces satisfy the inf-sup condition

sup
τ∈VH ,τ 6=0

(∇ · τ , V )
‖τ‖H(div,Ω)

≥ C‖V‖0,Ω ∀V ∈ WH .

For each T ∈ TH , they also have the approximation properties

inf
τH∈VH (T )

‖τ − τH‖0,T ≤ CH lT‖τ‖l,T , 1 ≤ l ≤ r + 1,

inf
τH∈VH (T )

‖∇ · (τ − τH)‖0,T ≤ CH lT‖∇ · τ‖l,T , 0 ≤ l ≤ r∗,

inf
VH∈WH (T )

‖V − VH‖0,T ≤ CH lT‖V‖l,T , 0 ≤ l ≤ r∗,

(6.1)

where r∗ = r+1 for the Raviart–Thomas, Nedelec, Brezzi–Douglas–Fortin–Marini, and first and third Chen–Douglas spaces,
r∗ = r > 0 for the Brezzi–Douglas–Marini, Brezzi–Douglas-Durán–Fortin, and second Chen–Douglas spaces, VH(T ) = VH |T ,
WH(T ) = WH |T , and HT = diam(T ).
As for the standard finite element HMM, we assume the accuracy condition for a numerical quadrature formula: For a

given mixed space VH ,∫
T
(σ · τ)(x)dx = |T |

L∑
l=1

ωl(σ · τ)(xl), σ , τ ∈ VH , T ∈ TH , (6.2)

where ωl > 0 and xl ∈ T are quadrature weights and points, l = 1, 2, . . . , L. It is at these quadrature points where there
may be no explicit knowledge of A. Thus, for each xl, we set

∆l = xl + εY , l = 1, 2, . . . , L,
and, for any τ ∈ VH , we define vl ∈ H̄1(∆l) by

(aε∇vl,∇w)∆l = − (τ (xl),∇w)∆l ∀w ∈ H
1(∆l), T ∈ TH , l = 1, 2, . . . , L, (6.3)
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Fig. 2. Primal and dual grids: T ′e = T
−
e ∪ e ∪ T

+
e .

and
Vl = −aε∇vl, x ∈ ∆l, l = 1, 2, . . . , L. (6.4)

Now, for any σ , τ ∈ VH , we define the bilinear form

aH(σ , τ ) =
∑
T∈TH

L∑
l=1

|T |
|∆l|

ωl
(
a−1ε Ul, Vl

)
∆l
, (6.5)

where Ul corresponds to σ ∈ VH through (6.3) and (6.4).
The mixed finite element HMM for (2.1) is defined: Find qHMM ∈ VH and UHMM ∈ WH such that

aH(qHMM, τ )− (∇ · τ ,UHMM) = 0 ∀τ ∈ VH ,
(∇ · qHMM, V ) = (f , V ) ∀V ∈ WH .

(6.6)

Under the quadrature formula (6.2), problem (6.6) has a unique solution qHMM ∈ VH and UHMM ∈ WH , which satisfies [5]
‖qHMM‖H(div,Ω) + ‖UHMM‖0,Ω ≤ C‖f ‖0,Ω .

Furthermore, if U0 and Q0 = −A∇U0 are sufficiently smooth, the error estimates hold

‖Q0 − qHMM‖0,Ω ≤ C
(
Hr+1 + ε

)
,

‖U0 − UHMM‖0,Ω ≤ C
(
Hr
∗

+ Hr+1 + ε
)
,

‖∇ · (Q0 − qHMM)‖0,Ω ≤ CHr
∗

,

(6.7)

where r and r∗ are defined as in (6.1).
From (6.7) we see that the mixed finite element HMM solutions UHMM and qHMM provide a good approximation to the

macroscopic solution U0 and Q0, respectively. As for the standard and nonconforming finite element HMMs, we can use
UHMM and qHMM to retrieve the microscopic information. For more details, please refer to [5].

7. Mixed covolume methods

As noted in the previous section, the standard mixed finite element methods are introduced to approximate both uε and
qε simultaneously and to give a high-order approximation of both variables. On the other hand, mixed covolume methods
have been developed with the same purpose, in addition to that they often produce smaller solution errors [11]. Unlike the
standard mixed methods that use a primary grid TH , the mixed covolume methods use a conservation law on a primary
volume grid TH for the scalar variable and a constitutive law on a dual volume or covolume grid T ′H for the vector variable.
Depending on how they are interpreted, thesemethods are referred to asmixed covolumemethods (preferred by us), mixed
control volume methods, and mixed balance methods [36–39,10]. Regardless of their physical interpretations, this class of
numericalmethods can alsomathematically be studied as Petrov–Galerkinmethodswith trial spaces associatedwith certain
finite element spaces and test spaces related to finite volumes, as in the CVFE methods.
The most well-known example for the dual grid T ′H is the MAC (marker and cell) method that employs two staggered

rectangular grids [40]. These covolume methods can use either nonoverlapping (see Fig. 2) or overlapping (see Fig. 3)
covolumes. The left-hand side figure in Fig. 2 is a primary partition that consists of rectangles, and a typical interior covolume
in its dual partition is the dashed quadrilateral, the union of two triangles T−e ∪ T

