
Reservoir Simulation on NVIDIA Tesla GPUs

Zhangxin Chen, Hui Liu, Song Yu, Ben Hsieh, and Lei Shao

ABSTRACT. In this paper, we introduce our work on accelerating a black oil simulator
using GPU-based parallel iterative linear solvers. We develop iterative linear solvers and
several commonly used preconditioners on NVIDIA Tesla GPUs. These solvers and pre-
conditioners are coupled with our in-house reservoir simulator. Numerical experiments
show that our GPU-based black oil simulator is sped up around six times faster than a pure
CPU-based simulator.

1. Introduction

For large scale reservoir simulation, especially when the number of grid blocks is over
millions, the running time of reservoir simulators can be very long. To our experience,
solving a linear system arising from reservoir simulation is the most time-consuming part.
For SPE 10 [CMFPM], for example, over 95% running time is spent on the solution
of linear systems. It is clear that if the linear systems are solved efficiently, the whole
simulation can be sped up.

GPUs are now much more powerful in float point calculation than conventional C-
PUs [NVCUDAPG, CUDABPG]. They have become very popular nowadays and have
been used in many scientific applications [ESMV, ISMV, ECMCP, GPILS]. In this pa-
per, we introduce our work on accelerating a black oil simulator on GPUs. We develop
a new matrix vector multiplication kernel [ESMV, ISMV] for NVIDIA GPUs and other
related BLAS 1/2 subroutines. Based on these subroutines, seven Krylov subspace solvers
[TLS, IMSLS, GPILS, ECMCP] are developed. Several commonly used precondition-
ers, such as polynomial, block ILU(k), ILU(k), block ILUT, ILUT [TLS, IMSLS] and
domain decomposition preconditioners [RAS], are also developed. Our solvers and pre-
conditioners are applied to our in-house black oil simulator. The SPE 10 problem is chosen
as a benchmark. The number of grid blocks in SPE 10 is over 1.1 million and the number
of all unknowns is over 2.2 millions. Numerical experiments show that we can speed the
whole simulation up around six times faster than our pure CPU-based simulator.

The layout is as follows. In §2, our new matrix format and sparse matrix-vector mul-
tiplication kernel is proposed first, then linear solvers and preconditioners are introduced.
In §3, numerical experiments are employed to test the efficiency of the GPU-based linear
solvers and preconditioners.

1991 Mathematics Subject Classification. Primary 568W10, 68N30; Secondary 65F10, 65F50.
Key words and phrases. Reservoir simulation, linear solver, GPU.
The support of Department of Chemical and Petroleum Engineering, University of Calgary and Reservoir

Simulation Group is gratefully acknowledged. The research is partly supported by NSERC/AIEE/Foundation
CMG and AITF Chairs.

1



2 ZHANGXIN CHEN, HUI LIU, SONG YU, BEN HSIEH, AND LEI SHAO

2. Iterative Linear Solvers and Preconditioners

In this section, we introduce our sparse matrix-vector multiplication kernel first, and
then the GPU-based linear solvers and preconditioners.

2.1. Sparse Matrix-Vector Multiplication Kernel. The matrix format used for G-
PUs is HEC (hybrid ELL and CSR), which is developed in [PPRS] and is demonstrated
by Figure 1. From this figure, we can see that an HEC matrix contains two submatrices,
an ELL matrix and a CSR matrix. The ELL matrix has two matrices, one for the column
indices and the other one for non-zeros. The length of each row in these two matrices is
the same. A CSR matrix contains three arrays, the first one for the offset of each row, the
second one for the column indices and the last one for non-zeros.

ELL CSR

Ap

Aj

Ax

Aj Ax

FIGURE 1. HEC matrix format.

The ELL matrix is in column-major order and is aligned in GPUs, which ensure
that the data access pattern of global memory for NVIDIA Tesla GPUs is well coalesced
[ESMV, ISMV, NVCUDAPG, CUDABPG]. In this case the data access speed for the
ELL matrix is high. A disadvantage of the ELL format is that even if only one row has too
many elements, the length of all rows must be the same. Hence it is a waste of memory.
Then a CSR matrix is applied to overcome this problem.

