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[1] Dual-porosity (DP) models have been extensively used to simulate the flow of fluids
(water or gas) in aggregate soils and fractured porous media. The fluid exchange between
the rock matrix blocks and the fracture network is very important in DP models. In this
study, we present semianalytical solutions for release of a single-phase liquid or gas from
cylindrical and spherical matrix blocks with various block size distributions and different
pressure depletion regimes in the fracture. The nonlinear pressure diffusivity equations for
flow of gas and air are solved analytically using an approximate integral method. It is
shown that this solution can be simplified to model flow of slightly compressible fluids like
water in DP media. The effect of variable block size distribution on the release rate for
different block geometries is studied. Practically it is not feasible to model a large-scale
fractured reservoir based on a fine grid approach due to the requirement of large
computational time. The presented semianalytical model can be incorporated into numerical
models for accurate modeling of the amount of transferred fluid between matrix and
fractures using a DP approach. It is shown that the results calculated by the developed
model match well with those from fine grid numerical simulations. Furthermore, the
developed model can recover the available solutions in the literature for slightly
compressible fluids such as water or oil. It can be used to calculate two- or three-
dimensional flows in matrix blocks bounded by two or three sets of fractures, respectively.
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1. Introduction and Previous Studies

[2] The fluid flow and transport in fractured rocks is of
great significance in many groundwater environments
[Novakowski and Lapcevic, 1994]. Flow and transport in
fractured porous media are often described using a dual-po-
rosity (DP) model. This model assumes that the porous me-
dium includes two different regions, one related with the
macropore or fracture network with high permeability and
the other with a less permeable and more porous system of
soil aggregates or rock matrix blocks. DP models assume
that both water flow and solute transport can be described
by two equations for matrix and fractures, which are
coupled using a term describing the exchange of fluid or
solutes between the two pore regions [Gerke and van
Genuchten, 1993]. The DP approach has been used in nu-
merical simulation of groundwater, oil, and gas flow in frac-
tured porous media. However, for large-scale simulations
the use of this approach is limited by the huge number of

grid-blocks and small time steps that are often needed to
accurately simulate the flow and are expensive in terms of
computational time. Therefore, developing analytical and
semianalytical approaches that can handle fractured porous
media or structured soils with less computational time is im-
portant [Zimmerman and Bodvarsson, 1989].

[3] Study of gas flow in unsaturated soils and fractured
porous media is significant in a variety of engineering
fields. In agricultural engineering, airflow in the root zone
due to barometric pressure variation is important to plant
growth. Recent studies have shown that airflow can be
applied to create a dry barrier for waste disposal facilities
[Shan, 1995]. Complex gas-water processes in fracture-ma-
trix systems are the main processes in a range of environ-
mental engineering systems, changing from CO2 storage in
deep geological formations [Altevogt and Celia, 2004;
Chen and Zhang, 2010] over radioactive waste disposal in
caverns to evaporation processes in the unsaturated zone
[Nuske et al., 2010]. As an example, soil vapor extraction
is a widely used technique to eliminate volatile organic
contaminants from the unsaturated zone [Falta, 1995]. In
this process, gas is induced by vapor extraction for cleaning
up vadose zone contamination of volatile organic chemi-
cals. The gas flow is also important in the unsteady flow of
air in an anisotropic layer of snow [Fan and Yen, 1968].

[4] Another important aspect of gas flow in the fractured
media is air injection tests to determine the hydrologic prop-
erties and parameters of the fracture networks [Huang et al.,
1999]. Illman and Neuman [2001] developed pressure and
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pressure derivative type curves for single-phase airflow. Ill-
man [2005] analyzed the single-hole pneumatic injection
and recovery tests for determining permeability, porosity,
and skin. Shan [1995] developed analytical solutions for
transient, one-dimensional gas flow caused by barometric
pumping, and applied these solutions to estimate the air per-
meability of the vadose zone. In geothermal reservoirs,
water and vapor (steam) transport occurs in fractured porous
media. There are several studies relevant to flow of fluids in
geothermal reservoirs, which is another important applica-
tion of compressible fluids (vapor) flow in the fractured
media [Pruess, 1983; Fitzgerald and Woods, 1998]. Schrauf
and Evans [1986] and Parker et al., [2006] studied the flow
of gas in a single natural fracture and porous media,
respectively.

[5] In hydrology, there exist a large number of mathe-
matical models (numerical, analytical, or semianalytical) to
simulate the flow of compressible fluids in underground
environments and structured soils [You et al., 2011].
McWhorter [1990] presented an exact semianalytic solution
for transient radial gas flow and applied it for estimating
the gas permeability using pumping test data. Wang and
Dusseault [1991] obtained analytical solutions for com-
pressible fluids flowing through a saturated poroelastic me-
dium by solving a new density diffusion equation. Falta
[1995] developed an analytical solution for transient and
steady state compressible gas flow to a pair of horizontal
wells in an unsaturated zone. Shan et al. [1999] presented
analytical solutions for transient, two-dimensional (2-D)
gas flow in a vertical vadose (unsaturated) zone section,
and presented techniques for approximating the air perme-
ability of a vertical leaky fault. Shan [2006] developed an
analytical solution for transient gas flow in a multiwell
system.

[6] In the case of gas-water displacement, Thunvik and
Braester [1990] analyzed the displacement of gas-water in
fracture networks with different permeability and different
inclination by focusing mainly on the gas breakthrough
time. Berger and Braester [2000] presented a mathematical
model for displacement of gas-water in the fracture net-
works with a nonlinear system of partial differential equa-
tions and solved this system numerically using an iterative
approach.

[7] Flow of compressible and slightly compressible flu-
ids (water or oil) in fractured reservoirs has been studied
extensively with applications in prediction of production
rates and well testing [Warren and Root 1963; Kazemi
et al., 1976; Zimmerman et al., 1993, 1996; Civan and
Rasmussen, 2002; Penuela et al., 2002; Bogdanov et al.,
2003; Lu and Connel, 2007; van Heel et al., 2008; Mora
and Wattenbarger, 2009; Hassanzadeh et al., 2009; Ranjbar
and Hassanzadeh, 2010; Ranjbar et al., 2011; Mourzenko
et al., 2011; Ranjbar et al., 2012; Ye and Ayala, 2012]. As
an example, Hoteit and Firoozabadi [2005] developed a dis-
crete fracture model to simulate the flow of compressible flu-
ids in homogeneous, heterogeneous and fractured porous
media.

[8] There are also a number of studies that have considered
the effect of block geometries on DP fluid flow formulation
[Barker, 1985; van Genuchten and Dalton, 1986; Wuthicharn
and Zimmerman, 2011]. As an example, Zimmerman et al.
[1990] developed a DP model based on an approximate

solution for absorption of water into slab-shaped, cylindrical,
and spherical blocks.

[9] According to the aforementioned works, the flow of
compressible fluids like gases and air in porous media is
important in hydrological, environmental, and petroleum
engineering. In our previous studies, semianalytical models
for a slab-shaped (one-dimensional) matrix block was
developed and the effect of fracture pressure depletion
regimes and matrix block size distribution was investigated
[Ranjbar and Hassanzadeh, 2011, Ranjbar et al., 2011,
2012].

[10] The main objective of this study is to develop a new
semianalytical model for different matrix block geometries
(cylindrical and spherical) for flow of compressible and
slightly compressible fluids in fractured porous media. It is
emphasized that it is not practical to model a large-scale
fractured reservoir based on a fine grid approach due to the
requirement of large computational time. The presented
semianalytical model can be incorporated into numerical
models for accurate modeling of the amount of transferred
fluids between matrix and fractures using available DP for-
mulation. In other words, this study is important to reduce
the computational time for large-scale simulations of gas
flow in fractured porous media and can be nested in a nu-
merical model to resolve subgridblock-scale flows.

[11] In the case of compressible fluids, the presented
model may find applications for soil vapor extraction, geo-
logical CO2 sequestration, hydrological determination of
fracture properties by air injection, and flow of gas in DP
reservoirs. For slightly compressible fluids the presented
model is capable to model flow of water or oil in fractured
media for different block geometries and different block
size distributions. In the presented study, the models for
release of fluids from cylindrical (representative of two sets
of fractures or 2-D) and spherical (representative of three
sets of fractures or three-dimensional (3-D)) blocks are
derived. The presented models can be expressed explicitly
in terms of time and does not require the numerical inver-
sion or infinite series calculations. This solution approach
can significantly decrease the computational time of DP
models with an acceptable accuracy.

2. Approximate Analytical Solution

[12] A transfer function is utilized to characterize the
matrix-fracture interaction and determine the mass transfer
between the matrix blocks and the fractures. The rate of
mass transferred from the matrix to the fractures is directly
related to the shape factor. For modeling of naturally frac-
tured reservoirs, an exact value of the shape factor is
required to account for both the transient and pseudo
steady-state behavior of the matrix-fracture interaction and
also the geometry of the matrix-fracture system [Ranjbar
and Hassanzadeh, 2011].

[13] In this section, the DP matrix-fracture transfer func-
tion for cylindrical and spherical blocks is derived. After
that an approximation is used to derive the matrix-fracture
fluid transfer for 2-D flow (cylindrical matrix blocks’
approximation) or slab-shaped blocks surrounded by two
sets of fractures and 3-D flow (spherical matrix blocks’
approximation) or slab-shaped blocks surrounded by three
sets of fractures. A similar approach has been used in the
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literature [Zimmerman et al., 1990; Lim and Aziz, 1995;
Hassanzadeh and Pooladi-Darvish, 2006]. To derive the
transfer function for DP cylindrical and spherical blocks
we use Darcy’s law as given by:

qsc ¼ �
kmA

�Bg

dp

dr
: (1)

[14] In this equation, A is the surface area, r is the dis-
tance from the center of the cylinder or sphere, and Bg is
the gas formation volume factor (the volume of fluid at
underground conditions divided by the volume of fluid at
standard surface conditions). The following equations are
used to determine the area for cylindrical and spherical
blocks, respectively:

ACylinder ¼ 2�rh; (2)

ASphere ¼ 4�r2: (3)

[15] Using the definition of a compressible fluid forma-
tion volume factor and the surface area of the cylinder we
have:

ZRm

Rm�r0

dr

r
¼ � km2�h

Tqsc

Tsc

psc

Zpf

pm

p

�Z
dp: (4)

[16] In equation (4), r’ is a time-dependent radius where
the matrix pressure is equal to its average pressure, h is the
height of the cylinder and � and Z are the gas viscosity and
compressibility factor, respectively. In gas reservoirs,
pseudo-pressure transformation is used to account for the
variability of pressure with viscosity and gas compressibil-
ity factor. The pseudo-pressure transformation, which is
similar to the Kirchhoff transformation [Tartakovsky et al.,
1999], is given by:

