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Abstract A stabilized finite volume method for solving the transient Navier—
Stokes equations is developed and studied in this paper. This method main-
tains conservation property associated with the Navier-Stokes equations. An
error analysis based on the variational formulation of the corresponding finite
volume method is first introduced to obtain optimal error estimates for velocity
and pressure. This error analysis shows that the present stabilized finite volume
method provides an approximate solution with the same convergence rate as
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that provided by the stabilized linear finite element method for the Navier—
Stokes equations under the same regularity assumption on the exact solution
and a slightly additional regularity on the source term. The stability and con-
vergence results of the proposed method are also demonstrated by the numer-
ical experiments presented.

Keywords Navier—Stokes equations - Stabilized finite volume method -
inf-sup condition - Local pressure projection - Optimal error estimate

Mathematics Subject Classifications (2010) 35Q10 - 65N30 - 76D05

1 Introduction

Finite difference, finite element, and finite volume methods are three major
numerical methods for solving partial differential equations. Among them, the
finite volume method is the most intuitive one because it is based on local
mass, momentum, or energy conservation over volumes (control volumes or
co-volumes) in practical applications. It lies somewhere between the finite
element and finite difference methods; it has a flexibility similar to that of
the finite element method in handling complicated geometries, and its imple-
mentation is comparable to that of the finite difference method.

The finite volume method is also known as the control volume method,
the covolume method, or the first-order generalized difference method. Much
work was devoted to its error analysis for second-order elliptic and par-
abolic partial differential equations [1, 4-9, 14, 15, 30, 32, 33, 38, 39]. The
H' error estimate was first given on the triangle grids for second order
elliptic partial differential equations [31]. Error estimates of optimal order
in the H'-norm are the same as those for the linear finite element method.
Moreover, error estimates of optimal order in the L?-norm can also be
obtained. The finite volume method for the Stokes equations was studied
as well [11, 25, 37, 40]. It was analyzed through a relationship to the finite
element method, and its error estimates were obtained through those known
for the latter. However, for the Stokes equations only the finite element
pairs that satisfy a discrete inf-sup condition for velocity and pressure were
studied.

A stabilized finite element method based on a local pressure projection
for the Stokes equations has recently been developed [2, 3, 13, 26]. This
method is free of stabilization parameter, does not require any calculation of
high-order derivatives or edge-based data structure, and can be implemented
at the element level [2, 3, 13]. It is known that this element pair does not
satisfy the discrete inf-sup condition for the Stokes equations. Nevertheless,
it is of practical importance in real applications. In particular, it is efficient
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and simple in terms of implementation. In addition to the above features,
another important feature is that this stabilized method also has supercon-
vergent results [20, 26, 27], which is in strong contrast with other stabilized
methods.

In this paper we develop and study a stabilized finite volume method for the
transient Navier-Stokes equations. The finite volume method presented here
is instead designed to inherit a local conservation property associated with the
differential equations. There exist two major difficulties in the convergence
analysis of this stabilized finite volume method. While the analysis can be
carried out through its relationship with the conforming finite elements of the
lowest-equal order pair as for the Stokes equations [25], there exists additional
difficulty in the treatment of the nonlinear term (i.e., trilinear term) appearing
in the finite volume formulation of the Navier—Stokes equations. In particular,
the trilinear form introduced in the finite volume method does not have the
same anti-symmetric property as that in the finite element method [19, 35].
The other major difficulty is associated with the analysis of the discretization of
the transient term. Because an equivalent operator between the finite volume
method and the P; — P pair of the conforming finite elements is used, this
operator necessarily appears in the transient term, and the resulting discretiza-
tion cannot be treated by using the standard parabolic argument [10, 36]. To
overcome these difficulties, a finite volume projection based on the variational
formulation of the corresponding finite volume method is first introduced for
the Stokes equations. A key argument in the present analysis is to combine this
projection and a finite element projection for the Stokes equations without any
additional regularity on the exact solution. Furthermore, some results related
to the equivalence between the standard L?-norm and the norm induced by the
above mentioned equivalent operator [7] will be used. These techniques, to-
gether with the introduction of a duality argument for the derivation of the L2-
error estimate for velocity, will yield convergence rates of optimal order for the
present stabilized finite volume method. Compared with the results in [22], the
main contribution of this paper is to establish optimal estimates for the Navier—
Stokes equations based on local conservation property. Recently, there are
lots of wonderful jobs by Eymard et al. [16-18] on the mathematical properties
and convergence analysis of the collocated clustered finite volume scheme for
the incompressible flows. However, it still requires much research on theo-
retical analysis of the finite volume method for the transient Navier—Stokes
equations.