For a HEC format matrix, the corresponding sparse matrix-vector multiplication ker-
nel is described in Algorithm 1. This is a two-step algorithm. In the first step, the ELL
part is calculated, where each CUDA thread [NVCUDAPG, CUDABPG, ESMV, ISMV]
is responsible for one row. Then the CSR part is calculated. Other BLAS 2 subroutines
are developed similarly. One BLAS 1 subroutine is described in Algorithm 2. For this
algorithm, each CUDA thread calculates only one element. Other BLAS 1 subroutines are
similar.

Algorithm 1 Sparse Matrix-Vector Multiplication Kernel, y = Ax

1: for i = 1: n do ◃ ELL, Use one GPU kernel to deal with this loop
2: the ith thread calculates the ith row of ELL matrix; ◃ Use one thread
3: end for
4:
5: for i = 1: n do ◃ CSR, Use one GPU kernel to deal with this loop
6: the ith thread calculates the ith row of CSR matrix; ◃ Use one thread
7: end for



RESERVOIR SIMULATION ON NVIDIA TESLA GPUS 3

Algorithm 2 BLAS 1 subroutine, y = αx+βy

1: for i = 1: n do ◃ Use one GPU kernel to deal with this loop
2: y[i] = αx[i]+βy[i]; ◃ Use one thread
3: end for

2.2. Iterative Linear Solvers. We consider the following linear system:

(2.1) Ax = b,

where A is a nonsingular n× n matrix, b is the right-hand side and x is the solution to be
solved for. Several Krylov subspace linear solvers are listed in [TLS, IMSLS]. From the
descriptions of these solvers, we can see that these solvers share the following common
operations:

(2.2) y = αAx+βy, α,β ∈ R,

(2.3) z = αAx+βy, α,β ∈ R,

(2.4) y = αx+βy, α,β ∈ R,

(2.5) z = αx+βy, α,β ∈ R,

(2.6) α = ⟨x,y⟩ ,

where A is a matrix, x, y and z are vectors, α and β are real numbers, and ⟨·, ·⟩ is the scalar
product.

These subroutines are simple variants of Algorithm 1 and Algorithm 2. With these
BLAS 1/2 operations, the linear solvers can be developed in a straightforward manner. Sev-
en GPU-based Krylov subspace solvers are developed, including GMRES, CG, BICGSTAB,
GCR, CGS, ORTHOMIN and ORTHODIR [IMSLS, TLS]. The CPU-based versions are
also developed.

2.3. Preconditioners. In practice, an equivalent linear system of equations (2.1) is
solved:

(2.7) M−1Ax = M−1b,

where M is called a preconditioner or left-preconditioner. When choosing preconditioner
M, a general principle is that M is an approximation of A and in this case, it means that the
product of M−1 and A approximates the unit matrix I. The condition number of M−1A is
smaller than that of A and the linear system (2.7) is much easier to solve compared to the
original equation (2.1). Meanwhile, M should be easy to construct and be easy to solve.

When the spectrum of N = I−A is less than 1, we have the Neumann expansion [TLS]

(2.8) A−1 = I +N +N2 +N3 +N4 + · · ·.

For any positive integer s, a Neumann polynomial preconditioner is defined as follows:

(2.9) M−1 = I +N +N2 +N3 + · · ·+Ns.



4 ZHANGXIN CHEN, HUI LIU, SONG YU, BEN HSIEH, AND LEI SHAO

When we solve the preconditioned system, only the matrix-vector multiplication is in-
volved.

A simple idea of constructing a preconditioner is to apply LU factorization. However,
for a given sparse matrix A, the accurate L and U are usually much denser than the lower
and upper parts of A, respectively. Alternatively, incomplete-LU is applied. The ILU
factorization computes a sparse lower triangular matrix L and a sparse upper triangular
matrix U for a given matrix A. If the non-zero pattern of L and U is the same as that of the
lower and upper parts of A, respectively, we obtain the so-called ILU(0) preconditioner and
higher order ILU(k) is obtained similarly [IMSLS]. Another method is ILUT, which drops
entries based on the numerical values of the fill-in elements [IMSLS, GPILS], where L
and U are controlled by the drop tolerance and the maximal number of fill-ins in each row.