 ¼ 2

Zp

pb

p

�z
dp: (5)

where pb is a reference or base pressure. Integrating of
equation (4) and using the definition of the real gas pseudo-
pressure (equation (5)) leads to the following equations for
cylindrical and spherical blocks, respectively:

qsc-Cylindrical ¼
kmTsc

Tpsc

2�h

ln Rm

Rm�r0m

� � m �  f

2
; (6)

qsc-Spherical ¼
kmTsc

Tpsc

4�Rm Rm � r0ð Þ
r0

 m �  f

2
: (7)

[17] The shape factor for conduction of heat through a
cylindrical wall or spherical block is defined as follows,
respectively [Holman, 2010]:

SCylinder ¼
2�h

ln D2

D1

; (8)

SSphere ¼
4�r1r2

r2 � r1ð Þ : (9)

where D1 and D2 are the diameters of the inner and the
outer cylinders with higher and lower temperatures, respec-
tively, and r2 is the larger sphere radius with lower temper-
ature. Using the same notion for the case of pressure
diffusion, the following equations are used to define the
pressure diffusion shape factor for cylindrical and spherical
blocks, respectively. This parameter is one of the most im-
portant parameters in DP modeling of fractured reservoirs.
The amount of fluid that is transferred from matrix to frac-
tures is directly proportional to the shape factor :

�Cylinder ¼
2�h

ln Rm

Rm�r0

� �
Vb

; (10)

�Sphere ¼
4�Rm Rm � r0ð Þ

r0Vb
: (11)

[18] In the shape factor equation, Vb is the bulk volume
of a matrix block. Using the definition of the shape factor
(equations (10) and (11)) in equations (6) and (7) leads to
the following equation for the transfer function of a cylin-
drical and spherical block in terms of the shape factor:

qsc ¼
kmTscVb

Tpsc
�
 m �  f

2
: (12)

[19] The equation for fluid transfer in terms of time de-
rivative can be expressed as follows [Ranjbar and Hassan-
zadeh, 2011]:

qsc ¼ �
Tsc Vb

2psc

�cm�m

T

@ m

@t
: (13)

[20] Solving equations (12) and (13) for the shape factor
results in the following equation:

� ¼ � �cm�m

km  m �  f

� � @ m

@t
: (14)

[21] Solution of the diffusivity equation is used in equa-
tions (12) and (14) to derive the matrix-fracture fluid transfer
and shape factor for compressible or slightly compressible
fluids.

[22] The diffusivity equation for flow of compressible
fluid for different geometries can be expressed as follows:

1

rI

@

@r
rI @ m

@r

� �
¼ �cm�m

km

@ m

@t
; (15)

where for a cylindrical block I¼1 and for a spherical block
I¼2. It should be mentioned that equation (15) is a nonlinear
partial differential equation (PDE). This nonlinearity is due
to the pressure dependence of viscosity and compressibility
of the compressible fluids like air or gas. The diffusivity
equation for a cylindrical and spherical block in terms of hy-
draulic diffusivity, �, (ratio of matrix permeability to the
product of gas viscosity, matrix compressibility (fluid and
rock) and matrix porosity) can be expressed as follows:

�
@

@r
rI @ m

@r

� �
¼ rI @ m

@t
: (16)
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[23] At the initial condition a pseudopressure in the ma-
trix block can be obtained from the initial pressure. At the
center of the cylindrical or spherical matrix block we have
no flow boundary condition and at the outer boundary, the
pressure is equal to the fracture pressure, which may be a
constant or varies with time. Figure 1 is a schematic repre-
sentation of the problem for a cylindrical block surrounded
by fractures. For a spherical block the problem is the same
but instead of a cylinder we are dealing with a spherical
block. To solve this equation the average hydraulic diffu-
sivity over the matrix-fracture pressure drawdown is
defined as follows [Ranjbar and Hassanzadeh, 2011]:

� ¼ 1

pf � pi

Zpf

pi

km

�cm�m

dp ¼ km

�m

1

pf � pi

Zpf

pi

dp

�cm
: (17)

[24] To express the diffusivity equation in dimensionless
form the following dimensionless variables are defined:

 D ¼
 m �  i

 f �  i

; (18)

rD ¼
r

Rm
; (19)

�D tð Þ ¼ �m tð Þ
�

; (20)

tD ¼
�t

R2
m

(21)

[25] Using these dimensionless variables in equations
(14) and (16) leads to the following equations for the
dimensionless shape factor and diffusivity equation:

�R2
m ¼ �

1

�D

1

 D �  fD

 !
@ D

@tD
; (22)

�D rD; tDð Þ @
@rD

rI
D

@ D

@rD

� �
¼ rI

D

@ D

@tD
: (23)

[26] In this equation, the hydraulic diffusivity is a func-
tion of the dimensionless radius and dimensionless time.
For solving this equation we assume that �D is only a func-
tion of the dimensionless time. To consider the effect of the
space we multiply �D by a correction factor � and numeri-
cal simulation is used to find this correction factor [Ranjbar
and Hassanzadeh, 2011]. Therefore, we have the following
dimensionless equation for the diffusivity equation of the
cylindrical or spherical block:

@

@rD
��D tDð ÞrI

D

@ D

@rD

� �
¼ rI

D

@ D

@tD
: (24)

[27] In this equation, I¼1 is used for the cylindrical
block and I¼2 is used for the spherical block. This equation
is solved for different fracture boundary conditions and dif-
ferent block size distributions to derive the shape factor
and matrix-fracture fluid transfer for flow of compressible
and slightly compressible fluids in fractured porous media
or aggregate and structured soils. It should be mentioned
that the presented solution in this study calculates the pres-
sure distribution in the matrix block by assuming fractures
as a boundary condition.

2.1. Constant Fracture Pressure

[28] In this case, the fracture pressure at the matrix-frac-
ture interface is a constant and we are dealing with a single
block. For the constant fracture pressure, we have the fol-
lowing initial and boundary conditions for the nonlinear
diffusivity equation (equation (24)):

tD ¼ 0!  D ¼ 0; (25)

rD ¼ 0! @ D

@rD
¼ 0; (26)

rD ¼ 1!  D ¼  fD ¼ 1: (27)

[29] An integral method [Goodman, 1964, Zimmerman
and Bodvarsson, 1989, Pooladi-Darvish et al., 1994] and the
method of moments [Ames, 1965] are used to find the early
and late time solutions of this equation. After solving the dif-
fusivity equation and integration over the bulk volume of the
cylindrical matrix block we obtain the early and late time av-
erage dimensionless pseudopressures as follows:

 D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48��D1tD

p
3

tD <
1

48��D1

; (28)

 D ¼ 1� 0:664e!1 tD � 0:267e!2 tD tD �
1

48��D1

; (29)

where !1 and !2 are defined as follows for a cylindrical
block:

!1 ¼ �5:77��D1 !2 ¼ �58:23��D1: (30)

[30] Using the same approach leads to the following
early and late time average dimensionless pseudopressures
for a spherical block:

 D ¼
�3 � 6�2 þ 15�

20
tD <

17

720��D1

; (31)Figure 1. Schematic representation of the problem for a
cylindrical block.
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tD ¼
3�4 � 16�3 þ 30�2

720��D1

tD <
17

720��D1

; (32)

 D ¼ 1� 0:554435e!1tD � 0:371074e!2tD tD �
17

720��D1

;

(33)

where !1 and !2 for a spherical block are defined as
follows:

!1 ¼ �9:879736��D1 !2 ¼ �76:520264��D1: (34)

[31] In these equations �D1 is the fracture dimensionless
hydraulic diffusivity. Derivation of these equations is shown
in Appendices A and B in more details. In equation (31), � is
the time-dependent penetration depth for a spherical block
and equation (32) is used to relate the penetration depth to
the dimensionless time.

[32] Equations (28) and (29) (for a cylindrical block) and
(31)–(33) (for a spherical block) and their derivatives with
respect to time are substituted into equations (12) and (22)
to derive the matrix-fracture transfer rate (release rate) and
shape factor for the cylindrical and spherical matrix blocks.
To express the rate in the dimensionless form we write
Darcy’s law over the whole domain of the cylinder to reach
the following equation:

qg ¼
�kmTsc Vb

Tpsc R2
m

 f �  i

� �
: (35)

[33] Using the definition of the dimensionless pseudo-
pressure in the transfer function (equation (12)) leads to the
following equation:

qsc ¼
Tsc Vb

2psc

km  f �  i

� �
T

�  D � 1
� �

: (36)

[34] Dividing equation (36) to equation (35) leads to the
following equation for the dimensionless release rate for
the cylindrical and spherical blocks:

qD ¼
qsc

qg
¼ � �R2

m

I þ 1
 D � 1
� �

¼ 1

I þ 1ð Þ�D

@ D

@tD
: (37)

[35] Integrating of these equations leads to the dimen-
sionless cumulative fluid release from a cylindrical or spher-
ical block with a constant fracture pressure, respectively:

QD ¼
ZtD

0

qDdtD ¼
 D

I þ 1ð Þ�D

: (38)

[36] The early and late time solutions of the diffusivity
equation (equations (28) and (29) and (31)–(33)) will be
used in equations (37)–(38) to determine the dimensionless
rate and the cumulative fluid release for the cylindrical and
spherical blocks when the fracture pressure is constant. It
should be pointed out that the presented model can be used
to model flow of slightly compressible fluids like water or
oil if we set � ¼ �D1 ¼ �D ¼ 1.

2.2. Variable Fracture Pressure

[37] In this case we assume that the outer boundary con-
dition changes with time. In this section we consider the
effect of linearly and exponentially declining fracture pres-
sure on the DP formulation of compressible and slightly
compressible fluids.

