Compositional Simulation Using the Advanced Peng-Robinson Equation of State

Yizheng Wei, Zhangxin Chen, Marco Satyro, Chao Dong, Hui Deng, SPE, University of Calgary

Abstract
During compositional reservoir simulations where underground fluid composition strongly affects the modeling of recovery processes, flash calculations are commonly employed to help determine the correct number of equilibrium phases, the corresponding compositions, and the phase amount of each phase.

Cubic equations of state (EOS) are widely used in the representation of volumetric and phase equilibria due to their simplicity and solvability. Commonly used cubic EOS such as Peng-Robinson (PR) and Soave-Redlich-Kwong (SRK) have well-known limitations in predicting liquid phase properties for polar compounds.

In this paper, we present a compositional reservoir simulator equipped with the advanced Peng-Robinson EOS and an efficient and robust multiphase flash algorithm that can accurately predict the phase equilibrium. This method utilizes Michelsen’s stability test (Michelsen, 1982) and a combination of accelerated successive substitution and a minimum-variable Newton-Raphson (MVNR) method for fast convergence.

The advanced Peng-Robinson (APR) EOS adds volume translation and a flexible attractive temperature-dependent term to the original PR EOS for accurate PVT and saturation property correlation for polar compounds. Examples of pure compounds and mixtures are tested. Computational results show that the developed simulator provides a more detailed description and better understanding of complex dynamic underground fluid phase behavior that may occur during oil recovery processes.

Introduction
Compositional models are commonly used to simulate complex multiphase flow in a reservoir where phase compositions at equilibrium change with space and time, and an equation of state (EOS) is employed in the models to determine the correct number of equilibrium phases and the corresponding compositions in each phase in each grid block.

Since the late 1970s, many isothermal compositional models using cubic equations of state and taking into account up to three phases (water, gas, and oil) have been developed. They are different in how the primary equations and unknowns are selected (Cao, 1999). Fussell and Fussell (1979) published a technique which used a minimum variable Newton-Raphson method to solve a system consisting of fugacity equations and a saturation constraint equation for primary variables: pressure, liquid phase mole fraction, liquid phase composition or pressure, vapor phase mole fraction, and vapor phase composition. Coats (1980) described a fully implicit compositional model which solved material balance equations for hydrocarbon components and water simultaneously. Nghiem et al. (1981) developed an implicit-pressure, explicit-composition, and explicit-saturation model with an EOS. These equations were solved using an iterative-sequential method. Pressure was first obtained by solving a material balance equation and the other unknowns were updated thereafter. Young and Stephenson (1983) presented a more efficient Newton-Raphson method-based procedure which differed from Fussell and Fussell’s in the ordering of the equations and unknowns. In summary, a fully implicit model provides better stability; it, however, requires higher computational cost. For a partially implicit model, the implicitness varies with the selection of primary unknowns to be solved for and the choice of reasonable time steps becomes the key point in controlling convergence of the Newton-Raphson iteration and accelerating simulation process (Chen et al., 2006).

In compositional reservoir simulation, an EOS plays a critical role in the representation of volumetric, thermodynamic, and phase equilibrium properties. Since van der Waals first presented his EOS in 1873, a lot of modifications have been presented in the literature. Among these equations, Soave-Redlich-Kwong (Soave, 1972) and Peng-Robinson (1976) equations of state are most popularly used in the petroleum industry due to their simplicity, solvability, and generalization. However, PR and SRK EOS have well-known limitations in predicting liquid phase properties especially for polar mixtures. Based on the ideas of Peneloux (1982) and Mathias et al. (1988), Virtual Material Group, Inc. (VMG) implemented an advanced Peng-Robinson
(APR) model in their phase package that adds volume translation and a flexible attractive temperature dependent term into the classical PR EOS in their commercial process simulation software. This model gives more accurate liquid phase property estimation. The package is equipped with a robust flash calculation algorithm which can predict up to three-phase (water-rich, gas and oil), multi-component flow in porous media. The model provides a more detailed description and better understanding of complex dynamic underground fluid phase behavior that may occur during heavy oil recovery processes.

