
INTERNATIONAL JOURNAL OF c© 2012 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING, SERIES B Computing and Information
Volume 3, Number 2, Pages 185–191

SPARSE MATRIX-VECTOR MULTIPLICATION ON NVIDIA

GPU

HUI LIU, SONG YU, ZHANGXIN CHEN, BEN HSIEH AND LEI SHAO

Abstract. In this paper, we present our work on developing a new matrix format and a new sparse
matrix-vector multiplication algorithm. The matrix format is HEC, which is a hybrid format. This
matrix format is efficient for sparse matrix-vector multiplication and is friendly to preconditioner.
Numerical experiments show that our sparse matrix-vector multiplication algorithm is efficient on

GPU.

Key words. sparse matrix-vector multiplication, GPU, HEC, parallel algorithm

1. Introduction

Sparse matrix-vector multiplication (SPMV) arises in numerous computational
areas, such as eigenvalue problems and the solution of large-scale sparse linear
system. Krylov subspace solvers [3, 4] and algebraic multigrid solvers [1, 2, 4]
are general methods for these linear systems. For these linear solvers, the sparse
matrix-vector multiplication operations control the total running time. It’s critical
to design efficient sparse matrix-vector multiplication algorithms.

NVIDIA Tesla GPUs are powerful in floating point calculation [13, 14]. Take
the NVIDIA Telsa C2050 as an example. This GPU has a peak performance
of 1030GFlops on single precision calculation, while the latest CPUs have about
100GFlops [11]. GPUs are much faster than CPUs. Nowadays, GPU computing
has been popular in various scientific computing applications due to its superiority
over conventional CPU. GPUs have been applied to FFT [13], Krylov subspace
solvers [11, 12, 6], algebraic multigrid solvers [1] and reservoir simulation [11, 6].

In this paper, we focus on the sparse matrix-vector multiplication on GPU.
Baskaran et al. developed a SPMV algorithm for CSR (Compressed Sparse Row)
format matrix, where each row was calculated by a half warp [5]. Li et al. designed
a SPMV algorithm for the JAD (Jagged Diagonal) format matrix [12, 11]. Bell and
Garland investigated different kinds of matrix formats and SPMV algorithms in [9,
10], in which the HYB format matrix and the corresponding SPMV algorithm was
also designed. Here a similar idea to HYB is applied, and we develop a new matrix
format, HEC, which is hybrid of ELL format matrix [8] and CSR format matrix. A
new sparse matrix-vector multiplication algorithm is also developed. This SPMV
algorithm is efficient and the new matrix format is friendly to preconditioners,
such as ILU(k), ILUT and domain decomposition preconditioners [7]. Authors
investigated vector algorithm and serial algorithm for CSR format in [9, 10]. The
memory access pattern for serial algorithm isn’t coalesced, so this SPMV kernel is
alway the worst. For the vector version, when the matrix is very dense, each warp
has sufficient tasks to complete and the memory access is regular, its performance
can be better than others. Memory access for ELL format is always coalesced, but
it may consume too much memory even if one row is too long. HYB and HEC

Received by the editors January 1, 2012 and, in revised form, March 22, 2012.
2000 Mathematics Subject Classification. 65F30, 65F50, 65Y05, 65Y10, 68W10.
This research was supported by NSERC/AIEE/Foundation CMG and AITF Chairs.

185



186 H. LIU, S. YU, Z. CHEN, B. HSIEH AND L. SHAO

are hybrid formats, and most non-zeros values are stored in ELL part. Memory
access for these two formats are coalesced and memory usage is moderate. The
HYB format and HEC format are general formats for numerical linear algebra.
The algorithm difference between HYB and HEC formats is how to calculate the
COO part and CSR part. Authors in [9, 10] used reduction operations, and in this
case the communication may be complicated. In this paper, we use one thread
for each row in CSR part and therefore there isn’t any communication. From the
numerical experiments we can see that our algorithm is better in most cases.

The layout is as follows. In §2, the new matrix format and the SPMV algorithm
are introduced. In §3, numerical experiments are performed to test our SPMV
algorithm and other SPMV algorithms.

2. Sparse Matrix-Vector Multiplication

In this section, we will investigate commonly used matrix formats and our new
matrix format, HEC, is introduced. Then the sparse matrix-vector multiplication
algorithm for GPU is proposed.