[38] For the variable fracture pressure the outer time-de-
pendent boundary condition for the diffusivity equation
(equation (24)) can be linear or exponential as follows,
respectively:

 D ¼
 i �  m

 i

!  fD tDð Þ ¼ 	tD; (39)

 D ¼
 m �  i

 1 �  i

!  fD tDð Þ ¼ 1� exp �	tDð Þ: (40)

[39] It should be noted that the initial condition and the
inner boundary condition are the same as equations (25)
and (26), respectively. Using a recently developed semiana-
lytical method to solve the equation for a variable fracture
pressure [Mitchel and Myers, 2010; Ranjbar et al., 2011]
we reach the following equations for the average dimen-
sionless pseudopressure for the linearly declining fracture
pressure of a cylindrical block:

 D ¼
ktD

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16��D1tD

p
; tD <

1

16��D1

; (41)

 D ¼ 	tD �
0:69987	

!1
e!1tD � 1ð Þ � 0:29639	

!2
e!2 tD � 1ð Þ;

tD �
1

16��D1

;

(42)

where !1 and !2 are determined based on equation (30) in
the case of a cylindrical block. For a spherical block with
linearly declining fracture pressure, the following solutions
are obtained for the early and late time average dimension-
less pseudopressure:

 D ¼
	

260��D1

�5 � 6�4 þ 15�3
� �

tD <
1

13��D1

or � < 1;

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13��D1tD

p
(43)

 D ¼ 	tD �
0:626902	

!1
e!1 tD � 1ð Þ � 0:359632	

!2
e!2tD � 1ð Þ

tD �
1

13��D1

:

(44)

[40] In the case of an exponentially declining fracture
pressure, we have the following equations for the average
pseudopressure of a cylindrical block:

 D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�	tD
p

3
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24��D1tD 2�

ffiffiffi
�
p

erf
ffiffiffiffiffiffiffi
	tD
pð Þffiffiffiffiffiffiffi
	tD
p

� �s
;

tD < t�;

(45)
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 D ¼ 1� e�	tD � 0:58746
1� e�	t�

e!1t� � e�	t�

� �
e!1tD

� 0:07754
1� e�	t�

e!2t� � e�	t�

� �
e!2 tD þ 0:58746

1� e�	t�

e!1t� � e�	t�

� �	

þ 0:07754
1� e�	t�

e!2t� � e�	t�

� �

e�	tD ; tD � t�:

(46)

[41] In the case of a spherical block and exponentially
declining fracture pressures, the following equations are
obtained for the average dimensionless pseudopressure:

 D ¼
1� exp �	tDð Þ

20
�3 � 6�2 þ 15�
� �

tD < t�

� tDð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18��D1tD

2

1� e�	tD
�

ffiffiffi
�
p

1� e�	tD

erf
ffiffiffiffiffiffiffi
	tD
pð Þffiffiffiffiffiffiffi
	tD
p

� �
;

s

(47)

 D ¼ 1� e�	tD þ 0:439073
1� e�	t�

e�	t� � e!1 t�

� �
e!1 tD

þ 0:060923
1� e�	t�

e�	t� � e!2 t�

� �
e!2 tD � 0:439073

1� e�	t�

e�	t� � e!1 t�

� �	

þ0:060923
1� e�	t�

e�	t� � e!2t�

� �

e�	tD ; tD � t�;

(48)

where erf is the error function and t
�

is the time at which the
effect of pressure disturbance will reach the matrix bound-
ary. Derivation of these equations is shown in Appendices
A and B in more details. To determine the dimensionless
rate and the cumulative fluid release for variable fracture
pressure the same approach as described in section 2.1 is
used. The following equation represents the dimensionless
release rate for the variable fracture pressure of a cylindrical
and spherical block:

qD ¼ �
�R2

m

I þ 1ð Þ  D �  fD tDð Þ
� �

¼ 1

I þ 1ð Þ�D

@ D

@tD
: (49)

[42] These equations are integrated to determine the cu-
mulative release from a cylindrical or spherical block with
time-dependent fracture pressure.

QD ¼
 D

I þ 1ð Þ�D

: (50)

[43] Equations (41)–(48) are substituted into these equa-
tions (equations (49) and (50)) to determine the early and
late time dimensionless release rates and the cumulative
release of fluids for different fracture pressure depletion
regimes.

2.3. Variable Block Size Distribution (Multiple
Blocks)

[44] In the case of multiple blocks we substitute the col-
lection of blocks with a single block with an equivalent ra-
dius [Zimmerman and Bodvarsson, 1995; Ranjbar et al.,

2012]. To model flow of fluids in fractured media or aggre-
gate soils with multiple cylindrical or spherical blocks of
variable block size distributions the following initial and
boundary conditions can be written:

1

rI

@

@r
rI @ m

@r

� �
¼ 1

�m

@ m

@t
; (51)

t ¼ 0!  m ¼  i; (52)

r ¼ 0! @ m

@r
¼ 0; (53)

r ¼ Rme !  m ¼  f : (54)

[45] It should be noted that in equation (54), Rme is the
equivalent cylinder or sphere radius and is a function of
block size distribution. The following equations are used to
find the equivalent radius for discrete and continuous block
size distribution, respectively [Gwo et al., 1998; Ranjbar
et al., 2012]:

Rme ¼

XN

i¼1

NiRmi

XN

i¼1

Ni

¼ 1

Nt

XN

i¼1

NiRmi ¼
XN

i¼1

Ni

Nt
Rmi ¼

XN

i¼1

fi Rmið ÞRmi;

(55)

Rme ¼
ZRm max

Rm min

Rmf Rmð ÞdRm
: (56)

[46] In equation (56), f(Rm) is the probability density
function (PDF), which is used to represent the probability
of the blocks as a function of block sizes. In the case of
multiple blocks of variable block size distribution in addi-
tion to equations (18) and (20), the following dimensionless
variables are defined:

rD ¼
r

Rm max
; (57)

tD ¼
�t

R2
mmax

; (58)

RDe ¼
Rme

Rm max
; (59)

fD RDð Þ ¼ Rm max f Rmð Þ; (60)

Fh ¼
Rm min

Rm max
: (61)

[47] For the multiple blocks Rm max, which is independ-
ent of the block size distribution, is used to scale the time
and radius. Using equations (18), (20), and (57)–(61) in the
diffusivity equation and the shape factor equation (equation
(14)) for the variable block size distribution, we reach the
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following equations for the diffusivity equation, the equiva-
lent radius and the dimensionless shape factor:

@

@rD
��D tDð ÞrI

D

@ D

@rD

� �
¼ rI

D

@ D

@tD
; (62)

tD ¼ 0!  D ¼ 0; (63)

rD ¼ 0! @ D

@rD
¼ 0; (64)

rD ¼ RDe !  D ¼ 1; (65)

RDe ¼
XN

i¼1

fi Rmið ÞRDi; (66)

RDe ¼
Z1

Fh

RDfD RDð ÞdRD; (67)

�R2
me ¼ �

R2
De

�D

1

 D � 1

� �
@ D

@tD
: (68)

[48] To solve the diffusivity equation of multiple cylindri-
cal blocks, the integral method and method of moments are
used to find the solution [Ranjbar et al., 2012]. The follow-
ing equations give the early and late time average dimen-
sionless pseudopressure for multiple cylindrical blocks with
block size distribution:

 D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48��D1tD

p
3RDe

tD <
R2

De

48��D1

; (69)

 D ¼ 1� 0:664e!1 tD � 0:267e!2 tD tD �
R2

De

48��D1

; (70)

where !1 and !2 are defined as follows:

!1 ¼
�5:77��D1

R2
De

!2 ¼
�58:23��D1

R2
De

: (71)

[49] Derivation of these equations is shown in Appendix
A in more details.

[50] The following equations give the early and late time
average dimensionless pseudopressure for multiple spheri-
cal blocks with block size distribution using the integral
method and method of moments:

 D ¼
�3 � 6RDe�

2 þ 15R2
De�

20R3
De

tD <
17R2

De

720��D1

tD ¼
3�4 � 16RDe�

3 þ 30R2
De�

2

720��D1R2
De

;

(72)

 D ¼ 1� 0:554435e!1tD � 0:371074e!2tD tD �
17R2

De

720��D1

;

(73)

where !1 and !2 are defined as follows:

!1 ¼
�9:879736��D1

R2
De

!2 ¼
�76:520264��D1

R2
De

: (74)

[51] Derivation of these equations is shown in Appendix
B in more details. Table 1 shows the equivalent radius and
the PDF for different continuous block size distributions.
For the case of discrete block size distribution equation

Table 1. Different Probability Distribution Function and Their Equivalent Radius

Distribution Distribution Function Equivalent Radius

Exponential
fD RDð Þ ¼ ae�aRD

e�aFh � e�a
RDe ¼

aFh þ 1ð Þe�aFh � aþ 1ð Þe�a

a e�aFh � e�að Þ

Normal
fD RDð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi

2��2
p e

�1
2�2 RD�Mð Þ2
� �

RDe ¼
1

2

M erf
M � Fhffiffiffiffiffiffiffiffi

2�2
p

� �
� erf

M � 1ffiffiffiffiffiffiffiffi
2�2
p

� �	 

þ

ffiffiffiffiffiffiffiffi
2�2

�

r
e
�

M � Fhð Þ2

2�2 � e
�

M � 1ð Þ2

2�2

2
64

3
75

2
666664

3
777775

Linear fD RDð Þ ¼ mRD þ b
RDe ¼

m

3
1� F3

h

� �
þ b

2
1� F2

h

� �

Log-normal

fD RDð Þ ¼ 1

RD

ffiffiffiffiffiffiffiffiffiffiffi
2��2

ln

q e
� ln RDð Þ�Mln½ �2

2�2
ln

RDe ¼
eMlnþ

�2
ln
2

2

erf
Mln þ �2

ln � ln Fhð Þffiffiffiffiffiffiffiffi
2�2

ln

q
2
64

3
75�

erf
Mln þ �2

lnffiffiffiffiffiffiffiffi
2�2

ln

q
2
64

3
75

2
666666664

3
777777775
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(66) is used to find the equivalent length. More details
about these distributions and the corresponding equivalent
radius are discussed in Ranjbar et al., [2012].

[52] For the case of variable block size distribution, the
following equation is used to determine the release rate for
the total volume of the reservoir :

qsc R ¼
Tsc Vb

2psc

km  f �  i

� �
T

�  D � 1
� �RmR

Rme
: (75)

[53] In this equation, RmR is the total radius of the reser-
voir. To determine the dimensionless rate equation (75) is
divided by Darcy’s rate, which is expressed as follows:

qg max ¼ �
I þ 1ð Þ

2

kmVbTsc

psc TRm maxRme
 f �  i

� �
: (76)

[54] The following equations are used to determine the
dimensionless rate of release and the dimensionless cumu-
lative release for the variable block size distribution for a
cylindrical or spherical block:

qD ¼ �
�R2

me

I þ 1ð Þ  D � 1
� � 


R2
De

¼ 


I þ 1ð Þ�D

@ D

@tD
; (77)

QD ¼



I þ 1ð Þ�D

 D: (78)

[55] It should be mentioned that in these two equations

 is the ratio of the reservoir radius to the radius of the

maximum block. In the result section, we assume that this
ratio is 10. The average pseudopressures (equations (69)–
(74)) and their derivatives are replaced in equations (77)
and (78) to determine the dimensionless rate of release and
the dimensionless cumulative release for cylindrical blocks
with variable block size distribution. The equations derived
for the cylindrical (spherical) block can be used for the 2-D
(3-D) flow in the slab-shaped block if the two types of
blocks have the same volume. For example, if we set R2

m ¼
h2

m=� (R3
m ¼ 3h3

m

� �
= 4�ð Þ) in these equations the solution

can be applied for 2-D (3-D) blocks.