In this paper, based on the modification of Nghiem et al.’s formulation, we present an implicit-pressure, explicit-composition, and explicit-saturation compositional model using the APR EOS which is able to handle up to three-phase (water-rich, gas and oil), multi-component flow in porous media. The model provides a more detailed description and better understanding of complex dynamic underground fluid phase behavior that may occur during heavy oil recovery processes.

Equation of State and Flash Calculation

The simplest way to determine phase composition in equilibrium is the equilibrium ratio (K-value) approach. However, this approach may predict inaccurate results, and the use of different K-value correlations brings inconsistency in a critical region. Models using an EOS for phase equilibrium and property calculation avoid these computational problems. For example, the PR EOS was developed to predict better liquid densities than the SRK EOS as well as better vapor pressures for hydrocarbons. However, for polar compounds, the PR EOS does not provide an accurate liquid density prediction. Therefore, VMG implemented further modifications in their APR EOS which has all the characteristics of the classic PR EOS. This new EOS adds volume translation and uses a special mixing rule for the calculation of excess volume translations to provide accurate calculation of mixture densities (Users Manual, Virtual Material Group Inc., 2002).

Advanced-Peng-Robinson Equation of State

In 1976, Peng and Robinson developed their two constant cubic EOS

\[
p = \frac{RT}{v-b} - \frac{a(T)}{v(v+b)+b(v-b)},
\]

in which the attraction parameter \(a(T)\) and co-volume parameter \(b\) of the mixture are determined by using the mixing rules

\[
a = \sum_{n=1}^{N} \sum_{m=1}^{N} x_n x_m (1-k_{mn}) \sqrt{a_m a_n}
\]

and

\[
b = \sum_{n=1}^{N} x_n b_m
\]

where \(k_{mn}\) is the binary interaction parameter between components \(m\) and \(n\), and \(a_m\) and \(b_m\) are the attraction parameter and co-volume parameter for the pure component \(m\). Applying the criteria of criticality, we have

\[
a_m = 0.45724 \cdot \alpha_m \frac{R^2 c_m}{p_{cr}} , \quad b_m = 0.077796 \frac{R T_m}{p_{cr}}
\]

where \(R\) is the universal gas constant, and \(\alpha_m\) is a temperature dependent parameter given by

\[
\alpha_m = \left(1 + \frac{0.37464 + 1.5423 \omega_m - 0.26992 \omega_m^2}{0.077796 + 1.485 \omega_m - 0.1644 \omega_m^2 + 0.01666 \omega_m^3}\right) \omega_m < 0.5215
\]

The accentric factor \(\omega_m\) for component \(m\) measures the deviation of the molecular shape from spherically symmetric structure. Introducing

\[
A = \frac{a \cdot p}{R T^2} \quad \text{and} \quad B = \frac{b \cdot p}{R T},
\]

Eq. (1) can be re-written as a cubic equation in terms of the compressibility factor \(Z = p v / R T\),

\[
Z^3 - (1-B)Z^2 + \left(A - 2B - 3B^2\right)Z - \left(AB - B^2 - B^3\right) = 0
\]

Then the fugacity of component \(m\) in phase \(\alpha\) can be evaluated by

\[
\ln \frac{f_{m\alpha} x_{m\alpha}}{p_{m\alpha}} = b_m \frac{Z_m - 1}{Z_m} - A_m \frac{2}{2B_m} \sum_{n=1}^{N} x_n (1-k_{mn}) \sqrt{a_m a_n} \frac{b_n}{b_m} \ln \frac{Z_a + \left(1+\sqrt{2}\right)B_a}{Z_m} + \frac{1}{Z_m + \left(1+\sqrt{2}\right)B_a}
\]

Although it was reported that the PR EOS maintains simplicity and provides a better liquid phase density prediction than the SRK equation (Peng and Robinson, 1976), both of them have well known limitations in predicting liquid phase properties for polar compounds. Peneloux and Rauzy (1982) proposed a consistent volume correction for the SRK EOS to improve
volume predictions. The method introduces translations along the volume axis without changing the predicted phase equilibrium conditions. In the APR EOS, further modifications suggested by Mathias et al. (1988) and a special mixing rule for the calculation of excess volume translations are utilized. These modifications provide an improvement in the calculation of both liquid and vapor densities and are necessary in the vicinity of a critical point. The corrected volume is given by

\[\nu_{corr} = \nu + s + f_c \left(\frac{0.41}{0.41 + \delta_b} \right), \]