+
e with the common edge e in TH . The two

vertices inside the two rectangles are their centers. Note that each edge in TH corresponds to a covolume. Near the boundary
Γ a covolume is either T−e or T

+
e . The right-hand side figure in Fig. 2 has an analogous meaning when the primary partition

TH consists of triangles. On the other hand, the dashed covolumes in Fig. 3 are overlapping.
Based on the earlier results of Chou and Kwak [9,37], a unified frameworkwas presented for a number ofmixed covolume

methods [41]. This framework connects all these methods to the standard mixed finite element methods using an injective
mapping γH from the space VH (see the previous section) to a test space YH . In this section we define the mixed covolume
HHH using this mapping.
The definitions (6.3) and (6.4) remain valid. But for any σ , τ ∈ VH , the bilinear form aH(·, ·) is modified to

aH(σ , τ ) =
∑
T∈TH

L∑
l=1

|T |
|∆l|

ωl
(
a−1ε Ul, V

′

l

)
∆l
, (7.1)
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Fig. 3. Dual grid with overlapping covolumes.

where Ul and V ′l , respectively, correspond to σ and γHτ through (6.3) and (6.4). With this modification, the mixed covolume
HHH for (2.1) can be defined in the same manner as in (6.6).
To have the well-posedness of system (6.6) for the mixed covolume HHH, two hypotheses are required for the mapping

γH . We assume that there are positive constants C such that

(a−1ε τ , γHτ) ≥ C‖τ‖
2
0,Ω ∀τ ∈ VH ,

‖γHτ‖0,Ω ≤ C‖τ‖0,Ω ∀τ ∈ VH .
(7.2)

Furthermore, to establish error estimates, we need an approximation property of γH . For example, in the case of the lowest-
order Raviart–Thomas mixed finite element spaces (i.e., r = 0 in (6.1)), we assume that

|(σ , τ − γHτ)| ≤ CH‖σ‖1,Ω‖τ‖0,Ω , σ ∈ H1(Ω), τ ∈ VH . (7.3)

Examples of γH that satisfy both (7.2) and (7.3) can be found in [42,43]. With these two assumptions, the mixed covolume
HHH can be analyzed as for the standard mixed finite element HHH [5]. Moreover, under (7.3), the error estimates hold:

‖Q0 − qHMM‖0,Ω ≤ C (H + ε) ,
‖U0 − UHMM‖0,Ω ≤ C (H + ε) ,
‖∇ · (Q0 − qHMM)‖0,Ω ≤ CH.

(7.4)

8. Discontinuous Galerkin methods

In this section we consider the case where the macroscopic solverL is the discontinuous Galerkin (DG) method. Unlike
the standard finite element methods, for a given diffusion problem such as (2.1), the DG methods can have many different
formulations that result in differentmethods. Essentially, there are threeDGmethods: symmetric, nonsymmetric, andmixed
(Local) DG. For a pure diffusion problem, these methods may not be stable, so various stabilized (penalty) DGmethods have
been proposed. For a collection of these methods and their comparison, the reader may refer to [12]. Recently, Chen, E, and
Shu has studied a LDG-HMM for one-dimensional hyperbolic and parabolic multiscale problems [6] that will be reviewed
here. To be consistent with (2.1), instead of working with a time-dependent problem, we consider the diffusion–reaction
problem

−
(
aεuεx

)
x + u

ε
= f in [0, 2π ],

uε(0) = uε(2π),
(8.1)

where aε(x) = a (x, x/ε) > 0, with a(x, y) smooth in x and periodic in ywith the period Y = [0, 2π ]. The reason to include
a reaction term is for the subsequent LDG method to have a unique solution. This term may be thought of as arising from
the discretization of a time differentiation term.
We denote a regular grid by Yj = [xj−1/2, xj+1/2], j = 1, 2, . . . ,N , with the cell center xj = (xj−1/2 + xj+1/2)/2 and the

cell size Hj = xj+1/2 − xj−1/2. Set H = maxj Hj, and introduce the finite element space

VH = {V ∈ L2(Ω) : V |Yj ∈ Pr(Yj), j = 1, 2, . . . ,N}, r ≥ 0.

For U,W ∈ VH , on the microcell Y εj = [xj+1/2, xj+1/2 + 2πε]we solve the problem

−
(
aε ûεx

)
x + û

ε
= 0 in Y εj ,

ûε −
(
U+j+1/2 +W

+

j+1/2(x− xj+1/2)
)
is periodic,

(8.2)
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where U+j+1/2 and U
−

j+1/2 (below) indicate the right and left limits of U at the grid points xj+1/2. Then we define

(Fε(U,W , x))+j+1/2 =
1
2πε

∫
Yj
aε ûεxdx.