3. Model Verification

[56] To determine the validity of the presented model,
we compare our results with the fine grid numerical simula-
tion. Cumulative release of fluids from matrix to fractures
is used to evaluate the accuracy of the presented model. In
addition, comparison of the presented model with models
available in the literature for slightly compressible fluids
will be used to validate the developed model.

[57] To show the accuracy of the results in the case of 2-
D and 3-D flow (two and three sets of fractures) the
obtained solution for the average pseudopressure is used in
the transfer function equation (equation (12)). Changing all
the variables into the dimensional form and integrating this
equation over time the following equation is obtained for
the cumulative release of fluids for two and three sets of
fractures, respectively:

Q tð Þ ¼
kmVbTsc  i �  f

� �
�

2psc Th2
m�D

hm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48��D1

p
3
ffiffiffiffiffiffi
��
p

ffiffi
t
p

t <
h2

m

48��D1��

h2
m

��
1� 0:664e

�5:77��D1��

h2
m

t
� 0:267e

�58:23��D1��

h2
m

t
2
64

3
75 t � h2

m

48��D1��

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
; (79)

Q tð Þ ¼
kmTsc Vb  i �  f

� �
2psc T��D

�3 � 6�2 þ 15�

20
t <

17� 0:384h2
m

720��D1�

1� 0:554435e
!1

�t

0:384h2
m � 0:371074e

!2

�t

0:384h2
m t � 17� 0:384h2

m

720��D1�

8>>>><
>>>>:

9>>>>=
>>>>;

t ¼
0:384h2

m 3�4 � 16�3 þ 30�2
� �

720��D1�
:

(80)

[58] It should be pointed out that equations (79) and (80)
are obtained from the cylindrical and spherical blocks mod-
els with the assumption of having the same volume with
blocks formed by two and three sets of fractures, respec-
tively. For example, in the case of a 3-D block (a matrix
block formed by three sets of fractures) it is assumed that
the sphere and the cube have the same volume [Lim and
Aziz, 1995].

[59] Figures 2 and 3 compare the cumulative release of
gas based on the presented semianalytical model (equations
(79) and (80)) and the numerical results (Eclipse 100) for
2-D and 3-D flow, respectively. Based on these figures, the
presented semianalytical model is in a good agreement
with the fine grid numerical simulations.

[60] Table 2 shows the data that have been used in the fine
grid numerical simulations and the presented semianalytical
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model. It should be mentioned that the data for the semiana-
lytical model and the matching parameters (� and �D) are the
same as those in our previous studies [Ranjbar and Hassan-
zadeh, 2011; Ranjbar et al., 2012]. This shows that these pa-
rameters are not matrix block geometry dependent.

[61] The presented semianalytical model can recover the
shape factors reported in the literature for slightly com-
pressible fluids. Table 3 shows the stabilized values of the
shape factor based on this study and the literature models
[Lim and Aziz, 1995; Hassanzadeh and Pooladi-Darvish,
2006] for different boundary conditions and different sets
of fractures (2-D and 3-D). As illustrated in this table, there
is an acceptable accuracy between the stabilized values of
the shape factor based on the presented semianalytical
model (� ¼ �D1 ¼ �D ¼ 1) and the literature models.

4. Results

[62] In the following the effect of fracture pressure
depletion regimes, block size distribution and geometry are
studied, respectively.

4.1. Effect of Fracture Pressure Depletion Regime

[63] Three different depletion regimes in the fracture are
considered including constant fracture pressure, linear and
exponential decline. Results of this study show that the
fracture pressure depletion regime will affect the rate of
release. In fast depletion regimes like constant fracture and
large exponent exponential decline, the matrix depletes
more rapidly than that in the case of the linear decline and
the small exponent exponential decline.

[64] Figure 4 compares the dimensionless release rate
versus the dimensionless time for different depletion
regimes in the fracture for a cylindrical block. In the deple-
tion regime of exponential decline with a small exponent,
the dimensionless gas release rate is proportional to the
square root of the time at the early time. At the middle
time, the rate stabilizes to a constant value. The rate even-
tually drops to zero at the late time. The gas release rate for
linearly declining fracture pressure also has the same
behavior as the exponentially declining fracture pressure
with a small exponent at the early and middle times. For the
linear decline, since the decline time is limited to tD<1/k,
the pressure decline in the fracture is not complete and the
release rate does not fall to zero.

[65] For the linear decline, the rate of depletion of the
matrix increases as the decline rate (k) increases. As illus-
trated in Figure 4 for the exponential decline, as the value
of the exponent increases, the early time release rate
increases and the blocks are depleted more quickly. The ex-
ponential decline with a large exponent and constant frac-
ture depletion regimes behave in the same way and the
block is depleted faster than other depletion regimes. For
the fast depletion regimes (constant fracture pressure and
exponential decline with a large exponent), the early time
dimensionless rate varies inversely proportionally to the
square root of the time. A similar observation has been
reported for the shape factor in the case of slightly com-
pressible and compressible fluids [Hassanzadeh and Poo-
ladi-Darvish, 2006; Ranjbar et al., 2011].

[66] It should be mentioned that due to the approximate
nature of the presented solution there is a discontinuity in
the flux especially for the exponential decline with a large
exponent. This discontinuity occurs at t

�
where the early and

late time solutions coincide. This discontinuity is mainly due
to the change in the slope of the pressure (at t

�
the early and

late time pressures are equal but there is a little difference in
their derivatives because of the approximate nature of the so-
lution). Similar behavior is reported by Zimmerman et al.
[1990] using the integral approximate solutions.

[67] Figures 5 and 6 compare the dimensionless cumula-
tive gas release for different fracture pressure depletion
regimes for cylindrical and spherical blocks, respectively.
The results show that the time required for the cumulative
gas release from a matrix block to reach its plateau depends
on the depletion regime in the fracture. Fast depletion
regimes like constant fracture pressure and exponential
decline with a large exponent reach their plateau more rap-
idly than those with the linear decline and the exponential
decline with a small exponent. On the other hand, the expo-
nential decline with a small exponent and linear decline
demonstrate a prolonged release period as compared to the
other declines.

Figure 3. Comparison of the presented model with the
numerical simulation for 3-D flow (spherical block
approximation).

Figure 2. Comparison of the presented model with the
numerical simulation for 2-D flow (cylindrical block
approximation).
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Table 2. Data Used for Semianalytical and Numerical Models

Data for fine-grid model
Grid dimension: 28 (22 grids for matrix and 6 grids for fracture)�28 �1
Grid spacing:

�x(m): 1000,20,5,0.005,0.01,0.15,0.2,0.25,0.3,0.395,0.5,0.5,0.395,0.3,0.25,0.2,0.15,0.01,0.005,5,20,1000
�y : The same as �x
�z¼ 4 m (for 2-D), for 3-D simulation case the same grid spacing as �x is used in z-direction.

Fracture porosity¼ 1
Fracture permeability¼ 4000 mD

Common data for semianalytical and numerical models
Gas specific gravity¼ 0.7
Matrix permeability¼ 1 mD¼ 9.869233�10�16 m2

Matrix porosity¼ 0.1
Initial pressure¼ 45 MPa
Fracture pressure¼ 22.5 MPa
Reservoir temperature¼ 366.45 K
hm¼ 4 m

Data for semianalytical model
B ¼0.73 psc¼101.325 kPa
�D¼0.3327 Tsc¼288.7K
�D1¼0.3691

� ¼ 0:03457

Table 3. Stabilized Values of the Shape Factor Based on This Study and Literature Models

Hassanzadeh and
Pooladi-Darvish [2006] Lim and Aziz [1995] This Study

2-D flow (cylindrical approximation)
Constant fracture pressure 18.2 18.17 18.13
Linear decline 25.5 24.86
Exponential decline (small exponent) 25.13 24.84
Exponential decline (large exponent) 18.2 18.13

3-D flow (spherical approximation)
Constant fracture pressure 25.65 25.67 25.73
Linear decline 39 38.21
Exponential decline (small exponent) 39 37.04
Exponential decline (large exponent) 25.65 25.73

Figure 4. Dimensionless rate versus dimensionless time for different fracture depletion regimes for a
cylindrical block.
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4.2. Block Size Distribution Effect

[68] In this section, the effect of different block size dis-
tribution on the cumulative gas release is investigated. Ta-
ble 4 illustrates the values of the equivalent radius for
different block size distribution. Equations (66) and (67)
and Table 1 are used to determine the values of the equiva-
lent radius for different distributions. More details about

the distribution and the different values in each distribution
are discussed elsewhere [Ranjbar et al., 2012]. It should be
mentioned that the presented model can also be used for
discrete block size distribution as used in our previous
study [Ranjbar et al., 2012].

[69] Figures 7 and 8 compare the cumulative release for
different distributions with cylindrical and spherical blocks,

Figure 5. Dimensionless cumulative release versus dimensionless time for different fracture depletion
regimes for a cylindrical block.

Figure 6. Dimensionless cumulative release versus dimensionless time for different fracture depletion
regimes for a spherical block.
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respectively. As demonstrated in these figures the time to
reach the ultimate cumulative release is proportional to the
equivalent radius of the distribution. Based on these figures
the exponential distribution with a large exponent is depleted
faster than the other distributions. The ideal distribution and
exponential distribution with a small exponent behave simi-
larly and deplete more gradually than other distributions.

4.3. Comparison of Different Block Geometries

[70] In this section, we compare the cumulative release for
a slab-shaped matrix block with the half thickness of �, a cyl-
inder and a sphere with the radius of �. For the slab-shaped
block, the following equation is derived to calculate the cu-
mulative release:

QD ¼
1

�D

 D: (81)

[71] In our previous study [Ranjbar and Hassanzadeh,
2011], the following equations were derived for early and late
time average pseudopressure in a slab-shaped matrix block:

 D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24��D1tD

p
4

tD <
1

24��D1

; (82)

 D ¼ 1� 0:790e�2:486��D1tD � 0:148e�32:181��D1tD

tD �
1

24��D1

:
(83)

[72] Equations (82) and (83) are substituted into equation
(81) to determine the cumulative fluid release. For the cy-
lindrical and the spherical block equation (38) (I¼1 for cyl-
inder and I¼2 for sphere) is derived to determine the
cumulative release.

[73] Comparison is performed for different matrix block
geometries with the same characteristic length available for
release of fluid. Figure 9 compares the dimensionless cu-
mulative release for different matrix block geometries
when the fracture pressure is constant. As illustrated in this
figure the slab-shaped block has the maximum value of the
cumulative release and the blocks are depleted more slowly
than the cylindrical and spherical blocks. The spherical
block is depleted faster with the smallest value of the final
cumulative release. It should be mentioned that using the
same characteristic length available for release for different
geometries results in blocks with different volumes to the
surface area ratio (i.e., (V/A)slab¼2(V/A)cylinder¼3(V/A)sphere).