(10)

where the bulk modulus \(\delta_b \) is a dimensionless quantity related to the inverse of the isothermal compressibility

\[\delta_b = -\frac{\partial^2 \Phi}{\partial V^2} \left(\frac{\partial p}{\partial V} \right)_T, \]

(11)

and \(f_c \) is chosen to match the true critical volume

\[f_c = v_c - (3.946b + s), \]

(12)

Mathias et al. (1988) proposed their simplest possible mixing rule for \(s \) and \(v_c \)

\[s = \sum_{m=1}^{N_c} x_m s_m \quad \text{and} \quad \nu_c = \sum_{m=1}^{N_c} v_m v_{cm}, \]

(13)

and the corresponding corrections for common hydrocarbon and polar components were listed as well. In the APR EOS, a special mixing rule for the calculation of excess volume translations is used:

\[S_{mix} = \sum_{m=1}^{N_c} s_m x_m + s_{Excess} \left(T, \bar{x} \right), \]

(14)

thus allowing the calculation of accurate mixture densities.

Flash Calculation

A fast and robust phase equilibrium flash calculation algorithm employed in a compositional model helps to determine the right number of phases and their corresponding composition. A successive substitution method was used by most simulators in the early days. This method is stable but its convergence is slow when the given condition is near a critical region. Fussel and Yanosik (1978) proposed a minimum variable Newton-Rapson iterative method whose convergence is quadratic. However, it requires calculating a Jacobian matrix and its inverse in each step. Mehra et al. (1983) published an accelerated successive substitution algorithm by choosing an optimal step length and their results showed a significant reduction in the number of iterations for convergence. Nghiem et al (1983) combined successive substitution and Powell’s hybrid methods and established criteria for efficiently switching; their method possesses the virtues of both stability and robustness.

Since the fugacity equality for each component in each phase is only a necessary but not sufficient condition for phase equilibrium, it may provide wrong equilibrium results without a good initial guess of the iteration. Based on the tangent plane criteria (Baker, et al., 1981), Michelsen (1982) developed a stability test algorithm which not only checks if the phase splitting calculation results are thermodynamically stable and so Gibbs energy is globally minimized, but also provides a very good initial guess for the next flash if necessary. In this work, we utilize Michelsen’s stability test and a combination of accelerated successive substitution and the Newton-Raphson method for fast convergence.

Basic Equations

The governing equations of a multiphase, multi-component compositional flow in porous media are derived from the following physical relations: (1) material balance, (2) phase equilibrium conditions, and (3) saturation and composition constraints (Chen, 2007).

Material Balance Equations

Consider a three-phase system (water-rich, gas and oil) that consists of \(N_c \) components, water is treated as a component and involved in the flash calculation, we have the material balance equation incorporated with Darcy’s law for each component,

\[V_b \left[\frac{\partial (\varphi z_m \sum_{\alpha \in \text{w, gas, oil}} S_{\alpha} p_{\alpha})}{\partial t} \right] - \nabla \left[\sum_{\alpha \in \text{w, gas, oil}} x_{ma} p_{\alpha} - \frac{K \cdot \mu_{\alpha}}{\mu_{a}} \nabla (p_{a} - p_{sat} - \gamma_{a} D) \right] = q_m \quad m = 1, \ldots, N_c, \]

(15)

where \(\varphi \) is the porosity of the porous medium, \(V_b \) is the volume of a grid block, \(x_{ma} \) is the mole fraction of component \(m \) in phase \(\alpha \), and \(S_{\alpha}, \mu_{a}, \) and \(p_{a} \) are the saturation, viscosity and molar density of phase \(\alpha \) respectively. The oil phase pressure \(p_{o} \) is the primary unknown in these equations and the pressure in the other phase is related by the capillary pressure. The molar flow rate \(q_m \) of component \(m \) is either defined by a constant rate or a constant pressure. For a constant-pressure well, the molar flow rate is given by
\[
q_m = PI \left(\sum_{\alpha = w, g, o} x_{\alpha m} \rho_{\alpha} \frac{K \cdot k_{\alpha}}{\mu_{\alpha}} (p_{bh} - p_{ob}) \right) \quad m = 1, \ldots, N_c,
\]
where \(p_{bh}\) is the bottomhole pressure and \(p_{ob}\) is the oil pressure in the grid block where the well is located.