Now, the LDG-HMM for (8.1) is defined: Find U = UHMM,W = WHMM ∈ VH such that

(W , v)Yj + (U, v)Yj − U
−

j+1/2v
−

j+1/2 + U
−

j−1/2v
+

j−1/2 = 0 ∀v ∈ VH ,

(aεW , w)Yj + (U, w)Yj − F
+

j+1/2w
−

j+1/2 + F
+

j−1/2w
+

j−1/2 = (f , w)Yj ∀w ∈ VH ,
(8.3)

for j = 1, 2, . . . ,N , where F+j+1/2 = (Fε(U,W , x))
+

j+1/2.
Let U0 be the exact solution of the homogenized problem of (8.1). If U0 and Q0 = (U0)x are sufficiently smooth, it can be

shown [6] that

‖U0 − UHMM‖0,Ω + ‖Q0 −WHMM‖0,Ω ≤ C
( ε
H
+ Hr+1

)
, r ≥ 0. (8.4)

Note that this estimate is optimal in terms of H . However, compared with the error estimates obtained in the previous
sections, it is not sharp with respect to ε. Future research will be needed to improve this estimate.

9. Finite difference methods

In the previous sections we have chosen various finite element method as the macroscopic solver L in the HMM. For
completeness, we now consider the finite difference method as the macroscopic solver that was developed in [3,1] for a
time-dependent parabolic multiscale problem. Again, to be consistent with the multiscale problem under consideration,
we stick with problem (2.1). Also, a point-distributed finite difference method was used in [3,1], while a block-centered
difference is utilized here, which is consistent with the DG methods considered in the previous section.
Let Ω = [0, 1]2 be the unit square, and denote a partition of Ω into smaller squares of equal size by Yij =

[x1,i−1/2, x1,i+1/2] × [x2,j−1/2, x2,j+1/2], i, j = 1, 2, . . . ,N , with the cell center (x1,i, x2,j), where x1,i = (x1,i−1/2 + x1,i+1/2)/2
and x2,j = (x2,j−1/2 + x2,j+1/2)/2. Corresponding to this partition, we define the finite element space (i.e., the space of
piecewise constants)

VH = {V ∈ L2(Ω) : V |Yij ∈ P0(Yij), i, j = 1, 2, . . . ,N}.
Also, associated with each point (x1,i+1/2, x2,j), we introduce a microscopic ε-cell:

Y εi+1/2,j =
[
x1,i+1/2 −

ε

2
, x1,i+1/2 +

ε

2

]
×

[
x2,j −

ε

2
, x2,j +

ε

2

]
, i = 0, 1, . . . ,N, j = 1, 2, . . . ,N.

Similarly, Y εi,j+1/2 can be defined. Furthermore, for each V ∈ VH we define its linear approximation on Y
ε
i+1/2,j

Vi+1/2,j(x1, x2) = Vij +
Vi+1,j − Vij

H
x1, (x1, x2) ∈ Y εi+1/2,j,

where Vij = V |Yij . Vi+1/2,j(x1, x2) can be defined in an analogous manner.
Now, for any V ∈ VH , on each Y εi+1/2,j we define v

ε
i+1/2,j ∈ Vi+1/2,j + H̄

1
per(Y

ε
i+1/2,j) by(

aε∇vεi+1/2,j,∇w
)
Y εi+1/2,j

= 0 ∀w ∈ H1per(Y
ε
i+1/2,j), (9.1)

and

Pi+1/2,j(V ) = −
1

|Y εi+1/2,j|

∫
Y εi+1/2,j

aε∇vεi+1/2,jdx, i = 0, 1, . . . ,N, j = 1, 2, . . . ,N. (9.2)

The vector Pi,j+1/2(V ) can be defined similarly. Finally, the FD-HMM is defined: Find UHMM ∈ VH such that, for i, j =
1, 2, . . . ,N ,

P1,i+1/2,j(UHMM)− P1,i−1/2,j(UHMM)+ P2,i,j+1/2(UHMM)− P2,i,j+1/2(UHMM)
H

= fij, (9.3)

where Pi+1/2,j = (P1,i+1/2,j, P2,i+1/2,j).
If U0 is the exact solution of the homogenized problem of (2.1), it can be proven [3] that

‖U0 − UHMM‖0,Ω ≤ C
( ε
H
+ H

)
. (9.4)

As in the LCD-HMM, estimate (9.4) is not sharp with respect to ε.

10. A nonlinear problem

The HMM with the standard finite element methods as the macroscopic solver has been analyzed for nonlinear
homogenization problems [4]. As an example of the possible extensions to other macroscopic solvers presented in the
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previous sections, we study the nonconforming finite element HMM. The notation given in the fourth section applies, and
the argument here follows [4].
We consider the nonlinear problem

−∇ ·
(
aε∇uε

)
= f inΩ,

uε = 0 on Γ ,
(10.1)

where aε = a(x, x/ε, uε) now depends on the solution uε . We assume that the coefficient a(x, y, z) is equi-continuous in z
uniformly with respect to x and y and periodic in ywith period Y = [−1/2, 1/2]d. Furthermore, it satisfies inequality (2.2).
Under such assumptions, the solution uε converges weakly in U = W 1,p0 (Ω) (p > 1) to the solution of the homogenized
equation [44]

−∇ ·
(
A(x,U0)∇U0

)
= f inΩ,

U0 = 0 on Γ ,
(10.2)

where the homogenized matrix A = (Aij) is

Aij(x, q) =
1
|Y |

∫
Y

(
aij(x, y, q)+

d∑
k=1

(
aik
∂χ j

∂yk

)
(x, y, q)

)
dy ∀q ∈ R,

and χ j satisfies, with a periodic boundary condition in y,

−∇y ·
(
aε(x, y, q)∇yχ j

)
=

d∑
i=1

∂

∂yi
aij(x, y, q), y ∈ Y ,∫

Y
χ j(x, y, q)dy = 0, q ∈ R.