Figure 8. Dimensionless cumulative release versus
dimensionless time for different block size distribution and
spherical blocks.

Table 4. Values of Dimensionless Equivalent Radius for Differ-
ent Matrix Block Size Distributions

Block Size Distribution
Dimensionless

Equivalent Radius (RDe)

Ideal distribution 1.000
Exponential distribution (a¼�20) 0.950
Linear increasing distribution 0.625
Normal distribution 0.548
Linear decreasing distribution 0.475
Log-normal distribution 0.414
Exponential distribution (a¼20) 0.150

Figure 7. Dimensionless cumulative release versus
dimensionless time for different block size distribution and
cylindrical blocks.

Figure 9. Dimensionless cumulative release versus
dimensionless time for different block geometries.
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Therefore, the difference observed in the ultimate cumula-
tive release shown in Figure 9 can be explained based on the
ratio of the block volume to the block surface area for differ-
ent geometries with the same characteristic length. It should
be noted that in Figure 9 the dimensionless time is scaled
based on characteristic length (Lc for slab and Rm for cylin-
der and sphere). Therefore, different geometries should have
the same characteristic length, which results in different
ratios of V/A.

[74] Figure 9 shows that the stabilized values of the
dimensionless cumulative release are 3.00, 1.50, and 1.00
for the slab-shaped, the cylindrical, and the spherical
blocks, respectively. These values can be explained based
on the ratio of the volume to the surface area of the blocks
for different geometries. The ratio of the volume to the sur-
face area for the slab-shaped block is �, for the cylindrical
block it is �/2 and for the spherical block it is �/3 [Zimmer-
man et al., 1990]. Therefore, the ultimate cumulative
release is proportional to the ratio of the volume to the sur-
face area for different geometries (Assuming the same
characteristic length, �, for different geometries). For
example, the ratio of (V/A) of the slab to the ratio of (V/A)
of the cylinder is two and the ultimate cumulative release
for the slab is two times greater than that for the cylinder.

[75] To normalize the cumulative release for three differ-
ent geometries we scale the dimensionless time by
� ¼ �t= V=Að Þ2and express the normalized cumulative
release (Q(tD)/QDt) versus the square root of the scaled time
(�) [Zimmerman et al., 1990] where QDt is the ultimate cu-
mulative release for any geometry. As an example, the time
scale for a sphere of radius � is defined as follows:

� ¼ �t

�=3ð Þ2
¼ 9

�t

�2
¼ 9tD: (84)

[76] Using the same approach we obtain � ¼ 4tD and
� ¼ tD for the cylindrical and slab-shaped matrix blocks,
respectively.

[77] Figure 10 demonstrates the normalized cumulative
release versus the square root of the scaled time. As a result
of the scaling, the release curves become closer to each
other for different geometries as illustrated in Figure 10. A
similar observation has been made by Zimmerman et al.
[1990] for absorption curves for different geometries. This
scaling law may find applications for irregular shaped
blocks, which is beyond the scope of this study.

5. Conclusions

[78] An integral approximation method has been used to
derive the solutions for nonlinear pressure diffusion in
blocks with different geometries including cylindrical and
spherical blocks. The presented solutions have considered
the effect of fracture pressure depletion regimes and the
variable block size distributions or multiple blocks. The
results calculated by the approximate solutions are in good
agreement with those calculated by the fine grid numerical
models.

[79] It has been shown that the depletion time of a matrix
block is a function of the fracture pressure depletion
regimes. In the case of constant fracture pressure or expo-
nential decline with a large exponent the block is depleted

faster than that in the linear decline and the exponentially
decline with a small exponent. For the linear decline and
exponential decline with a small exponent the early time
dimensionless release rate increases proportionally to the
square root of the dimensionless time, then stabilizes at a
constant rate and finally falls to zero.

[80] Block size distribution is another important parameter
that affects the matrix production during the transient state.
The blocks with a smaller equivalent radius are depleted
more quickly. For a large equivalent radius, distributions like
ideal and exponential with a small exponent (i.e., a¼�20)
the transient period is longer than that for the other distribu-
tions. Finally, the normalized cumulative release from all
matrix block geometries is expressed as a function of the
square root of the scaled dimensionless time, which may find
application for irregular shape matrix blocks.

Appendix A: Analytical Solution for Cylindrical
Blocks

[81] In this Appendix, the solution of nonlinear gas pres-
sure diffusion in a cylindrical matrix block is discussed in
more details.

A1. Constant Fracture Pressure

[82] In this case as mentioned in the text the diffusivity
equation and its conditions are based on equations (24)
(with I¼1), (25), (26), and (27).

[83] The integral method is used to find the early time
solution by defining the time-dependent penetration depth,
�(tD), in which the pressure disturbance has reached that
depth. For the early time solution we have the following
boundary conditions:

rD ¼ 1!  D ¼ 1; (A1)

rD ¼ 1� � tDð Þ !  D ¼ 0;
@ D

@rD
¼ 0: (A2)

[84] Since the exact solution for the cylindrical block is
in the form of first kind, the order zero of Bessel’s function

Figure 10. Normalized cumulative fluid release versus
square root of scaled time.
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(J0(rD)) we suggest the following polynomial trial solution
in the integral method [Pooladi-Darvish et al., 1994]:

 D ¼ A tDð Þ � B tDð Þr2
D þ C tDð Þr4

D: (A3)

[85] Using actual and auxiliary boundary conditions in
the trial solution leads to the following equation:

 D ¼
r2

D � 1� �ð Þ2
h i2

1� 1� �ð Þ2
h i2 : (A4)

[86] Using this trial solution in the integral form of the
diffusivity equation (equation (24), with I¼1) leads to the
following solution for early time pseudopressure:

 D ¼
r2

D � 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48��D1tD

p� �2
48��D1tD

tD <
1

48��D1

: (A5)

[87] It should be noted that �D1 is the dimensionless hy-
draulic diffusivity of the fracture at the outer boundary,
which is defined as follows:

�D1 ¼ �D@xD ¼ 1 �D1 ¼
� xD ¼ 1ð Þ

�
¼ 1

�

k

�f cf �
: (A6)

[88] Integrating over the bulk volume of the cylindrical
block is used to find the average dimensionless pseudo-
pressure as follows:

 D ¼
1

V

Z
V

 DdV ¼ 2

Z 1

0
rD DdrD: (A7)

Substituting equation (A5) into equation (A7) leads to the
following equation for the early time average dimension-
less pseudo pressure for the cylindrical block in the case of
constant fracture pressure:

 D ¼ 2

Z1

1��

rD DdrD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48��D1tD

p
3

tD <
1

48��D1

: (A8)

[89] Equation (A8) is the same as equation (28) in the
main text.

[90] The late time solution of the nonlinear PDE using
the method of moments is explained in more details in this
part. For the late time solution the following equation is
used as the initial condition, which comes from the early
time solution:

tD ¼
1

48��D1

!  D ¼ r4
D: (A9)

[91] The inner and outer boundary conditions and the
diffusivity equation are the same as equations (26), (27),
and (24) (with I¼1), respectively. The method of moments
is used to find the late time solution of this PDE by suggest-
ing the following trial solution and the residual (R) as
follows:

 D rD; tDð Þ ¼ A tDð Þ þ B tDð ÞrD þ C tDð Þr2
D þ D tDð Þr4

D

tD �
1

48��D1

;
(A10)

R ¼ rD
@ D

@tD
� @

@rD
��DrD

@ D

@rD

� �
: (A11)

[92] The unknown coefficients (A, B, C, and D) in equa-
tion (A10) are found by using the boundary conditions and
making the zero and first moments of R vanish by enforcing
the following conditions:

Z1

0

RdrD ¼ 0!
Z1

0

rD
@ D

@tD
� @

@rD
��DrD

@ D

@rD

� �� �
drD ¼ 0;

(A12)

Z1

0

rDRdrD ¼ 0!
Z1

0

rD rD
@ D

@tD
� @

@rD
��DrD

@ D

@rD

� �	 

drD ¼ 0:

(A13)

[93] From the inner boundary conditions, we can con-
clude that B ¼ 0; the outer boundary condition (equation
(27)) leads to:

A ¼ 1� C � D: (A14)

[94] Solving equations (A12) and (A13), combining the
results with equation (A14) and some simplification lead to
a system of ordinary differential equations as follows:

dC

dtD
¼ 20��D1C þ 96��D1D; (A15)

dD

dtD
¼ �21��D1C � 84��D1D: (A16)

[95] Solving the system of the ordinary differential equa-
tions leads to the following equations for unknown coeffi-
cients C and D :

C ¼ �3:725m1 exp !1tDð Þ � 1:227m2 exp !2tDð Þ; (A17)

D ¼ m1 exp !1tDð Þ þ m2 exp !2tDð Þ; (A18)

[96] where !1 and !2 are the eigenvalues of the system
of the ordinary differential equations and are defined based
on equation (30) in the main text. So we have the following
equation for the late time dimensionless pseudopressure:

 D rD; tDð Þ ¼ 1þ 2:725m1e!1tD þ 0:227m2e!2 tDð Þ
þ �3:725m1e!1tD � 1:227m2e!2tDð Þr2

D

þ m1e!1tD þ m2e!2tDð Þr4
D; tD �

1

48��D1

;

(A19)

where m1 and m2 are obtained by using the initial condition
of equation (A9), and the trial solution of the nonlinear PDE
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for the late time behavior is obtained as in equation (A20).
After that, equation (A20) is integrated (equation (A7)) over
the matrix block volume to obtain the average matrix block
pseudo pressure (equation (29) in the main text).