Phase Equilibrium Equations

Since mass interchange between phases happens much more rapidly than the fluid flow in porous media, it is physically reasonable to assume that all phases are in equilibria. From the thermodynamic point of view, at given pressure and temperature, the composition of phases in equilibria should satisfy the condition that the Gibbs free energy of the compositional system reaches minimum whose necessary condition is the equality of the component fugacity in each phase,

\[
f_{m \alpha} = f_{m g}, \quad f_{m g} = f_{m o} \quad m = 1, \ldots, N_c,
\]
where the fugacity \(f_{m \alpha}\) is defined by the EOS selected.

Constraint Equations

The saturation constraint and component mole fraction balance imply

\[
S_w + S_g + S_o = 1,
\]

\[
\sum_{m=1}^{N_c} z_m = \sum_{m=1}^{N_c} x_{m w} = \sum_{m=1}^{N_c} x_{m g} = \sum_{m=1}^{N_c} x_{m o} = 1,
\]
and the phase mole fraction constraint gives

\[
W + V + L = 1.
\]

Other Relationships

Material balances on the phases hold for all components

\[
z_m = W \cdot x_{m w} + V \cdot x_{m g} + L \cdot x_{m o},
\]

The phase mole fractions and saturations are related by the following equations:

\[
W = \frac{\rho_{w} S_w}{\rho_{w} S_w + \rho_{g} S_g + \rho_{o} S_o},
\]

\[
V = \frac{\rho_{g} S_g}{\rho_{w} S_w + \rho_{g} S_g + \rho_{o} S_o},
\]

and

\[
L = \frac{\rho_{o} S_o}{\rho_{w} S_w + \rho_{g} S_g + \rho_{o} S_o}.
\]

Solution Algorithms

We solve the pressure equations using the finite difference method. The capillary pressures are assumed unchanged during the iteration. Once \(p_o^{(k+1)}\), a new iterate of \(p_o\), is obtained, the feed composition \(z\) is updated. Then flash calculations are performed to find the component mole fraction \(x_{m \alpha}^{(k+1)}\), phase mole fraction \(W^{(k+1)}, V^{(k+1)}\) and \(L^{(k+1)}\), molar density \(\rho_{\alpha}^{(k+1)}\), and viscosity \(\mu_{\alpha}^{(k+1)}\). The iteration is repeated until convergence.

Difference Equations

The material balance equation (15) can be written in the difference form. By introducing the transmissibility of phase \(\alpha\),

\[
T_{\alpha} = \frac{A \cdot K \cdot k_{\alpha}}{\Delta l \cdot \mu_{\alpha} \cdot \rho_{\alpha}},
\]
we obtain the equivalent difference equation,
\[
\frac{V_b}{\Delta t} \left[\left(\varphi z_m \left(\sum_{a=w,g,o} S_a p_a \right) \right)^{n+1} - \left(\varphi z_m \left(\sum_{a=w,g,o} S_a p_a \right) \right)^n \right] - \\
\Delta \left(\sum_{a=w,g,o} T_a \left(\Delta p_{a}^{n+1} + \Delta p_{w}^{n} - \gamma_{a}^n \Delta z \right) \right) - q_m = 0 \quad m = 1, \ldots, N_c.
\]

(26)

Summing Eq. (26) over \(N_c\) components, we obtain the pressure equation at the \(n\)th time step

\[
\frac{V_b}{\Delta t} \left[\left(\varphi \left(\sum_{a=w,g,o} S_a p_a \right) \right)^{n+1} - \left(\varphi \left(\sum_{a=w,g,o} S_a p_a \right) \right)^n \right] - \Delta \left(\sum_{a=w,g,o} T_a \left(\Delta p_{a}^{n+1} + \Delta p_{w}^{n} - \gamma_{a}^n \Delta z \right) \right) - q_h = 0
\]