The solution procedure for L and U is sequential. In this paper, block ILU(0) and
block ILUT are implemented. If the number of blocks increases, both preconditioners have
better parallel performance. The matrix A is partitioned by METIS [METIS]. The lower
and upper triangular problems are solved by a modified level schedule method [PPRS].

Cai et al. developed a restricted additive Schwarz preconditioner (RAS) for solving
general sparse matrices [RAS]. The basic idea is to partition the original problem to some
smaller problems and then to solve these smaller problems simultaneously. In this paper,
the matrix is also partitioned by METIS [METIS]. The submatrices are extended accord-
ing to the topology of the original matrix. Each smaller problem is solved by ILU(0) or
ILUT.

2.4. Package Structure. Figure 2 is the basic structure of our linear solver package.
This package has a multi-level structure. The bottom is the infrastructure, where memo-
ry management, communication, input, output, and preprocessing modules are developed.
These modules serve the whole package. The middle level includes the matrix and vector
operations. The top level includes our solvers and preconditioners. These solvers and pre-
conditioners are designed in such a way that each solver or preconditioner is independent
of each other. In this case, this package is friendly to the user, who can choose the prop-
er solver and preconditioner depending on the individual application, and if one solver or
preconditioner has bugs, these bugs do not affect other solvers or preconditioners.

Memory management Communication PreprocessingIO

BLAS 1/2

Solvers Preconditioners

FIGURE 2. Structure of our package.

3. Numerical Results

In this section, numerical experiments are performed on our workstation with Intel
Xeon X5570 CPUs and NVIDIA Tesla C2050/C2070 GPUs. The operating system is



RESERVOIR SIMULATION ON NVIDIA TESLA GPUS 5

Fedora 13 X86 64 with CUDA Toolkit 4.0 and GCC 4.4. All CPU codes are compiled
with -O3 option. The type of float point number is double.

EXAMPLE 3.1. In this example, the matrix is from SPE 10 [CMFPM]. The dimension
of this matrix is 2,188,851 and the number of non-zeros is 29,915,573. Three solvers
are tested without using any preconditioner, and the number of iteration is fixed at 20.
Performance data is collected in Table 1.

TABLE 1. Performance of solvers without preconditioner

Solver CPU (s) GPU (s) Speedup
BICGSTAB 3.27 0.31 9.95

ORTHOMIN(20) 5.95 0.52 10.61
ORTHOMIN(40) 5.71 0.53 9.92

GMRES(20) 60.39 5.61 10.72
GMRES(40) 178.08 17.01 10.45
GMRES(60) 361.34 34.32 10.52

This example is designed to test the framework of our package. From Table 1, we can
see that when no preconditioner is applied, the average speedup for each solver is around
10.4. We have a maximal speedup of 10.72 when GMRES(40) solver is employed. The
table also indicates that the BLAS 1/2 subroutines are efficient, and the whole framework
of our package works well.

EXAMPLE 3.2. The matrix used in this example is the same as that in Example 3.1.
Here the Neumann polynomial preconditioner is applied, and the order, s, of the polyno-
mial preconditioner is 8. The number of iterations is also 20. Performance data is collected
in Table 2.

TABLE 2. Performance of solvers with Neumann polynomial preconditioner

Solver CPU (s) GPU (s) Speedup
BICGSTAB 20.64 2.06 9.90

ORTHOMIN(40) 22.83 2.33 9.62
GMRES(20) 251.97 24.06 10.46
GMRES(40) 619.94 53.07 11.67

This example is employed to test the performance of the developed sparse matrix-
vector multiplication kernel, which is fundamental to a linear solver package. From Table
2, we can conclude that the performance of our sparse matrix-vector multiplication kernel
is high, and for this example, a maximal speedup of 11.67 is achieved. The average speedup
is around 10.5.

EXAMPLE 3.3. Here only the solver GMRES(20) is employed. The preconditioner is
block ILU(0) with a different number of blocks. The matrix used here is the same as that
in Example 3.1. The terminating criteria is 2e−2. Performance data is collected in Table
3.