(10.3)

As in the linear case (3.8), the variational form of (10.2) reads: Find U0 ∈ U such that

(A(x,U0)∇U0,∇v) = (f , v) ∀v ∈ U. (10.4)

Let VH ⊂ L2(Ω) be the nonconforming finite element space defined in the fourth section. For any V ∈ VH , we define
vεT ∈ V + H̄

1
per(∆T ) by(

a(xT , x/ε, vεT )∇v
ε
T ,∇w

)
∆T
= 0 ∀w ∈ H1per(∆T ). (10.5)

Furthermore, for any U, V ∈ VH , we introduce the bilinear form

aH(U, V ) =
∑
T∈TH

|T |
|∆T |

(
a(xT , x/ε, uεT )∇u

ε
T ,∇v

ε
T

)
∆T
,

where uεT corresponds to U ∈ VH through (10.5). Now, as in the linear case, the nonconforming finite element HMM for
(10.1) is to seek UHMM ∈ VH such that

aH(UHMM, V ) = (f , V ) ∀V ∈ VH . (10.6)

To abuse the notation, whenever bilinear (quadratic) forms and norms involving partial derivatives are evaluated on the
nonconforming finite element space VH , they are understood in the piecewise sense, as in the definition of the norm | · |H .
Introduce the linearized differential operator at U0:

L1(U0)v = −∇ ·
(
A(x,U0)∇v + v Ap(x,U0)∇U0

)
, v ∈ H1(Ω),

and the corresponding bilinear form

â(U0; v,w) = (A(x,U0)∇v,∇w)+
(
vAp(x,U0)∇U0,∇w

)
∀v, w ∈ H1(Ω),

where Ap(x, u) = ∇uA(x, u). We assume that this linearized operator is an isomorphism from H10 (Ω) to H
−1(Ω), so U0 is

an isolated solution of (10.4). Moreover, application of an argument in [45] to the nonconforming finite element method
considered implies that there is H0 > 0 such that for 0 < H < H0 [45],

sup
W∈VH ,W 6=0

â(U0; V ,W )
‖W‖1,Ω

≥ C0‖V‖1,Ω ∀V ∈ VH , (10.7)

where C0 > 0 is independent of H .
For any v, v1, w ∈ U, we define

R(v, v1, w) = a(v1, w)− a(v,w)− â(v; v1 − v,w),
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where a(v,w) = (A(x, v)∇v,∇w). If v, v1 ∈ U satisfy ‖v‖1,∞,Ω + ‖v1‖1,∞,Ω ≤ M , then extension of a technique in [46]
to the nonconforming method gives

|R(v, v1, w)| ≤ C(M)
(
‖e‖20,2p + ‖e∇e‖0,p

)
‖∇w‖0,q, e = v − v1,

1
p
+
1
q
= 1. (10.8)

It now follows from the definition ofR and (10.4) that UHMM ∈ VH is the solution of (10.6) if and only if

â(U0;U0 − UHMM,W ) = R(U0,UHMM,W )+ [a(U0,W )− (f ,W )]+ [aH(UHMM,W )− a(UHMM,W )] ∀W ∈ VH .
(10.9)

Define

E(V ,W ) = aH(v,w)− a(V ,W ) ∀V , W ∈ VH ,

and

E = max
V∈UH∩W1,∞(Ω),W∈VH

|E(v,w)|
|V |1,Ω |W |1,Ω

.

10.1. Existence and uniqueness of a solution

To prove existence and uniqueness of a solution to (10.6), we introduce the projection ofU0 into VH through the linearized
bilinear form â:

â(U0; PHU0, V ) = â(U0;U0, V ) ∀V ∈ VH . (10.10)

It follows from (10.7) that PHU0 exists and is unique for 0 < H < H0, and satisfies [47]

‖U0 − PHU0‖1,∞,Ω ≤ CH, ‖U0 − PHU0‖1,Ω ≤ CH, (10.11)

if U0 ∈ W 2,∞(Ω). When U0 ∈ W 2,p(Ω) (p > d), it holds that

‖U0 − PHU0‖1,∞,Ω ≤ CH1−d/p. (10.12)

Finally, for a given x ∈ Ω , we define the discrete Green’s function GxH ∈ VH by

â(U0; v,GxH) = ∂V (x) a.e. inΩ, V ∈ VH , (10.13)

where ∂V indicates any of the partial derivatives ∂V/∂xi (i = 1, 2, . . . , d). This function satisfies

‖GxH‖1,1,Ω ≤ C | lnH|. (10.14)

Theorem 10.1. Assume that L1 is an isomorphism from H10 (Ω) to H
−1(Ω) and U0 ∈ U ∩ W 2,p(Ω) with p > d. In addition,

assume that E is bounded and there are constants C1 and H1 such that for 0 < H ≤ H1,

E
1/2
| lnH| ≤ C1. (10.15)

Then problem (10.6) has a solution UHMM satisfying

‖UHMM − PHU0‖1,∞,Ω ≤ E
1/2
+ H1−d/p,

‖UHMM − U0‖1,∞,Ω ≤ C
(
E
1/2
+ H1−d/p

)
.