 D rD; tDð Þ ¼ 1� 1:512e!1 tD þ 1:14e!2 tDð Þ
þ 2:067e!1tD � 6:162e!2tDð Þr2

D

þ �0:555e!1tD þ 5:022e!2tDð Þr4
D; tD �

1

48��D1

:

(A20)

A2. Variable Fracture Pressure

[97] For the linearly declining fracture pressure, the outer
boundary condition (fracture pressure) varies linearly with
the time based on the following equation:

r ¼ Rm !  m ¼  f ¼  i 1� �tð Þ � � 1

t
: (A21)

[98] In this case, the dimensionless pseudopressure and
fracture dimensionless pseudopressure are defined as
follows:

 D ¼
 i �  m

 i

; (A22)

 fD ¼ 	tD; 	 � 1

tD
: (A23)

[99] For the linearly declining fracture pressure, the dif-
fusivity equation and its initial and inner boundary condi-
tions are the same as equations (24) (with I¼1), (25), and
(26), respectively. Equation (A23) is used as the outer
boundary condition. In this case, the shape factor equation
has the following form for a cylindrical block:

�R2
m ¼ �

1

�D

@ D

@tD

 D � 	tD

0
@

1
A: (A24)

[100] For the early time solution of the linear decline of a
cylindrical block we assume that the trial solution has the
following form:

 D rD; tDð Þ ¼ 	tD 1� 1� r2
D

1� 1� � tDð Þð Þ2

" #2

: (A25)

[101] In equation (A25), the terms in the bracket is the
solution of the constant fracture pressure case. In the case
of variable fracture pseudo pressure the penetration depth
(numerator in equation (A25)) is found by solving the fol-
lowing ordinary differential equation [Mitchel and Myers,
2010; Ranjbar et al., 2011]:

d

dtD

 fD tDð Þ 1� 1� � tDð Þð Þ2
n o

nþ 1
�

1� 1� � tDð Þð Þ2
n o




nþ 1ð Þ2

2
4

3
5

¼
n fD tDð Þ þ 


1� 1� � tDð Þð Þ2
n o :

(A26)

[102] In this equation, n is the trial solution exponent
(n¼4 for the cylindrical block) and 
 is obtained based on
the following equation:


 ¼
@ fD

@tD
1� 1� � tDð Þð Þ2
n o2

� n n� 1ð Þ fD

2n� 1
: (A27)

[103] To find a semianalytical solution for the penetration
depth we assume that 
¼0 in equation (A26) as assumed
by Mitchel and Myers [2010]. For solving equation (A26),
we use the following substitution:

1� 1� � tDð Þð Þ2 ¼ z ¼ �
ffiffiffiffiffi
tD
p

: (A28)

[104] Solving equation (A26) for the linear decline leads
to the following equation for the penetration depth:

� tDð Þ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
40��D1tD

3

rs
: (A29)

[105] It should be mentioned that a more accurate solu-
tion can be obtained if the following equation is used in the
trial solution in the case of the linearly declining fracture
pressure for the cylindrical matrix block:

1� � tDð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16��D1tD

pq
: (A30)

[106] In the developed solution, equation (A30) is used
for the time-dependent penetration depth. It should be
noted that this solution is valid till 1��(tD)¼0. Substituting
the penetration depth equation in the dimensionless pseudo
pressure and integrating over the bulk volume of the matrix
block leads to the following equations for the early time
dimensionless pseudo pressure and the average dimension-
less pseudo pressure, respectively:

 D ¼ 	tD
r2

D � 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16��D1tD

p� �2
16��D1tD

; tD <
1

16��D1

; (A31)

 D ¼
	tD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16��D1tD

p
3

; tD <
1

16��D1

: (A32)

[107] Duhamel’s theorem is used to find the late time so-
lution of the diffusivity equation when the fracture bound-
ary condition changes with time as follows:

 D ¼
@

@tD

ZtD

0

 fD �ð Þ D rD; tD � �ð Þd�; tD �
1

16��D1

: (A33)

[108] In this equation,  D within the integral is the solution
when  fD ¼ 1 (equation (A19)) and  Don the left-hand side
is the solution of the PDE when the matrix-fracture boundary
condition changes with time. Substituting equations (A19)
and (A23) into Duhamel’s equation and using the initial con-
dition (at tD ¼ 1

16��D1
we have  D ¼ 	

16��D1
r4

D) leads to the

following late time solution for the dimensionless pseudo-
pressure for the linearly declining fracture pressure and the
cylindrical matrix block:
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 D rD; tDð Þ ¼ 	tD �
0:58526	

!1
2:725� 3:725r2

D þ r4
D

� �
e!1tD � 1ð Þ

þ 5:57480	

!2
0:227� 1:227r2

D þ r4
D

� �
e!2tD � 1ð Þ;

tD �
1

16��D1

:

(A34)

[109] Integrating this equation over the bulk volume of
the cylindrical matrix block with linearly declining fracture
pressure (equation (A7)) leads to the following equation:

 D ¼ 	tD �
0:69987	

!1
e!1tD � 1ð Þ � 0:29639	

!2
e!2 tD � 1ð Þ;

tD �
1

16��D1

:

(A35)

[110] For exponentially declining fracture pressure, we
have the same PDE with the same initial and inner boundary
conditions with the following outer boundary condition:

r ¼ Rm !  m ¼  f tð Þ ¼  1 þ  i �  1ð Þexp ��tð Þ: (A36)

[111] In this equation,  1 is the fracture pseudopressure
when time tends to the infinity. In this case, the dimension-
less pseudopressure and the dimensionless fracture pseudo-
pressure are defined as follows:

 D ¼
 m �  i

 1 �  i

; (A37)

 fD ¼ 1� exp �	tDð Þ: (A38)

[112] In this case, the diffusivity equation and its initial
and boundary conditions are the same as equations (24)
(with I¼1), (25), and (26), respectively, with equation (A38)
as the outer boundary condition. The dimensionless shape
factor equation has the following form for a cylindrical
block and exponentially declining fracture pressure:

�R2
m ¼ �

1

�D

@ D

@tD

 D � 1� exp �	tDð Þð Þ

0
@

1
A: (A39)

[113] For the early time solution of the exponential decline
we assume that the trial solution has the following form:

 D rD; tDð Þ ¼ 1� exp �	tDð Þð Þ 1� 1� r2
D

1� 1� � tDð Þð Þ2

" #2

: (A40)

[114] Using equations (A26) and (A28) and comparison
with the literature model [Hassanzadeh and Pooladi-Darvish,
2006] leads to the following equation for penetration depth in
the case of exponentially declining fracture pressure:

1� � tDð Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24��D1tD

2

1�e�	tD
�

ffiffiffi
�
p

1�e�	tD

erf
ffiffiffiffiffiffiffi
	tD
pð Þffiffiffiffiffiffiffi
	tD
p

� �svuut :

(A41)

[115] It should be noted that the effect of pressure disturb-
ance will reach the inner boundary when 1-�(tD)¼0 and for
the exponential decline we cannot obtain an explicit equa-
tion for t

�
and it is determined for any values of k by making

equation (A41) equal to zero. Therefore, the early time solu-
tion for the exponentially declining fracture pressure and
cylindrical matrix block can be expressed as follows:

 D rD; tDð Þ ¼ 1� e�	tDð Þ

�

"
r2

D � 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24��D1tD

2
1�e�	tD

�
ffiffi
�
p

1�e�	tD

erf
ffiffiffiffiffi
	tD
p
ð Þffiffiffiffiffi
	tD
p

� �r #2

24��D1tD 2
1�e�	tD

�
ffiffi
�
p

1�e�	tD

erf
ffiffiffiffiffi
	tD
p
ð Þffiffiffiffiffi
	tD
p

� � ; tD < t�:

(A42)

[116] The initial condition for the late time solution
comes from the early time solution (equation (A42)) as
follows:

tD ¼ t� !  D ¼ 1� exp �	t�ð Þð Þr4
D: (A43)

[117] The diffusivity equation and its boundary condi-
tions are the same as before (equations (24), (with I¼1),
(26), and (27)). Using Duhamel’s theorem (equation (A33))
and the solution of the constant fracture pressure (equation
(A19)) leads to the following late time solution for the case
of the exponentially declining fracture pressure:

 D rD; tDð Þ ¼ 1� e�	tDþ

2:725m1 1� !1

	þ !1

� �
e!1tD þ 0:227m2 1� !2

	þ !2

� �
e!2 tD � 2:725	m1

	þ !1
þ 0:227	m2

	þ !2

� �
e�	tD


 �
�

3:725m1 1� !1

	þ !1

� �
e!1tD þ 1:227m2 1� !2

	þ !2

� �
e!2tD � 3:725	m1

	þ !1
þ 1:227	m2

	þ !2

� �
e�	tD

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{C8>><
>>:

9>>=
>>;r2

Dþ

m1 1� !1

	þ !1

� �
e!1tD þ m2 1� !2

	þ !2

� �
e!2tD � 	m1

	þ !1
þ 	m2

	þ !2

� �
e�	tD

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{D

gr4
D; tD � t�:

8>><
>>:

(A44)
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[118] The initial condition is used to find m1 and m2 as
follows:

tD ¼ t� ! C ¼ 0; D ¼ 1� exp �	t�ð Þ: (A45)

[119] Solving the system of equations (A45) leads to the
following values for m1 and m2:

m1 ¼ �0:49119
	þ !1

	

1� e�	t�

e!1t� � e�	t�

m2 ¼ 1:49118
	þ !2

	

1� e�	t�

e!2t� � e�	t�

:

0
BB@ (A46)

[120] Using these values in equation (A44) and simplify-
ing lead to the following late time pseudopressure for the
exponentially declining fracture pressure:

 D rD; tDð Þ ¼ 1� e�	tD � 0:49119
1� e�	t�

e!1t� � e�	t�

� �
� e!1 tD 2:725� 3:725r2

D þ r4
D

� �
þ 1:49118

1� e�	t�

e!2t� � e�	t�

� �
e!2 tD 0:227� 1:227r2

D þ r4
D

� �

þ
0:49119

1� e�	t�

e!1t� � e�	t�

� �
2:725� 3:725r2

D þ r4
D

� �
�

1:49118
1� e�	t�

e!2t� � e�	t�

� �
0:227� 1:227r2

D þ r4
D

� �
2
6664

3
7775e�	tD ;

tD � t�:

(A47)

[121] Integrating of the pseudo pressure equations over
the bulk volume of the cylindrical matrix block (equation
(A7)) leads to the following equations for early and late
time average dimensionless pseudopressure when the frac-
ture pressure declines exponentially with time for the cylin-
drical matrix block:

 D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�	tD
p

3
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24��D1tD 2�

ffiffiffi
�
p

erf
ffiffiffiffiffiffiffi
	tD
pð Þffiffiffiffiffiffiffi
	tD
p

� �s
;

tD < t�:

(A48)

 D ¼ 1� e�	tD � 0:58746
1� e�	t�

e!1t� � e�	t�

� �
e!1tD

� 0:07754
1� e�	t�

e!2t� � e�	t�

� �
e!2tD þ 0:58746

1� e�	t�

e!1t� � e�	t�

� �	

þ0:07754
1� e�	t�

e!2t� � e�	t�

� �

e�	tD ; tD � t�:

(A49)

A3. Variable Block Size Distributions With
Cylindrical Matrix Blocks

[122] In this section the solution of PDE (equation (62),
with I¼1) with its initial and boundary conditions (equa-
tions (63)–(65)) for variable block size distribution is dis-
cussed in more details.