2.1. Matrix format. The ELL format was introduced in ELLPACK [8], which
is shown in Figure 1. From the figure we can find that this matrix contains two
matrices. The left matrix is for the column indices and the right matrix is for the
non-zero values. The row length of these two matrices is the same. It’s clear that
the memory access pattern for the ELL format matrix is regular, and therefore, the
performance is high. The disadvantage of the ELL matrix is that even if one row
has too many non-zero values, all rows should have the same length. In this case,
it’s a huge waste of memory space, which is limited on current GPUs.

Aj Ax

Figure 1: ELL matrix format.

The COO (Coordinate) format is shown in Figure 2. The matrix has three
arrays, which are for row indices, column indices and non-zero values. The three
arrays has the same length, which is the number of non-zero values. Data access
pattern for this matrix is regular. The shortcoming is that when one row is split
into different threads on GPU, we need to apply reduction operations to obtain
final result. This matrix has good average performance, but may not have the best
peak performance.



SPARSE MATRIX-VECTOR MULTIPLICATION ON NVIDIA GPU 187

Aj

Ax

Ai

Figure 2: COO matrix format.

The authors [9, 10] designed a hybrid matrix format, HYB (Hybrid of ELL and
COO). The HYB format matrix contains two submatrices, which is ELL matrix
and COO matrix. The regular part of a given matrix is stored in the ELL part
and the irregular part is stored in the COO part. This matrix has good average
performance and peak performance.

The CSR (Compressed Sparse Row) format is another general matrix format,
which is shown in Figure 3. This matrix contains three arrays. For a given matrix
whose row dimension is n, the length of the array, Ap, which is used for offset of
each row, is n + 1, and the length of the rest two arrays, which are for column
indices and non-zero values, is the number of non-zero values. The CSR format is
the most commonly used format for computational sciences.

Ap

Aj

Ax

Figure 3: CSR matrix format.

In this paper, the similar idea as [9, 10] is applied. The matrix format we
design is also hybrid, which is HEC, hybrid ELL and CSR. From its name, we
know that an HEC matrix contains two submatrices: an ELL matrix and a CSR



188 H. LIU, S. YU, Z. CHEN, B. HSIEH AND L. SHAO

matrix. One reason we design this format is that this format is friendly to ILU-
like preconditioners. Take domain decomposition preconditioner [7] as an example,
where a lower triangular linear system and an upper triangular linear system should
be solved. For triangular problem, we need to know the diagonal element, elements
before diagonal and elements after diagonal. With this HEC matrix, we always
know where each row lies. Before we apply this kind of matrix format, we need
to convert a given matrix to HEC format, the row length of the ELL matrix is
computed first, which is obtained by solving a minimum problem [10]:

(1) Find l (l ≥ 0) such that w(i) = i ∗ n+ pr ∗ nz(i) is minimized,

where pr is the relative performance of the ELL and CSR matrices and nz(i) is
the number of non-zeros in the CSR part when the row length of the ELL part is
i. The minimum problem is easy to solve. Before we solve it, we should know pr,
which can be obtained by testing. A typical value for pr is 20 [10].

2.2. SPMV algorithm. In [9, 10], the authors discussed the sparse matrix-vector
multiplication algorithms for COO, CSR, ELL and HYB format matrices. In this
section, we describe our algorithm only.

When a given matrix is stored in GPU, the ELL part of the HEC matrix is
in column-major order and each column is aligned to ensure that the data access
is coalesced [13, 14]. The CSR matrix is stored in row-major order. When the
HEC matrix is used for ILU-related preconditioners, the HEC matrix is restricted
that each row of the CSR matrix has at least one element if the matrix is a lower
triangular matrix. In this case, the element is diagonal element [6].

With the HEC format, the algorithm for sparse matrix-vector multiplication on
NVIDIA GPU is straightforward. For a given matrix A, whose row dimension is
n, and vector x, a sparse matrix-vector multiplication operation y = Ax can be
completed in two steps, which is described in Algorithm 1. In the first step, the
ELL matrix is calculated first and each thread is responsible for one row. Since the
ELL matrix is stored in column-major order, the data access for the ELL matrix
is well coalesced. Temporary results are stored in array y. In the second step, the
CSR matrix is computed. As we do for the ELL matrix, here each thread is also
responsible for one row. The results are added to the array y. Then we finish the
SPMV operation y = Ax.

Algorithm 1 Sparse Matrix-Vector Multiplication, y = Ax

1: for i = 1: n do ⊲ ELL, Use one GPU kernel to deal with this loop
2: the i-th thread calculate the i-th row of ELL matrix; ⊲ Use one thread
3: end for

4:

5: for i = 1: n do ⊲ CSR, Use one GPU kernel to deal with this loop
6: the i-th thread calculate the i-th row of CSR matrix; ⊲ Use one thread
7: end for

The Algorithm 1 is easy to implement. In practice, we may need other BLAS 2
[3] operations, such as y = αAx, y = αAx + βy and z = αAx + βy, where A is a
matrix, x, y, z are vectors, α and β are real numbers. The algorithms and codes
for these operation are similar to y = Ax.