(10.16)

Furthermore, if, for all V1, V2,W ∈ VH with ‖V1‖1,∞,Ω + ‖V2‖1,∞,Ω ≤ M, there is a constant ζ0(M), with 0 < ζ0 < 1, such
that

|E(V1,W )− E(V2,W )| ≤ ζ0(M)‖V1 − V2‖1,Ω‖W‖1,Ω , (10.17)

then this solution UHMM is locally unique.

Proof. We define the nonlinear mappingL1 : VH → VH by

â(U0;L1(V ),W ) = â(U0;U0,W )−R(U0, V ,W )+ a(V ,W )− aH(V ,W ) ∀W ∈ VH .

This mapping is continuous using (10.7) and (10.8). We also define the set

B =
{
V ∈ VH : ‖V − PHU0‖1,∞,Ω ≤ E

1/2
+ H1−d/p

}
.

Note that, by (10.10),

â(U0;L1(V )− PHU0,W ) = −R(U0, V ,W )+ a(V ,W )− aH(V ,W ) ∀W ∈ VH .
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Choosing W = GxH in this equation and applying (10.8), (10.12), (10.14) and (10.15), we see that, with V ∈ B and
‖V‖1,∞,Ω ≤ M ,

‖L1(v)− PHU0‖1,∞,Ω ≤ C(M)
(
‖U0 − V‖21,∞,Ω + E

)
| lnH|

≤ C(M)
(
‖U0 − PHU0‖21,∞,Ω + ‖PHU0 − v‖

2
1,∞,Ω + E

)
| lnH|

≤ C(M)
(
H2−2d/p + E

)
| lnH|.

Because V ∈ B and E is bounded (e.g., E ≤ C1), we see that

‖V‖1,∞,Ω ≤ ‖V − PHU0‖1,∞,Ω + ‖PHU0‖1,∞,Ω

≤ E
1/2
+ C(U0) ≤ C

1/2
1 + C(U0) ≡ C0. (10.18)

Combining these two inequalities, we have

‖L1(V )− PHU0‖1,∞,Ω ≤ C(C0)
(
H2−2d/p + E

)
| lnH|.

Defining C1 = 1/C(C0), it follows from (10.15) that

‖L1(V )− PHU0‖1,∞,Ω ≤ E
1/2
+ C(C0)H2−2d/p| lnH|.

Thus there is a constant H2 such that for 0 < H ≤ H2, we obtain

‖L1(V )− PHU0‖1,∞,Ω ≤ E
1/2
+ H1−d/p.

Set H1 = min(H0,H2). Then, for 0 < H ≤ H1, we see thatL1(B) ⊂ B. The Brouwer fixed point theorem means that there is
a UHMM ∈ B such thatL1(UHMM) = UHMM.
To prove the uniqueness, let U1HMM and U

2
HMM be two solutions of (10.6). Then it follows from (10.7) that, with U

t
HMM =

(1− t)U2HMM + tU
1
HMM,

C‖U1HMM − U
2
HMM‖1,Ω ≤ sup

W∈UH

∫ 1
0 â(U

t
HMM;U

1
HMM − U

2
HMM,W )dt

‖W‖1,Ω

≤ sup
W∈VH

|a(U1HMM,W )− a(U
2
HMM,W )|

‖W‖1,Ω
.

Note that, by (10.6),

a(U1HMM,W )− a(U
2
HMM,W ) =

[
a(U1HMM,W )− aH(U

1
HMM,W )

]
−
[
a(U2HMM,W )− aH(U

2
HMM,W )

]
.

Because both U1HMM and U
2
HMM are in the set B, it follows from (10.18) that ‖U

1
HMM‖1,∞,Ω + ‖U

2
HMM‖1,∞,Ω ≤ 2C0, which,

together with (10.17), implies

‖U1HMM − U
2
HMM‖1,Ω ≤ ζ0(2C0)‖U

1
HMM − U

2
HMM‖1,Ω .

Since ζ0 < 1 via assumption, U1HMM = U
2
HMM. Therefore, the solution UHMM is locally unique. �

10.2. Error estimates

The multiscale finite element solution UHMM in the next theorem refers to the one that satisfies the conditions in
Theorem 10.1.

Theorem 10.2. Let U0 and UHMM be the solutions of (10.4) and (10.6), respectively, and U0 ∈ W 2,∞(Ω). Then there is H0 > 0
such that for 0 < H < H0,

‖U0 − UHMM‖1,Ω ≤ C (H + ε) , ‖U0 − UHMM‖1,∞,Ω ≤ C (H + ε) | lnH|, (10.19)

provided that ε| lnH| is sufficiently small.