(27)

where

\[
q_h = \sum_{m=1}^{N_c} q_m
\]

(28)

Jacobian Matrix for Pressure Equation

The pressure equation is solved by the Newton-Raphson method where the Jacobian matrix needs be calculated in each iteration step. Let \(\hat{p}^{(k)}\) be the residual of Eq. (27) at the \(k\)th iteration; the new iterate values for \(p_{a}\) are obtained from

\[
\hat{p}^{(k+1)} = \hat{p}^{(k)} + \delta \hat{p}^{(k+1)}
\]

(29)

where \(\delta p_{a}^{(k+1)}\) is a solution of

\[
J^{(k)} \cdot \delta \hat{p}_{a}^{(k+1)} = -\hat{p}^{(k)}
\]

(30)

In Cartesian coordinates, the Jacobian matrix is tri-diagonal for one-dimensional problems, penta-diagonal for two-dimensional problems, and hepta-diagonal for three-dimensional problems. Its off-diagonal and diagonal elements can be evaluated by

\[
J_{ij}^{(k)} = \left(\sum_{a=w,g,o} T_a \right)^{(k)}_{\omega}
\]

(31)

and

\[
J_{ii}^{(k)} = - \left(\sum_{a=w,g,o} T_a \right)^{(k)}_{\omega} + \left(\varphi \frac{\partial q_h}{\partial p_a} \right)^{(k)}_{\omega} - \frac{V_b}{\Delta t} \left(\varphi \left(\sum_{a=w,g,o} S_a p_a \right) \right)^{(k)}_{\omega}
\]

(32)

where \((i + j)/2\) stands for the link between the \(i\)th and \(j\)th grid blocks. Ngheim et al. (1981) suggested that the derivative of the accumulation term with respect to pressure can be approximated by neglecting the saturation variation as pressure changes

\[
\left(\varphi \frac{\partial \left(\sum_{a=w,g,o} S_a p_a \right)}{\partial p_a} \right)^{(k)}_{i} = \left(\varphi \frac{\partial \left(\sum_{a=w,g,o} S_a p_a \right)}{\partial p_a} \right)^{(k)}_{i} + \phi \sum_{a=w,g,o} \left(S_a \frac{\partial p_a}{\partial p_a} \right)^{(k)}_{i},
\]

(33)

where \(\partial \varphi / \partial p_a\) and \(\partial p_{a}/ \partial p_{a}\) are given by

\[
\frac{\partial \varphi}{\partial p_a} = \rho_c f_a, \quad \text{and} \quad \frac{\partial p_a}{\partial p_a} = \frac{1}{RTZ_a} \left(1 - \frac{p_a}{Z_a} \frac{\partial Z_a}{\partial p_a} \right)
\]

(34)

Then, Eq. (30) can be solved by Gauss elimination if the system is small; for a large system, an iterative method for a sparse system is preferred (Saad, 2002).

Composition and Saturations

Once a new iterate value of pressure is obtained, the feed composition and water saturation in each grid block can be updated explicitly by solving Eq. (26):
The terms
\[\frac{k_{eq} \rho_{\alpha}}{\mu_{\alpha}} x_{\text{mass}} \alpha = w, g, o \]
are evaluated using upstream weighting.

A flash calculation is performed on \(z^{(k+1)} \) and at \(p^{(k+1)} \) to find the component mole fraction \(x^{(k+1)}_{\text{mass}} \) in each phase, the phase mole fraction \(\rho^{(k+1)} \), and the phase molar density \(\rho^{(k+1)} \). The phase viscosity \(\mu^{(k+1)} \) is returned from the flash package as well. The saturations of gas, oil and water can be computed by using the following formulas,

\[S^{(k+1)}_g = \left(\frac{1}{1 + \frac{\rho_{\text{sat}}}{\rho_{\text{sat}}} + \frac{\rho_{\alpha}}{\rho_{\alpha}}} \right)^{(k+1)} \]

\[S^{(k+1)}_o = \left(\frac{1}{1 + \frac{\rho_{\text{sat}}}{\rho_{\text{sat}}} + \frac{\rho_{\alpha}}{\rho_{\alpha}}} \right)^{(k+1)} \]

and

\[S^{(k+1)}_w = 1 - S^{(k+1)}_g - S^{(k+1)}_o \]

The whole workflow of the procedure is illustrated in Fig. 1.