The rest of the paper is organized as follows: In the next section, we
introduce some notation and the transient Navier-Stokes equations. Then, in
Section 3, a stabilized finite element method for these equations is recalled.
The stabilized finite volume method is defined in Section 4, and some useful
lemmas are shown. Stability and optimal order estimates for this method are
obtained in Sections 5 and 6. Finally, numerical results to check the theoretical
results obtained are provided in Section 7.

@ Springer



284 J. Li, Z. Chen

2 Function settings

Let © be a bounded domain in )2, with a Lipschitz-continuous boundary T,
satisfying a further condition as stated in (A1) below. The transient Navier—
Stokes equations are

1
u,—vAu+Vp+(u-V)u+E(divu)u: fidivu=0, (x,1)e€Qx(,T],
(2.1)

ux,0) =up(x), xe€, ulxnHr=0, tel0,T], (2.2)

where u = u(x,t) = (ui(x, 1), uy(x,t)) represents the velocity vector, p =
p(x,t) the pressure, f = f(x,t) the prescribed body force, v > 0 the viscosity,
T > 0 the final time, and u, = du/dt. Note that the term (div u)u/2 is added
to ensure the dissipativity of the Navier-Stokes equations [35]. To introduce a
variational formulation of (2.1) and (2.2), set

X = (Hy(Q), Y =(L ()", M=LyQ) = {qe Lz(sz);[qu=0},
Q

V={veX:dive=0}, D(A) = (H*(Q)*NV,

where A indicates the Laplace operator.
As noted, a further assumption on the domain €2 is needed:

(A1) Assume that Q is regular in the sense that the unique solution (v, q) €
(X, M) of the stationary Stokes equations

—Av+Vg=g, divv=0 inQ, vfe=0
for a prescribed g € Y exists and satisfies

lvll2 + liglly < cligllo.

where ¢ > 0 is a constant depending only on @ and || - ||; denotes the
usual norm of the Sobolev space H(Q) or (H())> for i=0,1,2.
Below the positive constants cand ¢;, i =0, 1,2-- -, will depend at most
on the data (v, T, ug, 2, f).

We denote by (-, -) and || - [|o the inner product and norm on L?(Q) or
(L?(2))?%, as appropriate. The spaces H}(2) and X are equipped with
their usual scalar product and norm

((u,v)) = (Vu, Vo), ull; = (w, u)'>.

(Due to the norm equivalence between |u|; and ||Vu|o on Hé(sz), we
are using the same notation for them.) It is well known that for each

v € X there hold the following inequalities:
2 2
lvllzs < 2411wl vl llvlle < erllvly. (2.3)

The next assumption will be also used in the error analysis.
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(A2) The initial velocity uy € D(A) and the body force f(x,t) e L*(0, T;
(H'(R))?) are assumed to satisfy

172

T
lluoll2 + (fo (ILFI5 -+ 11 £115) dl> <c

The continuous bilinear forms a(-,-) on X x X and d(-,-) on X x M are,
respectively, defined by

a(u, v) = v((u, v)) Yu,ve X, dv,q) =—(,Vq) = (q,divv)
Yve X, ge M,
and the generalized bilinear form B(:; -) on (X, M) x (X, M) is given by
B((u, p); (v, @) = a(u,v) —d(v, p) +dw,q), (@, p), (v,q) € (X, M).
The latter form satisfies the following inequalities [35]:
1B((u, p); (u, p)) = vlull7, (2.4)
IB((u, p); (v, @) = c(llulli + lIpllo) vl + llglio), (25)

B((u, p); (v,
Bllully + pllo) < sup |B((u, p); (v, q))|
waoex.m vl +lgllo

: (2.6)

for all (u, p), (v, q) € (X, M), where B is a positive constant. Also, the trilinear
term b (-, -,-) on X x X x X is defined by [35]

bu,v,w)=(u-Vyv,w)+ %((div u)v, w) Yu,v,w e X.

It satisfies [21, 35]
bu,v,v) =0, (2.7)
1b(u, v, w)| + |b(w, v, u)| + |b(u, w, v)|

172, 172 172 1/2 172, 172
< callully “lully (Ilvlllllwllo Twly™ + lvlly " lvll Ilell),

(2.8)
forallu, v, w € X, and
1D (u, v, w)| + [b (v, u, w)| + [b(w, u, v)| < callulllvl2lwllo, (2.9)

forallue X,ve D(A),weY.

Here, the idea is used to easily achieve optimal results in analyzing the finite
element discretization by adding a useful term %((div u)v, w) in the trilinear
term. The trilinear term defined above is still consistent in original problem.

The mixed variational form of (2.1) and (2.2) is to seek (u, p) € (X, M),
t > 0, such that, for all (v, q) € (X, M),

(U, v) + B((u, p); (v, @) + bW, u,v) = (f,v), (2.10)
u(x,0) = up(x), xeQ. (2.11)
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For the subsequent convenience, we recall the Gronwall Lemma that will
be frequently used.