6 ZHANGXIN CHEN, HUI LIU, SONG YU, BEN HSIEH, AND LEI SHAO

TABLE 3. Performance of GMRES(20) with block ILU(0)

Blks CPU (s) GPU (s) Speedup IT
1 122.33 14.99 8.14 21
4 124.33 15.00 8.27 21
8 126.40 15.31 8.23 23
16 180.06 19.03 9.44 29

The combination of GMRES and ILU(0) is the most commonly used method for se-
quential reservoir simulation. Since the solution of ILU(0) is sequential in nature, it is hard
to parallelize. This example is to test the parallel performance of our GPU-based block
ILU(0) preconditioner. When the number of blocks is one, then the block ILU(0) is the
so-called ILU(0). Though ILU(0) is sequential, we can still speed up this precondition-
er around 8.14 times faster than the CPU-based ILU(0). When we increase the number
of blocks, the speedup increases. It means that the block ILU(0) has better parallel per-
formance. However, the number of iteration increases, too. For this matrix, we have an
average speedup of 8.3. When the number of blocks is 16, a maximal speedup of 9.44 is
achieved.

EXAMPLE 3.4. Here the block ILUT is applied. All other settings are the same as
those in Example 3.3. Performance data is collected in Table 4.

TABLE 4. Performance of GMRES(20) with block ILUT

Blks CPU (s) GPU (s) Speedup IT
1 34.19 11.70 2.92 5
4 45.52 10.34 4.39 7
8 45.78 9.57 4.76 7
16 63.12 12.42 5.07 10

The ILUT preconditioner is computed by dropping small elements of lower and upper
triangular matrices. The non-zero pattern of L and U is less regular than that of ILU(0),
which means that their data dependency is more complicated than that in ILU(0). This
is also reflected from Table 4. The speedup of block ILUT is lower compared to that of
block ILU(0). An average speedup of 4.2 is achieved. However, comparing the data in
Table 3 and Table 4, we find that block ILUT is better than block ILU(0) in terms of total
running time and the number of iterations. The block ILUT is also sensitive to the number
of blocks. The number of iterations increases when the number of blocks increases.

EXAMPLE 3.5. The RAS preconditioner is tested. The solver is GMRES(20) and the
matrix is also the same as above. For the RAS preconditioner, the smaller problems are
solved by ILU(0) and ILUT here. Data is collected in Tables 5 and 6.

From Tables 5 and 6, we find that ILU(0) has better speedup than ILUT. But in terms of
the solution time and the number of iterations, ILUT is still better. Since the subdomain is
enlarged, the data from Tables 5 and 6 shows that the number of iterations does not change
largely when we increase the number of blocks. It means that the RAS preconditioner is
not as sensitive as block ILU(0) and block ILUT. In addition, we can increase the number
of blocks to have better performance. For ILU(0), we have an average speedup of 8, and
meanwhile, we have an average speedup of 4.5 for ILUT.



RESERVOIR SIMULATION ON NVIDIA TESLA GPUS 7

TABLE 5. Performance of RAS using ILU(0)

Blks overlap CPU (s) GPU (s) Speedup IT
4 1 101.64 15.25 6.65 21
8 1 134.96 15.18 8.87 21
16 1 142.18 16.14 8.78 22

TABLE 6. Performance of RAS using ILUT

Blks overlap CPU (s) GPU (s) Speedup IT
4 1 36.28 8.56 4.22 5
8 1 36.88 8.11 4.53 5
16 1 45.21 9.13 4.93 5

EXAMPLE 3.6. The SPE 10 problem is tested. SPE 10 is a standard benchmark for
the black oil simulator [CMFPM]. The problem is highly heterogenous and it has been
designed to be difficult to solve. The grid size for SPE 10 is 60x220x85. The number of
unknowns is 2,188,851 and the number of non-zeros is 29,915,573. The time period is 100
days. The solver is GMRES(20). Performance data is collected in Table 7.