Examples

A few examples including liquid density prediction for pure component, mixture and compositional reservoir simulation using APR EOS are studied, and satisfactory results are obtained.

Liquid Density Prediction

This example tests liquid density predictions of saturated water and water-methanol system, and they were reported by Mathias et al. as well (1988). The data for comparison come from the International Association for the Properties of Water and Steam (IAPWS) Industrial Formulation 1997 (Wanger et al., 2000), and Friedman and Sherage’s paper (Friedman and Sherage, 1965) and the plots of the calculated liquid density using the PR and APR EOS are shown in Figs. 2 and 3. Blue line and green dots represent the densities prediction calculated from APR and PR EOS, respectively, and red circles are experimental data. From these plots we can find that the PR EOS works well for the vapor phase but fairly underestimates the liquid density, which is improved by the APR EOS. It is evident that the APR EOS provides very reasonable results for density prediction for both the pure compound and mixture.

One-Dimensional Miscible Flooding Simulation

In this example, Coats’ one-dimensional miscible flooding data (Table 1) is used. The size of the reservoir is 250 feet in length, 100 feet in width and 50 feet in thickness. The initial reservoir pressure is 2,000 psia and reservoir temperature is 160 °F. The initial oil composition in the reservoir is 20% methane, 20% n-butane and 60% n-decane. The capillary pressure and gravity are neglected. 100 MSCF (263 lb-mole) gas consists of 68.4% methane and 31.6% n-butane is injected per day. The bottomhole pressure for production is 2,000 psia (Coats, 1980). The reservoir is discretized into 20 grid blocks and time step of 3.75 days is specified.

Gas saturation profile vs. dimensionless is plotted in Fig. 4. Two runs using PR EOS and APR EOS are performed for comparison purpose. Gas saturation predicted by the model using PR EOS exactly matches Coats’ result. Calculated miscible front is located between 0.1 and 0.2 in dimensionless distance. The miscible front predicted by APR model is a bit more advance than what PR model predicts and so is the location of two-phase zone. Corrected density prediction using APR EOS also results in slight difference in calculated composition profiles and phase densities. As is shown in Fig. 5, APR model has higher methane mole fraction and lower n-decane mole fraction prediction while the oil phase density calculated by APR model is higher as well (Fig. 6), since PR EOS underestimates liquid density. The plots are consistent with our observation from the previous example, and better liquid prediction makes the compositional model equipped with APR EOS more accurate in simulation results.
Conclusions
In this paper, we present an implicit pressure explicit composition and saturation compositional model using the APR EOS. It improves liquid density prediction and provides accurate PVT and saturation property correlation for polar compounds by adding volume translation and a flexible attractive term temperature dependency to the original PR EOS. Computational results show that the developed simulator provides a more detailed description and better understanding of complex dynamic underground fluid phase behavior that may occur during oil recovery processes.