SPARSE MATRIX-VECTOR MULTIPLICATION ON NVIDIA GPU 189

3. Numerical results

In this section, numerical experiments are performed. The CPU we use is Intel
Xeon X5570 and The GPUs we use are NVIDIA Tesla C2050/C2070. The operating
system is Fedora 13 X86 64 with CUDA Toolkit 4.0 and GCC 4.4. All CPU codes
are compiled with -O3 option. Fourteen matrices are employed, which are from the
University of Florida sparse matrix collection [15] and a black oil simulator [16].
These matrices are listed in Table 1.

Table 1: Matrices used for testing

Matrix N Non-zero NNZ/N
human gene1 22283 12345963 554.1
msc23052 23052 588933 25.5

TSOPF FS b300 c2 56814 4391071 77.3
cfd2 123440 1605669 13.0
ESOC 327062 6019939 18.4
cage13 445315 7479343 16.8
af shell8 504855 9046865 17.9

parabolic fem 525825 2100225 4.0
Emilia 923 923136 20964171 22.7
atmosmodd 1270432 8814880 6.9

Serena 1391349 32961525 23.7
Hook 1498.mtx 1498023 30436237 5.9

SPE10 2188851 29915573 13.7
cage15 5154859 99199551 19.2

3.1. Single Precision. Five algorithms are applied. In this section, the CSR(S)
means a scalar algorithm for CSR format matrix. The CSR(V) means a vector al-
gorithm for CSR format matrix. The ELL means algorithm for ELL format matrix.
HYB and HEC mean algorithms for HYB and HEC format matrices respectively.
Details for these algorithm can be found in [9, 10]. Single precision data type, which
is float in C/C++ language, is applied. Only speedup is recorded in Table 2.

From Table 2 we can see that when the average number of non-zeros is large,
the CSR(V) is better than CSR(S) and other algoirhtms, such as for matirx hu-
man gene1, msc23052 and TSOPF FS b300 c2. For CSR(S), since the data access
of isn’t well coalesced, the performance for this algorithm isn’t high. The only
exception is matrix parabolic fem, where the average number of non-zeros is low.

The performance of HYB and HEC is stabler than ELL, and higher than ELL
in most cases. This means HYB and HEC are suitable for general sparse matrix-
vector multiplication. From Table 2, we can find that HEC has better average
performance than HYB.

3.2. Double Precision. Double precision is applied in this section and the same
five algorithms are employed. The results are collected in Table 3.

From Table 3, we can see that the CSR(V) has better performance than other
algorithms for the first three matrices, which have large average number of non-
zeros. HYB and HEC always have better average performance, which also indicate
that HYB and HEC are suitable for general sparse matrices. Our HEC format has
better speedup than HYB format in most cases.



190 H. LIU, S. YU, Z. CHEN, B. HSIEH AND L. SHAO

Table 2: Speedup of SPMV, Single Precision

Matrix CSR(S) CSR(V) ELL HYB HEC
human gene1 0.64 6.34 0.82 2.86 1.04
msc23052 0.66 5.19 1.59 2.96 2.55

TSOPF FS b300 c2 0.60 11.90 6.37 6.38 8.41
cfd2 1.62 3.61 9.25 8.61 13.77
ESOC 1.24 4.47 17.30 17.28 17.40
cage13 1.24 3.62 8.48 11.15 12.84
af shell8 1.23 4.87 10.62 12.44 14.04

parabolic fem 7.38 1.78 14.56 11.28 14.37
Emilia 923 0.91 5.12 8.30 11.01 11.42
atmosmodd 4.43 1.82 17.63 17.60 17.66

Serena 0.87 5.35 2.30 10.39 10.34
Hook 1498.mtx 0.99 4.79 6.59 10.37 10.51

SPE10 1.60 2.66 1.59 16.28 14.71
cage15 1.08 1.65 7.90 12.63 12.80

Table 3: Speedup of SPMV, Double Precision

Matrix CSR(S) CSR(V) ELL HYB HEC
human gene1 0.76 4.85 0.84 2.68 1.13
msc23052 0.71 3.63 1.55 2.29 2.50