[123] The integral method is used to derive the early time
approximate solution of the diffusivity equation for flow of
compressible and slightly compressible fluids in the cylin-

drical matrix block for different block size distributions.
For the early time solution, in addition to the diffusivity
equation (equation (62), with I¼1) and outer boundary con-
dition (equation (65)), we have the following condition at
the radius where the pressure disturbance has reached:

rD ¼ RDe � � tDð Þ !  D ¼ 0;
@ D

@rD
¼ 0: (A50)

[124] Similar to the single matrix block we suggest a
fourth-order polynomial trial solution (equation (A3)) to be
used in the integral method. Using the actual and auxiliary
boundary conditions (equations (65) and (A50)) in the trial
solution leads to the following equations for A, B and C
coefficients:

A ¼ RDe � �½ �4

R2
De � RDe � �ð Þ2

h i
2
; (A51)

B ¼ 2 RDe � �½ �2

R2
De � RDe � �ð Þ2

h i
2
; (A52)

C ¼ 1

R2
De � RDe � �ð Þ2

h i
2
: (A53)

[125] Substituting these equations for time-dependent
coefficients and some simplification leads to the following
equation:

 D ¼
r2

D � RDe � �ð Þ2
h i2

R2
De � RDe � �ð Þ2

h i2 : (A54)

[126] Using this trial solution (equation (A54)) in the inte-
gral form of the diffusivity equation (from RDe-� to RDe)
leads to the following ordinary differential equation (ODE):

1

6

d

dtD
R2

De � RDe � �ð Þ2
h i

¼ 4��D1R2
De

R2
De � RDe � �ð Þ2

: (A55)

[127] Solving this ODE leads to the following equation
for penetration depth and early time pseudo pressure:

� ¼ RDe �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

De � RDe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48��D1tD

pq
and � < RDe; (A56)

 D ¼
r2

D � R2
De þ RDe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48��D1tD

p� �2
48R2

De��D1tD
tD <

R2
De

48��D1

: (A57)

[128] The early time average dimensionless pseudopres-
sure is obtained by integrating over the bulk volume of the
matrix block:

 D ¼
2

R2
De

Z RDe

RDe��
rD

r2
D � R2

De þ RDe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48��D1tD

p� �2
48R2

De��D1tD
drD

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48��D1tD

p
3RDe

tD <
R2

De

48��D1

:

(A58)

RANJBAR ET AL.: FLUID RELEASE FROM CYLINDRICAL AND SPHERICAL MATRIX BLOCKS

2190



[129] For the late time solution we have the same PDE
(equation (62), with I¼1) with the same boundary condi-
tions (equations (64) and (65)) and the following initial
condition:

tD ¼
R2

De

48��D1

!  D ¼
1

R4
De

r4
D: (A59)

[130] The method of moments is used to find the late
time solution of this PDE by suggesting a fourth-order trial
solution (equation (A10)) and the residual (R) as equation
(A11). The unknown coefficients (A, B, C and D) in equa-
tion (A10) are found by using the boundary conditions and
making the zero and first moments of R vanish by enforcing
the following conditions:

ZRDe

0

RdrD ¼ 0!
ZRDe

0

rD
@ D

@tD
� @

@rD
��DrD

@ D

@rD

� �� �
drD ¼ 0;

(A60)

ZRDe

0

rDRdxD ¼ 0!
ZRDe

0

rD rD
@ D

@tD
� @

@rD
��DrD

@ D

@rD

� �	 

drD ¼ 0:

(A61)

[131] From the inner boundary conditions, we can con-
clude that B ¼ 0; the outer boundary condition (equation
(65)) leads to:

A ¼ 1� CR2
De � DR4

De: (A62)

[132] Solving equations (A60) and (A61), combining the
results with equation (A62) and some simplification lead to
a system of ODEs as follows:

dC

dtD
¼ 20��D1

R2
De

C þ 96��D1D; (A63)

dD

dtD
¼ �21��D1

R4
De

C � 84��D1

R2
De

D: (A64)

[133] Solving the system of ordinary differential equa-
tions leads to the following equations for the unknown
coefficients C and D :

C ¼ �3:725R2
Dem1exp !1tDð Þ � 1:227R2

Dem2exp !2tDð Þ; (A65)

D ¼ m1exp !1tDð Þ þ m2exp !2tDð Þ; (A66)

[134] where !1 and !2 are the eigenvalues of the system
of the ordinary differential equation and are defined based
on equation (71) in the main text.

[135] The initial condition (equation (A59)) is used to
find m1 and m2. Therefore, m1 and m2 are found by solving
the following system of equations:

�3:725R2
Dem1exp !1

R2
De

48��D1

� �

� 1:227R2
Dem2exp !2

R2
De

48��D1

� �
¼ 0;

(A67)

m1exp !1
R2

De

48��D1

� �
þ m2exp !2

R2
De

48��D1

� �
¼ 1

R4
De

: (A68)

[136] Solving this system of equations for m1 and m2 and
substituting in the time-dependent coefficients of the trial
solution, the late time behavior is obtained as follows:

 D rD; tDð Þ ¼ 1� 1:512e!1tD þ 1:14e!2tDð Þ

þ 2:067

R2
De

e!1tD � 6:162

R2
De

e!2 tD

� �
r2

D

þ �0:555

R4
De

e!1tD þ 5:022

R4
De

e!2 tD

� �
r4

D; tD �
R2

De

48��D1

:

(A69)

[137] After that, equations (A69) is integrated over the
matrix block volume to obtain the late time average matrix
block pseudo-pressure as follows:

 D ¼
2

R2
De

ZRDe

0

rD DdrD ¼ 1� 0:664e!1tD � 0:267e!2tD

tD �
R2

De

48��D1

: (A70)

Appendix B: Analytical Solution for Spherical
Blocks

[138] In this appendix, the solution of nonlinear gas pres-
sure diffusion in a spherical matrix block is discussed in
more details.

B1. Constant Fracture Pressure

[139] In this section, the solution of PDE (equation (24),
with I¼2) with the initial and boundary conditions (equa-
tions (25)–(27)) is presented.

[140] The integral method [Zimmerman and Bodvarsson,
1989] is used to find the early time solution of this equation
by defining the time-dependent penetration depth, �(tD), in
which the pressure disturbance has reached. For the early time
solution, in addition to the outer boundary condition (equation
(27)), we have the following auxiliary boundary conditions:

rD ¼ 1� � tDð Þ ¼ " tDð Þ !  D ¼ 0;
@ D

@rD
¼ 0;

@2 D

@r2
D

¼ 0:

(B1)

[141] The following third-order polynomial trial solution
is suggested to be used in the integral method:

 D ¼ A tDð Þ þ B tDð ÞrD þ C tDð Þr2
D þ D tDð Þr3

D: (B2)

[142] Using the actual and auxiliary boundary conditions
in the trial solution leads to the following equation for
dimensionless pseudopressure:

 D ¼
rD � "ð Þ3

1� "ð Þ3
: (B3)

RANJBAR ET AL.: FLUID RELEASE FROM CYLINDRICAL AND SPHERICAL MATRIX BLOCKS

2191



[143] Using this trial solution in the integral form of the
diffusivity equation (equation (24), with I¼2) leads to the
following ODE:

3��D1

1� " ¼
d

dtD

"6 � 20"3 þ 45"2 � 36"þ 10

60 1� "ð Þ3

" #
!

180��D1dtD ¼ "� 1ð Þd "3 þ 3"2 þ 6"� 10
� �

:

(B4)

[144] Solving this ODE leads to the following equation:

tD ¼
3"4 þ 4"3 � 24"þ 17

720��D1

: (B5)

[145] This solution is valid till " ¼ 0 or tD < 17
720��D1

.

[146] Equation (B3) is integrated over the bulk volume
of the matrix block to determine the average dimensionless
pseudopressure as follows:

 D ¼ 3

Z1

"

r2
D DdrD ¼3

Z1

"

r2
D

rD� "ð Þ3

1� "ð Þ3
drD ¼�

"3þ 3"2þ 6"� 10

20
;

tD <
17

720��D1

(B6)

[147] Equations (B5) and (B6) in terms of penetration
depth � can be expressed as follows:

 D ¼
�3 � 6�2 þ 15�

20
; tD <

17

720��D1

; (B7)

tD ¼
3�4 � 16�3 þ 30�2

720��D1

: (B8)

[148] For the late time solution we have the following
initial condition (the diffusivity equation and boundary
conditions are the same as equations (24), (26), and (27),
respectively) :

tD ¼
17

720��D1

!  D ¼ r3
D: (B9)

[149] The method of moments is used to find the late
time solution of this PDE by suggesting a third-order trial
solution as equation (B2) and the residual (R) as follows:

R ¼ @

@rD
��D tDð Þr2

D

@ D

@rD

� �
� r2

D

@ D

@tD
: (B10)

[150] The unknown coefficients (A, B, C, and D) in equa-
tion (B2) are found using the boundary conditions and
making the zero and first moments of R vanish by enforcing
the following conditions:

Z1

0

RdrD ¼ 0!
Z1

0

r2
D

@ D

@tD
� @

@rD
��Dr2

D

@ D

@rD

� �� �
drD ¼ 0;

(B11)

Z1

0

rDRdrD ¼ 0!
Z1

0

rD r2
D

@ D

@tD
� @

@rD
��Dr2

D

@ D

@rD

� �	 

drD ¼ 0:

(B12)

[151] From the first boundary conditions, we can con-
clude that B ¼ 0; the second boundary condition (equation
(27)) leads to:

A ¼ 1� C � D: (B13)

[152] Solving equations (B11) and (B12), combining the
results with equation (B13) and some simplification leads
to a system of ODEs as follows:

dC

dtD
¼ 90��D1C þ 198��D1D; (B14)

dD

dtD
¼ �84��D1C � 176:4��D1D: (B15)

[153] Solving the system of ordinary differential equa-
tions leads to the following equations for unknown coeffi-
cients C and D :

C ¼ �1:982384m1 exp !1tDð Þ � 1:189044m2 exp !2tDð Þ; (B16)

D ¼ m1 exp !1tDð Þ þ m2 exp !2tDð Þ; (B17)

[154] where !1 and !2 are the eigenvalues of the system
of ODEs and are defined based on equation (34) in the
main text. So we have the following equation for the late
time dimensionless pseudopressure:

 D ¼ 1þ 0:982384m1e!1tD þ 0:189044m2e!2tD

þ �1:982384m1e!1tD � 1:189044m2e!2tDð Þr2
D

þ m1e!1tD þ m2e!2tDð Þr3
D; tD �

17

720��D1

:

(B18)

[155] The initial condition of equation (B9) is used to
find m1 and m2. Therefore, the trial solution of the nonlin-
ear PDE for the late time behavior is obtained as follows:

 D ¼ 1� 1:859229e!1tD þ 2:877049e!2tD

þ 3:751798e!1 tD � 18:095987e!2 tDð Þr2
D

þ �1:892569e!1tD þ 15:218938e!2 tDð Þr3
D; tD �

17

720��D1

:

(B19)

[156] After that, equations (B19) is integrated (equation
(B6)) over the matrix block volume to obtain the average
matrix block pseudopressure as follows:

 D ¼ 1� 0:554435e!1tD � 0:371074e!2tD ; tD �
17

720��D1

:

(B20)

B2. Variable Fracture Pressure

[157] In the case of linear decline for the spherical block
the outer boundary condition is given in equation (A23).
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The PDE and initial and inner boundary conditions are the
same as equations (24) (with I¼2), (25), and (26), respec-
tively. For the early time solution of the linear decline, we
assume that the trial solution has the following form:

 D ¼ 	tD
rD � "ð Þ3

1� "ð Þ3
¼ 	tD

rD þ � � 1

�

� �3

: (B21)

[158] In the case of variable fracture pseudopressure, the
penetration depth is found by solving the following ODE
[Mitchel and Myers, 2010; Ranjbar et al., 2011]:

d

dtD

 fD tDð Þ� tDð Þ
nþ 1

� � tDð Þ

nþ 1ð Þ2

" #
¼

n fD tDð Þ þ 

� tDð Þ

: (B22)

[159] Using the same procedure as described in section
A.2 for the cylindrical block and comparing with the litera-
ture model leads to the following equation for early time
dimensionless pseudopressure:

 D ¼ 	tD
rD þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13��D1tD

p
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

13��D1tD
p

 !3

tD <
1

13��D1

: (B23)

[160] Integrating over the bulk volume of the matrix
block leads to the following equation for early time average
dimensionless pseudopressure:

 D ¼
	

260��D1

�5 � 6�4 þ 15�3
� �

tD <
1

13��D1

or � < 1:

(B24)

[161] Duhamel’s theorem (equation (A33)) is used to find
the late time solution of the diffusivity equation in fractured
media when the fracture boundary condition changes with
time. Substituting equations (B18) and (A23) in Duhamel’s
equation and using the initial condition (at tD ¼ 1

13��D1
we

have  D ¼ 	
13��D1

r3
D) leads to the following late time solu-

tion for dimensionless pseudopressure for the linearly
declining fracture pressure and spherical matrix block:

 D¼	tD�
2:102174	 e!1tD�1ð Þ

!1
þ2:788337	 e!2tD�1ð Þ

!2
þ

4:241990	 e!1 tD�1ð Þ
!1

�17:538009	 e!2tD�1ð Þ
!2

� �
r2

Dþ

�2:139843	 e!1 tD�1ð Þ
!1

þ14:749672	 e!2tD�1ð Þ
!2

� �
r3

D

tD�
1

13��D1

:

(B25)

[162] Integration of this equation over the bulk volume
of the matrix block (equation (B6)) from zero to one leads
to the following equation for the average dimensionless
pseudopressure of a spherical block when the fracture pres-
sure declines linearly with time:

 D ¼ 	tD �
0:626902	

!1
e!1tD � 1ð Þ � 0:359632	

!2
e!2 tD � 1ð Þ;

tD �
1

13��D1

:

(B26)

[163] For exponentially declining fracture pressure, the
same approach is used and the following equations are
obtained for early and late time dimensionless pseudopressure:

 D rD; tDð Þ ¼ 1� e�	tDð Þ

�
rD � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18��D1tD

2

1� e�	tD
�

ffiffiffi
�
p

1� e�	tD

erf
ffiffiffiffiffiffiffi
	tD
pð Þffiffiffiffiffiffiffi
	tD
p

� �s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18��D1tD

2

1� e�	tD
�

ffiffiffi
�
p

1� e�	tD

erf
ffiffiffiffiffiffiffi
	tD
pð Þffiffiffiffiffiffiffi
	tD
p

� �s
2
666664

3
777775

3

;

tD < t�;

(B27)

 D rD;tDð Þ¼1�e�	tDþ1:498783
1�e�	t�

e�	t� �e!1 t�

� �

e!1tD 0:982384�1:982384r2
Dþr3

D

� �
�2:498783

1�e�	t�

e�	t� �e!2t�

� �
e!2tD 0:189044�1:189044r2

Dþr3
D

� �
tD � t�

�
1:498783

1�e�	t�

e�	t� �e!1t�

� �
0:982384�1:982384r2

Dþr3
D

� �
�

2:498783
1�e�	t�

e�	t� �e!2t�

� �
0:189044�1:189044r2

Dþr3
D

� �
2
6664

3
7775e�	tD :

(B28)

B3. Variable Block Size Distributions With Spherical
Matrix Blocks

[164] In the case of multiple spherical blocks with vari-
able block size distribution, the diffusivity equation (equa-
tion (62), with I¼2) with the initial and boundary conditions
(equations (63)–(65)) should be solved. The integral method
is used to find the early time solution with the following
auxiliary equation:

rD ¼ RDe � � tDð Þ ¼ " tDð Þ !  D ¼ 0;
@ D

@rD
¼ 0;

@2 D

@r2
D

¼ 0:

(B29)

[165] The third-order trial solution as equation (B2) is
suggested to be used in the integral method. Using the
actual and auxiliary boundary conditions in the trial solu-
tion leads to the following equations for dimensionless
pseudo-pressure:

 D ¼
rD � "½ �3

RDe � "½ �3
¼ rD þ � � RDe

�

	 
3

: (B30)

[166] Using this trial solution (equation (B30)) in the in-
tegral form of equation (62), with I¼2 (From " to RDe) and
some simplification leads to the following ODE:

d

dtD

�"3 � 3RDe"
2 � 6R2

De"þ 10R3
De

60

	 

¼ 3��D1R2

De

RDe � "ð Þ : (B31)
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[167] Solving this ODE leads to the following equation:

tD ¼
3"4 þ 4RDe"

3 � 24R3
De"þ 17R4

De

720��D1R2
De

: (B32)

[168] This equation in terms of penetration depth can be
expressed as follows:

tD ¼
3�4 � 16RDe�

3 þ 30R2
De�

2

720��D1R2
De

: (B33)

[169] The early time solution is valid till �<RDe or

tD <
17R2

De

720��D1
.

[170] The early time average dimensionless pseudopres-
sure is obtained by integrating over the bulk volume of the
matrix block:

 D ¼
3

R3
De

Z RDe

"

r2
D

rD þ � � RDe

�

	 
3

drD ¼
�3 � 6RDe�

2 þ 15R2
De�

20R3
De

tD <
17R2

De

720��D1

;

(B34)

where equation (B33) is used to relate the penetration depth
to the dimensionless time.

[171] For the late time solution we have the following
initial condition and the inner and outer boundary condi-
tions are the same as equations (64) and (65):

tD ¼
17R2

De

720��D1

!  D ¼
1

R3
De

r3
D: (B35)

[172] The method of moments is used to find the late
time solution of this PDE by suggesting a third-order trial
solution (equation (B2)) and the residual (R) as Equation
(B10). The unknown coefficients (A, B, C, and D) in the
trial solution of Equation (B2) are found by using the
boundary conditions and making the zero and first moments
of R vanish by enforcing the following conditions:

ZRDe

0

RdrD ¼ 0!
ZRDe

0

r2
D

@ D

@tD
� @

@rD
��Dr2

D

@ D

@rD

� �� �
drD ¼ 0;

(B36)

ZRDe

0

rDRdrD ¼ 0!
ZRDe

0

rD r2
D

@ D

@tD
� @

@rD
��Dr2

D

@ D

@rD

� �	 

drD ¼ 0:

(B37)

[173] From the first boundary conditions, we can con-
clude that B ¼ 0; the second boundary condition (equation
(65)) leads to:

A ¼ 1� CR2
De � DR4

De: (B38)

[174] Solving equations (B36) and (B37), combining the
results with equation (B38) and some simplification leads
to a system of ODEs as follows:

dC

dtD
¼ 90��D1

R2
De

C þ 198��D1

RDe
D; (B39)

dD

dtD
¼ �84��D1

R3
De

C � 176:4��D1

R2
De

D: (B40)

[175] Solving the system of ODEs and using the initial
condition for the late time solution (equation (B35)) leads
to the following equation for late time pseudo-pressure for
multiple spherical blocks:

 D ¼ 1� 1:859229e!1 tD þ 2:877049e!2 tD

þ 3:751798

R2
De

e!1 tD � 18:095987

R2
De

e!2tD

� �
r2

D

þ �1:892569

R3
De

e!1 tD þ 15:218938

R3
De

e!2tD

� �
r3

D; tD �
17R2

De

720��D1

;

(B41)

where !1 and !2 are defined based on equation (74) in the
main text. After that, equation (B41) is integrated over the
matrix block volume (from zero to one) to obtain the late
time average matrix block pseudopressure as equation (73)
in the main text.

Notations

a Dimensionless exponential distribution constant
A Cross-sectional area (L2)

A(tD) First coefficient of the trial solution
b Intercept for linear matrix block size

distribution
B(tD) Second coefficient of the trial solution
C(tD) Third coefficient of the trial solution

cm Matrix compressibility (LT 2/M)
D(tD) Fourth coefficient of the trial solution

fi(Rmi) Fraction of the block volume of size Rmi

f(Rm) Probability density function
fD(RD) Dimensionless probability density function

Fh Ratio of minimum block size to the maximum

block radius
hm¼2Lc Matrix block thickness (L)

km Matrix permeability (L2)
M Mean of the distribution
m Slope of linear matrix block size distribution
N Number of matrix block sizes
Nt Total number of matrix blocks
p pressure (M/LT 2)
q Matrix-fracture fluid release (L3/T)
Q Cumulative fluid release (L3)

QDt Dimensionless ultimate cumulative release
Rm Matrix block radius (L)

Rme Equivalent matrix block radius (L)
R Residual in the method of moments
S Heat conduction shape factor (L)
t Time (T)

t� Time which the effect of pressure reaches to the
inner matrix boundary

T Reservoir temperature (K)
Vb Matrix block volume (L3)
rD Dimensionless radius
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Greek Symbols

� Radius of cylinder, sphere or half thickness of slab
(L)

� Correction factor
� Penetration depth
" Un-penetrated depth for spherical block
� Matrix hydraulic diffusivity (L2/T)
� Average hydraulic diffusivity (L2/T)

�D1 Dimensionless fracture hydraulic diffusivity
	 Dimensionless exponent and slope in fracture deple-

tion regimes
m Fluid viscosity (M/LT)
� Diffusion shape factor (1/L2)
� 2 Variance of the distribution
� Dimensionless scale time
’ Porosity

 Ratio of reservoir radius to the maximum block

radius
 pseudo-pressure (M/LT 3)
! Dimensionless exponent of solution of gas diffusiv-

ity equation using the moment method

Subscripts

D Dimensionless
e Equivalent
f Fracture
g Gas
i Initial condition

ln Log-normal
m Matrix

min Minimum
max Maximum

R Reservoir
sc Standard conditions
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