Nomenclature

\(a(T) \) = attraction parameter
\(A_i \) = cross-sectional area perpendicular to flow
\(b \) = co-volume parameter
\(c_r \) = rock compressibility
\(D \) = depth
\(f \) = fugacity
\(J \) = Jacobian matrix
\(K \) = permeability
\(k_{mn} \) = interaction parameter between components \(m \) and \(n \)
\(k_r \) = relative permeability
\(k_{rgcw} \) = relative permeability to gas at connate water
\(k_{rocw} \) = relative permeability to oil at connate water
\(n_{pg}, n_{po} \) = exponents on relative permeability curves
\(\Delta l \) = space difference
\(L \) = mole fraction of oil phase
\(N_c \) = number of components
\(p \) = pressure
\(P_{bh} \) = bottomhole pressure
\(P_o \) = oil phase pressure
\(P_{cap} \) = capillary pressure between phase \(\alpha \) and oil phase
\(PI \) = productivity index
\(q_m \) = mole flow rate of component \(m \)
\(q_h \) = overall mole flow rate
\(R \) = universal gas constant
\(s \) = molar volume correction term
\(s_{\text{Excess}} \) = excess volume translation
\(S_{\alpha} \) = saturation of phase \(\alpha \)
\(S_{gc} \) = critical gas saturation
\(S_{gr} \) = residual gas saturation
\(S_{org} \) = residual oil saturation to gas
\(S_{orw} \) = residual oil saturation to water
\(t \) = time
\(\Delta t \) = time step
\(T \) = temperature
\(T_c \) = critical temperature
\(T_{\alpha} \) = transmissibility of phase \(\alpha \)
\(v \) = molar volume
\(v_c \) = critical volume
\(v_{corr} \) = corrected molar volume
\(V \) = mole fraction of gas phase
\(V_b \) = grid block volume
\(W \) = mole fraction of water-rich phase
\(x_{mn} \) = mole fraction of component \(m \) in phase \(\alpha \)
\(Z_{\alpha} \) = compressibility factor of phase \(\alpha \)
\(\gamma_{\alpha} \) = specific weight of phase \(\alpha \)
\(\delta, \Delta \) = difference operator
\(\delta_b \) = buck modulus
\(\mu_{\alpha} \) = viscosity of phase \(\alpha \)
\(\rho_{\alpha} \) = molar density of phase \(\alpha \)
\(\phi \) = porosity
\(\omega \) = accentric factor
Superscripts

\((k) \) = number of iterations
\(n \) = number of time step

Subscripts

\(c \) = critical
\(g \) = gas phase
\(i, j \) = grid block indices
\(m, n \) = component indices
\(o \) = oil phase
\(w \) = water-rich phase
\(\alpha \) = phase index

Acknowledgements

The authors would like to thank Virtual Material Group Inc for supplying ideal property package for simulator development. The work is partly supported by NSERC/AERI/iCORE/Foundation CMG Chairs funds.

Reference

<table>
<thead>
<tr>
<th>Table 1 – Data for 1D miscible flooding model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reservoir dimensions (ft)</td>
</tr>
<tr>
<td>length, width, thickness</td>
</tr>
<tr>
<td>Initial Pressure (psi)</td>
</tr>
<tr>
<td>Reservoir Temperature (°F)</td>
</tr>
<tr>
<td>Permeability (md)</td>
</tr>
<tr>
<td>Porosity</td>
</tr>
<tr>
<td>Rock compressibility (psi⁻¹)</td>
</tr>
<tr>
<td>Water compressibility (psi⁻¹)</td>
</tr>
<tr>
<td>Initial Saturation</td>
</tr>
<tr>
<td>S_w, S_o, S_i</td>
</tr>
<tr>
<td>Initial Composition</td>
</tr>
<tr>
<td>C₁, nC₄, nC₁₀</td>
</tr>
<tr>
<td>Capillary pressure (psi)</td>
</tr>
<tr>
<td>Relative permeability data</td>
</tr>
<tr>
<td>S_{sw}</td>
</tr>
<tr>
<td>S_{org}</td>
</tr>
<tr>
<td>S_{pr}</td>
</tr>
<tr>
<td>S_{gr}</td>
</tr>
<tr>
<td>k_{ocw}</td>
</tr>
<tr>
<td>k_{gpr}</td>
</tr>
<tr>
<td>k_{rw}</td>
</tr>
<tr>
<td>n_i</td>
</tr>
<tr>
<td>$n_{w} = n_{o}$</td>
</tr>
<tr>
<td>Injection Rate (MSCF/day)</td>
</tr>
<tr>
<td>Injected composition</td>
</tr>
<tr>
<td>C₁, nC₄, nC₁₀</td>
</tr>
<tr>
<td>Productivity index (ft³·cp/day·psi)</td>
</tr>
<tr>
<td>Production pressure (psi)</td>
</tr>
</tbody>
</table>
Fig. 1 – Flow chart for iterative procedure.

Fig. 2 – Liquid density of water-methanol system (T = 25°C, P = 101.325 kPa).
Fig. 3 – Prediction of density for saturated water.

Fig. 4 – Gas saturation vs. dimensional distance.
Fig. 5 – Overall composition vs. dimensionless distance.

Fig. 6 – Phase density vs. dimensionless distance.