TSOPF FS b300 c2 0.79 8.62 5.42 5.41 8.96
cfd2 1.41 2.26 8.06 6.86 11.61
ESOC 1.06 2.62 11.56 11.56 11.61
cage13 1.25 2.36 7.56 9.42 11.04
af shell8 1.17 3.58 8.66 9.63 11.12

parabolic fem 4.36 1.12 9.97 7.56 10.00
Emilia 923 0.97 3.69 6.64 8.36 8.65
atmosmodd 2.94 1.38 14.54 14.50 14.57

Serena 0.98 3.58 1.79 7.26 7.29
Hook 1498.mtx 0.94 3.48 5.39 7.89 8.01

SPE10 1.13 1.74 1.24 11.15 10.27
cage15.mtx 1.15 2.16 7.09 10.72 10.86

4. Conclusion

We have developed a new matrix format HEC, which is a hybrid format, and
the corresponding SPMV algorithm for general sparse matrices is developed. The
numerical experiments show that our SPMV algorithm is efficient and is suitable
for general sparse matrices.

Acknowledgements

The support of Department of Chemical and Petroleum Engineering, Univer-
sity of Calgary and Reservoir Simulation Group is gratefully acknowledged. The
research is partly supported by NSERC/AIEE/Foundation CMG and AITF Chairs.



SPARSE MATRIX-VECTOR MULTIPLICATION ON NVIDIA GPU 191

References

[1] G. Haase, M. Liebmann, C. C. Douglas and G. Plank, A Parallel Algebraic Multigrid Solver on
Graphics Processing Units, HIGH PERFORMANCE COMPUTING AND APPLICATIONS,
2010, 38-47.

[2] Nathan Bell, Steven Dalton and Luke Olson, Exposing Fine-Grained Parallelism in Algebraic
Multigrid Methods, NVIDIA Technical Report NVR-2011-002, June 2011

[3] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine and H. Van der Vorst , Templates for the solution of linear systems: building
blocks for iterative methods, 2nd Edition, SIAM, 1994.

[4] Y. Saad, Iterative methods for sparse linear systems (2nd edition), SIAM, 2003.
[5] Muthu Manikandan Baskaran and Rajesh Bordawekar, Optimizeing Sparse Matrix-Vector

Multiplication on GPUs, In Ninth SIAM Conference on Parallel Processing for Scientific
Computing, 2008.

[6] H. Liu, S. Yu, Z. Chen, B. Hsieh and L. Shao, Parallel Preconditioners for Reservoir Simula-
tion on GPU, SPE Latin American and Caribbean Petroleum Engineering Conference held
in Mexico City, Mexico, 16-18 April 2012, SPE 152811-PP.

[7] X.-C. Cai and M. Sarkis, A restricted additive Schwarz preconditioner for general sparse
linear systems, SIAM J. Sci. Comput., 21, 1999, pp. 792-797.

[8] R. Grimes, D. Kincaid, and D. Young, ITPACK 2.0 User’s Guide, Technical Report CNA-150,
Center for Numerical Analysis, University of Texas, August 1979.

[9] N. Bell and M. Garland, Efficient sparse matrix-vector multiplication on CUDA, NVIDIA
Technical Report, NVR-2008-004, NVIDIA Corporation, 2008.

[10] N. and M. Garland, Implementing sparse matrix-vector multiplication on throughput-oriented
processors, Proc. Supercomputing, November 2009, 1-11.

[11] H. Klie, H. Sudan, R. Li, and Y. Saad, Exploiting capabilities of many core platforms in
reservoir simulation, SPE RSS Reservoir Simulation Symposium, 21-23 February 2011

[12] R. Li and Y. Saad, GPU-accelerated preconditioned iterative linear solvers, Technical Report
umsi-2010-112, Minnesota Supercomputer Institute, University of Minnesota, Minneapolis,
MN, 2010.

[13] NVIDIA Corporation, Nvidia CUDA Programming Guide (version 3.2), 2010.
[14] NVIDIA Corporation, CUDA C Best Practices Guide (version 3.2), 2010.
[15] T. A. Davis, University of Florida sparse matrix collection, NA digest, 1994.
[16] Z. Chen, G. Huan, and Y. Ma, Computational methods for multiphase flows in porous media,

in the Computational Science and Engineering Series, Vol. 2, SIAM, Philadelphia, 2006.

Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB,
Canada

E-mail : hui.j.liu@ucalgary.ca, yusong0926@gmail.com, zhachen@ucalgary.ca, bhsieh@ucalgary.ca,

jedyfun@gmail.com

URL: http://schulich.ucalgary.ca/chemical/JohnChen