Proof. TakingW = PHU0 − UHMM in (10.9) and using (10.7) and (10.8), and a similar argument as in fourth section, we see
that

‖PHU0 − UHMM‖1,Ω ≤ C
(
‖U0 − UHMM‖21,4,Ω + E + H

)
. (10.20)

As in the conforming case [4], it can be shown that

E ≤ Cε, (10.21)
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provided that ε| lnH| is sufficiently small. Also, applying an interpolation inequality, we have

‖U0 − UHMM‖21,4,Ω ≤ ‖U0 − UHMM‖1,Ω‖U0 − UHMM‖1,∞,Ω . (10.22)

Consequently, combining (10.20)–(10.22) and using (10.11) and Theorem 10.1 yields the first result in (10.19).
ChoosingW = GxH in (10.9) and using (10.8), (10.11) and (10.14), we see that

‖PHU0 − UHMM‖1,∞,Ω ≤ CE| lnH|‖PHU0 − UHMM‖1,∞,Ω + C
(
‖U0 − UHMM‖21,∞,Ω + E + H

)
| lnH|.

Applying (10.21), if ε lnH| is sufficiently small, it follows that

‖PHU0 − UHMM‖1,∞,Ω ≤ C
(
‖U0 − UHMM‖21,∞,Ω + E + H

)
| lnH|.

As a result, applying Theorem 10.1, we obtain

‖U0 − UHMM‖1,∞,Ω ≤ C
(
‖PHU0 − U0‖1,∞,Ω +

(
E + H

)
| lnH|

)
,

which, together with (10.11), implies the second inequality in (10.19). �

11. A random homogenization problem

In the previous sections we have assumed that the coefficient aε in problem (2.1) has the form a(x, x/ε) and a(x, y) is
periodic in y. In many problems such as in porous media flows [48], this coefficient is often random. In this section we
indicate how to extend the multiscale finite element analysis performed for (2.1) to a multiscale problem with a random
coefficient. Again, as example, we consider the nonconforming finite element HMM, following [4] for the conforming finite
element methods.
Let (D, F , P) be a probability space and a(y, ω) =

(
aij(y, ω)

)
be a random field, y ∈ Rd,ω ∈ D, whose statistics is invariant

under integer shifts. Furthermore, let a satisfy the uniform ellipticity condition (2.2); i.e.,

a∗|ζ |2 ≤
d∑
i,j=1

aij(y, ω)ζiζj ≤ a∗|ζ |2 ∀ω ∈ D, y, ζ ∈ Rd, (11.1)

for some positive constants a∗ and a∗. Problem (2.1) now takes the form

−∇ ·
(
a(x/ε, ω)∇uε

)
= f inΩ,

uε = 0 on Γ .
(11.2)

As in (3.10), let χ j satisfy [49]

−∇y ·
(
a(y, ω)∇yχ j

)
=

d∑
i=1

∂

∂yi
aij(y, ω), (11.3)

and ∇χ j is assumed to be stationary under integer shifts. χ j is generally not stationary. Define the average operator with
respect the measure P (mathematical expectation)

〈v〉 = E
∫
[−1/2,1/2]d

v(y)dy.

The homogenized coefficient A is given by

A = 〈a(I +∇χ)〉 , (11.4)

where I is the identity matrix and χ = (χ1, χ2, . . . , χd)T. With this coefficient, the variational formulation of the
homogenized problem is defined as in (3.8).
For the convergence analysis in the random case, we will use an important mixing condition [50]. For a subdomain

B ⊂ Rd, denote byΦ(B) the σ -algebra generated by the parameters {a(y, ω) : y ∈ B}. Let ζ1 and ζ2 be two random variables
that are measurable with respect toΦ(B1) andΦ(B2), respectively. We assume that

|E(ζ1ζ2)− E(ζ1)E(ζ2)| ≤ e−Cdist(B1,B2)
√

Eζ 21

√
Eζ 22 . (11.5)

This type of exponential decay condition is often used for geostatistical models.
For the barycenter xT of each T ∈ TH ,∆T introduced in the fourth section is replaced with

∆T (δ) = xT + δY ,

where the constant δ should be a few times greater than the local correlation length in aε . Below we write ∆T = ∆T (δ)
in short. Let VH ⊂ L2(Ω) be the nonconforming finite element space defined in the fourth section. The local problem (4.1)
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becomes: For any V ∈ VH , vεT ∈ H
1(∆T ) satisfies(

a(xT , x/ε)∇vεT ,∇w
)
∆T
= 0 ∀w ∈ H10 (∆T ),

vεT = V on ∂∆T .
(11.6)

Then, for any U, V ∈ VH , we introduce the bilinear form

aH(U, V ) =
∑
T∈TH

|T |
(δ/2)d

(
aε∇uεT ,∇v

ε
T

)
∆T
,

where uεT corresponds to U ∈ VH through (11.6). The reason to use δ/2, instead of δ in the bilinear form aH(·, ·), is to reduce
the effect of the imposed boundary condition on ∂∆T [4]. Now, the nonconforming finite element HMM for (11.2) is to seek
UHMM ∈ VH such that

aH(UHMM, V ) = (f , V ) ∀V ∈ VH . (11.7)

We now state error estimates in the random case for which we also need Strang’s second lemma:

Lemma 11.1. Let UHMM and U0 be the respective solutions of (3.8) and (11.7), with A given by (11.4). Then there is a constant
C > 0, independent of H and ε, such that

|ΠHU0 − UHMM|H ≤ C
{
inf
V∈VH
|ΠHU0 − V |H + sup

W∈VH ,W 6=0

|aH(ΠHU0,W )− (f ,W )|
|W |H

}
, (11.8)

whereΠH is the standard interpolation operator into VH .