TABLE 7. Performance of the SPE10

Preconditioner Blks CPU (s) GPU (s) Speedup
BILU(0) 1 49610.28 7721.09 6.43
BILU(0) 4 53350.63 8524.31 6.26
BILU(0) 8 54286.07 8720.25 6.23
BILUT 1 19533.45 9008.22 2.17
BILUT 4 23187.85 8670.53 2.67
BILUT 8 21718.45 7908.42 2.75

RAS + ILU(0) 8 47855.24 8451.55 5.66
RAS + ILU(0) 16 49315.97 8812.98 6.00
RAS + ILUT 8 18553.33 7730.54 2.40
RAS + ILUT 16 19541.72 7419.27 2.63

From Table 7, we can see that when the block ILU(0) and RAS with ILU(0) are ap-
plied, the average speedup is around 6. This means that we can speed up the black oil
simulator 6 times faster. When the block ILUT and RAS with ILUT are applied, the aver-
age speedup is lower, which is only about 2.5. We can still speed up the simulator 2.5 times
faster than the pure CPU simulator. The parallel performance of these preconditioners is
similar, but for sequential performance, the ILUT-related preconditioners are much better
than ILU(0)-related preconditioners.

4. Conclusion

We have presented our work on accelerating a black oil simulator using GPU-based
linear solvers and preconditioners. The numerical experiments show that these solvers and
preconditioners are efficient. The simulator can be sped up around 6 times faster with these
solvers and preconditioners.



8 ZHANGXIN CHEN, HUI LIU, SONG YU, BEN HSIEH, AND LEI SHAO

References
[CMFPM] Z. Chen, G. Huan, and Y. Ma, Computational methods for multiphase flows in porous media, in the

Computational Science and Engineering Series, Vol. 2, SIAM, Philadelphia, 2006.
[IUG] R. Grimes, D. Kincaid, and D. Young, ITPACK 2.0 User’s Guide, Technical Report CNA-150, Center for

Numerical Analysis, University of Texas, August 1979.
[TLS] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine and

H. Van der Vorst , Templates for the solution of linear systems: building blocks for iterative methods, 2nd
Edition, SIAM, 1994.

[IMSLS] Y. Saad, Iterative methods for sparse linear systems (2nd edition), SIAM, 2003.
[PPRS] H. Liu, S. Yu, Z. Chen, B. Hsieh and L. Shao, Parallel Preconditioners for Reservoir Simulation on GPU,

SPE Latin American and Caribbean Petroleum Engineering Conference held in Mexico City, Mexico, 16-18
April 2012, SPE 152811-PP.

[ESMV] N. Bell and M. Garland, Efficient sparse matrix-vector multiplication on CUDA, NVIDIA Technical
Report, NVR-2008-004, NVIDIA Corporation, 2008.

[ISMV] N. and M. Garland, Implementing sparse matrix-vector multiplication on throughput-oriented proces-
sors, Proc. Supercomputing, 2009, 1-11.

[ECMCP] H. Klie, H. Sudan, R. Li, and Y. Saad, Exploiting capabilities of many core platforms in reservoir
simulation, SPE RSS Reservoir Simulation Symposium, 21-23 February 2011

[GPILS] R. Li and Y. Saad, GPU-accelerated preconditioned iterative linear solvers, Technical Report umsi-
2010-112, Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, MN, 2010.

[NVCUDAPG] NVIDIA Corporation, Nvidia CUDA Programming Guide (version 3.2), 2010.
[CUDABPG] NVIDIA Corporation, CUDA C Best Practices Guide (version 3.2), 2010.
[RAS] X.-C. Cai and M. Sarkis, A restricted additive Schwarz preconditioner for general sparse linear systems,

SIAM J. Sci. Comput., 21(1999), 792-797.
[METIS] G. Karypis and V. Kumar, A Fast and Highly Quality Multilevel Scheme for Partitioning Irregular

Graphs, SIAM Journal on Scientific Computing, 20(1999), 359-392.
Current address: Department of Chemical and Petroleum Engineering, University of Calgary, Alberta,

Canada
E-mail address: zhachen@ucalgary.ca

Current address: Department of Chemical and Petroleum Engineering, University of Calgary, Alberta,
Canada

E-mail address: hui.j.liu@ucalgary.ca

Current address: Department of Chemical and Petroleum Engineering, University of Calgary, Alberta,
Canada

E-mail address: yusong0926@gmail.com

Current address: Department of Chemical and Petroleum Engineering, University of Calgary, Alberta,
Canada

E-mail address: bhsieh@ucalgary.ca

Current address: Department of Chemical and Petroleum Engineering, University of Calgary, Alberta,
Canada

E-mail address: jedyfun@gmail.com