We remark that the homogenization results in [51] will be used below andmay be overestimated because they are based
on the Green function estimates that are not required for the computation of effective coefficients. Because of this, the next
convergence result here may be overestimated as well.

Theorem 11.2. Let UHMM and U0 be the respective solutions of (3.8) and (11.7), where the homogenized coefficient A is now
given by (11.4), and U0 ∈ H2(Ω) ∩W 1,∞(Ω). Then, under condition (11.5), we have

E |U0 − UHMM|H ≤ C(κ)
(
H +

(ε
δ

)κ)
,

E ‖U0 − UHMM‖0,Ω ≤ C(κ)
(
H2 +

(ε
δ

)κ)
,

(11.9)

where

κ =


6− 12λ
25− 8λ

if d = 3,
1
2

if d = 1,

for any 0 < λ < 1/2.

Proof. Again, because the conforming P1 finite element space is a subspace of VH , it follows [4,51] that

E inf
V∈VH
|ΠHU0 − V |H ≤ E|ΠHU0 − U0|H + E inf

V∈VH
|U0 − V |H ≤ C(κ)

(
H +

(ε
δ

)κ)
. (11.10)

Also, the consistency error in (11.8) can be estimated by combining the techniques in the fourth section and those for
handling the conforming finite element HMM for a random homogenization problem (see Appendix A in [4]). �

References

[1] W.E. , B. Engquist, The heterogeneous multiscale methods, Commun. Math. Sci. 1 (2003) 87–132.
[2] W.E. , B. Engquist, X. Li, W. Ren, E. Vanden-Eijnden, Heterogeneous multiscale methods: A review, Commun. Comput. Phys. 2 (2007) 367–450.
[3] A. Abdulle, W.E. , Finite difference heterogeneous multiscale method for homogenization problems, J. Comput. Phys. 191 (2003) 18–39.
[4] W.E. , P.Ming, P. Zhang, Analysis of the heterogeneousmultiscalemethod for elliptic homogenization problems, J. Amer.Math. Soc. 18 (2005) 121–156.
[5] Z. Chen, Multiscale methods for elliptic homogenization problems, Numer. Methods Partial Differential Equations 22 (2006) 317–360.
[6] S. Chen,W.E. , C.-W. Shu, The heterogeneousmultiscalemethod based on the discontinuousmethod for hyperbolic and parabolic problems,Multiscale
Model. Simul. 3 (2005) 871–894.

[7] R.E. Bank, D.J. Rose, Some error estimates for the box method, SIAM J. Numer. Anal. 24 (1987) 777–787.
[8] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.
[9] S.-H. Chou, Analysis and convergence of a covolume method for the generalized Stokes problem, Math. Comp. 66 (1997) 85–104.
[10] T.F. Russell, Rigorous block-centered discretization on irregular grids: Improved simulation of complex reservoir systems, Tech, Report 3, Reservoir

Research Corporation, Tulsa, OK, 1995.



3282 Z. Chen / Nonlinear Analysis 71 (2009) 3267–3282

[11] S.-H. Chou, D.Y. Kwak, K.Y. Kim, Mixed finite volume methods on nonstaggered quadrilateral grids for elliptic problems, Math. Comp. 72 (2003)
525–539.

[12] Z. Chen, Finite Element Methods and Their Applications, Springer-Verlag, Heidelberg, New York, 2005.
[13] B. Cockburn, C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework,

Math. Comp. 52 (1989) 411–435.
[14] P.G. Ciarlet, The finite Element Method for Elliptic Problems, North–Holland, Amsterdam, 1978.
[15] T. Arbogast, Analysis of a two-scale locally conservative subgrid upscaling for elliptic problems, SIAM J. Numer. Anal. 42 (2004) 576–598.
[16] I. Babuška, Homogenization and its applications, in: B. Hubbard (Ed.), SYNSPADE, 1975, pp. 89–116.
[17] T. Hou, X.Wu, Amultiscale finite elementmethod for elliptic problems in compositematerials and porousmedia, J. Comput. Phys. 134 (1997) 169–189.
[18] Z. Chen, T. Hou, A mixed multiscale finite element method for elliptic problems with oscillating coefficients, Math. Comp. 72 (2002) 541–576.
[19] Y.R. Efendiev, T. Hou, X. Wu, The convergence of nonconforming multiscale finite element methods, SIAM J. Numer. Anal. 37 (2000) 888–910.
[20] T. Hou, X. Wu, Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Math. Comp. 68

(1999) 913–943.
[21] Z. Chen, M. Cui, T. Savchuk, X. Yu, The multiscale finite element method with nonconforming elements for elliptic homogenization problems, SIAM

Multiscale Model. Simul. 7 (2008) 517–538.
[22] P. Ming, X. Yue, Numerical methods for multiscale problems. Preprint, 2003.
[23] P.G. Ciarlet, P.-A. Raviart, The combined effect of curved boundaries and numerical integration in isoparametric finite element methods, in: A.K. Aziz

(Ed.), Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Academic Press, New York, 1972,
pp. 409–474.

[24] O.A. Ladyzhenskaya, N.N. Uralt́seva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968.
[25] M. Crouzeix, P. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations, RAIRO 3 (1973) 33–75.
[26] T. Arbogast, Z. Chen, On the implementation of mixedmethods as nonconformingmethods for second order elliptic problems, Math. Comp. 64 (1995)

943–972.
[27] G. Strang, G.J. Fix, An Analysis of the Finite Element Method, Prentice-Hall Inc., Englewood Cliffs, NJ, 1973.
[28] Z. Chen, The control volume finite element methods and their applications to multiphase flow, Netw. Heterogeneous Media 1 (2006) 689–706.
[29] Z. Cai, J. Mandel, S. McCormick, The finite volume element method for diffusion equations on general triangulations, SIAM J. Numer. Anal. 28 (1991)

392–403.
[30] P.A. Raviart, J.M. Thomas, A mixed finite element method for 2nd order elliptic problems, in: Mathematical Aspects of the Finite Element Method,

in: Lecture Notes in Mathematics, vol. 606, Springer-Verlag, Berlin, New York, 1977, pp. 292–315.
[31] J.C. Nedelec, Mixed finite elements in R3 , Numer. Math. 35 (1980) 315–341.
[32] F. Brezzi, J. Douglas Jr., M. Fortin, L. Marini, Efficient rectangular mixed finite elements in two and three space variables, RAIRO Modèl. Math. Anal.

Numér. 21 (1987) 581–604.
[33] F. Brezzi, J. Douglas Jr., L. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47 (1985) 217–235.
[34] F. Brezzi, J. Douglas Jr., R. Durán, M. Fortin, Mixed finite elements for second order elliptic problems in three variables, Numer. Math. 51 (1987)

237–250.
[35] Z. Chen, J. Douglas Jr., Prismatic mixed finite elements for second order elliptic problems, Calcolo 26 (1989) 135–148.
[36] Z. Cai, J.E. Jones, S.F. McCormick, T.F. Russell, Control-volume mixed finite element methods, Comput. Geosci. 1 (1997) 289–315.
[37] S.H. Chou, D.Y. Kwak, Mixed covolume methods on rectangular grids for elliptic problems, SIAM J. Numer. Anal. 37 (1997) 85–104.
[38] S.H. Chou, D.Y. Kwak, P.S. Vassilevski, Mixed upwinding covolume methods on rectangular grids for convection-diffusion problems, SIAM J. Sci.

Comput. 21 (1999) 145–165.
[39] R.D. Lazarov, I.D. Mishev, P.S. Vassilevski, Finite volume methods for convection-diffusion problems, SIAM J. Numer. Anal. 33 (1996) 31–55.
[40] F.H. Harlow, F.E. Welch, Numerical calculations of time dependent viscous incompressible flow of fluid with a free surface, Phys. Fluids 8 (1995)

2181–2197.
[41] S.H. Chou, P.S. Vassilevski, A general mixed covolume framework for constructing conservative schemes for elliptic problems, Math. Comp. 68 (1999)

991–1011.
[42] Z. Chen, S.-H. Chou, D. Kwak, Characteristic-mixed covolume methods for advection-dominated diffusion problems, Numer. Linear Algebra Appl. 13

(2006) 677–697.
[43] S.H. Chou, D.Y. Kwak, K.Y. Kim, A general framework for constructing and analyzing mixed finite volume methods on quadrilateral grids: The

overlapping covolume case, SIAM J. Numer. Anal. 39 (2001) 1170–1196.
[44] L. Boccardo, T. Murat, Homogénéisation de problémes equasi-linéaires, Publ. IRMA, Lille 3 (1981) 1–17.
[45] A. Schatz, An observation concerning Ritz–Galerkin methods with infinite bilinear forms, Math. Comp. 28 (1974) 959–962.
[46] J. Xu, Two-grid discretization techniques for linear and nonlinear PDES, SIAM J. Numer. Anal. 33 (1996) 1759–1777.
[47] J. Douglas Jr., T. Dupont, A Galerkin method for a nonlinear Dirichlet problem, Math. Comp. 29 (1975) 689–696.
[48] Z. Chen, G. Huan, Y. Ma, Computational Methods for Multiphase Flows in Porous Media, in: Computational Science and Engineering Series, vol. 2,

SIAM, Philadelphia, PA, 2006.
[49] S.M. Kozlov, Homogenization of random operators, Math. USSR Sb. 37 (1980) 167–180.
[50] M.I. Freidlin, A.D. Wentzell, Random Perturbations of Dynamical Systems, 2nd ed., Springer-Verlag, 1998.
[51] V.V. Yurinskii, Averaging of symmetric diffusion in randommedia, Sibirsk. Mat. Zh. 23 (1982) 176–188. English Transl. Siberian Math. J. 27, 603–613.


	On the heterogeneous multiscale method with various  macroscopic solvers
	Introduction
	The HMM
	Preliminaries
	The HMM

	Standard finite element methods
	Nonconforming finite element methods
	Control volume finite element methods
	Mixed finite element methods
	Mixed covolume methods
	Discontinuous Galerkin methods
	Finite difference methods
	A nonlinear problem
	Existence and uniqueness of a solution
	Error estimates

	A random homogenization problem
	References