Lemma 2.1 [34] Let g(t), €(t), and £(t) be three nonnegative functions satisfy-
ing, fort € [0, T},

t t
E(t)+G(t)§c+/ Eds+/ g& ds,
0 0

where G(t) is a nonnegative function on [0, T]. Then

EN+ G < (c + / L ds) exp (/ g ds) . (2.12)
0 0

The following result is concerned with the existence, uniqueness, and
regularity of a global strong solution to the Navier—Stokes equations (2.1)
and (2.2).

Lemma 2.2 [22] Assume that (Al) and (A2) hold. Then, for any given T > 0
there exists a unique solution (u, p) of (2.1) and (2.2) satisfying the following
regularities:

T
Sup (le@ 3 + I pOIF + Il O15) + /O (T + I pe)IIF) ds < c,

(2.13)

T
Osuprm)uuz(t)n% - /0 () (I )13 + 1 peIT + lua(s)lIg) ds < c,
<t<

(2.14)

where T(t) = min{1, t}.

3 A stabilized finite element method

For h > 0, let Kj, be a triangulation of 2 into triangles, assumed to be shape-
regular in the usual sense [10, 12, 19]. Associated with K, we introduce finite
dimensional subspaces (X}, My) C (X, M). For these spaces we assume that
the following approximation properties hold: For (v, q) € (D(A), H'(Q) N M),
there exist approximations /v € X, and J,q € M), such that

v — Iyvllo + Allv — Iyvlly < ch*||vla, (3.1)
lg — Jnqllo + hllg — Juqlli < chliqll, (32)

where the L2-projection Jj, : M— M), satisfies

(p—Jwp,qn) =0 VpeM, g, € M.
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Also, we assume that the inverse inequality holds [10, 12]

Plloglly Yo, € Xa. (3.3)

ol < esh™ llvallo,  llvnlleo < calloghl
This paper will focus on the analysis of the lowest equal-order pair of finite
elements for velocity and pressure:

Xy = {on € (@) N X wilx e (PK) VK €K},

My ={qn € CUQNM: gulk € PI(K) VK € Ky},

where P;(K) is the set of linear functions on element K.

Many stable pairs of finite element spaces (X}, M) have been proposed in
the existing literature. Examples include Taylor-Hood element P, — P; and
MINI-element P;b — Py, etc. Especially, Taylor-Hood element performs a
superconvergence result since it employs the higher order finite element pair
than others. Also, MINI-element pair is a implicit stabilized finite element
method on uniformly mesh for the incompressible flows. In fact, there are
also many quadrilateral finite element pairs are to be preferred for the
incompressible flows. However, it is still open problem for optimal theoretic
analysis of finite volume method for the stationary Stokes equations.

In this paper, the stabilized P, — P; element has several important features:
it is more accurate and convenient to approximate both the velocity and
pressure with the same number of degrees of freedom. Furthermore, it has
a very simple data structure due to the use of the same type of nodal values for
velocities and pressure which allows for an efficient vectorization of solution
processes. Moreover, standard multigrid techniques can be used for solving
the algebraic systems with good efficiency. To stabilized the lowest equal-
order finite element pair, a stabilized fintie element method is applied by local
difference between a consistent matrix and an underintegrated mass matrix to
stabilize it [2, 3, 13, 26, 28]:

G(pnqn) = p(Myx — M)G" = pMg" — pM,g",
where

p=1po, p1s---spn-1l, @7 =1q0.q1, .-, qn-1]T,
Mij = (¢, ¢)), pn= Zz]igl Pidi,
pi = pr(X)Vpr € My, i, j=0,1,...,N—1,

¢; is a basis function of the pressure space M), such that its value is unity at
node x; and zero at other nodes, and the symmetric positive definite pressure
mass matrices My (k > 2) and M, are computed by using the kth-order and
first order Gauss integrals in each spatial direction, respectively. In addition,
piandgq;, i=0,1..., N — 1, are the values of p;, and g, at the node x;, and g"
is the transpose of the vector gq.
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Let I, : L>—R;, be the standard L*-projection with the following
properties:

(p.qn) = Tup.qn)  VYpeM, qy € Ry, (34)
ITLpllo < eslipllo Vpe M, (3.3)
Ip—uplo < cshliplli  Vpe H(Q)NM, (3.6)

where R, = {gn € M : qu|k is a constant for each K € K;}. Then we can for-
mulate the bilinear form G(-, ) as

G(p,q) = (p—Tp, q — q). (3.7)

The L>-projection operator I, can similarly be defined in the vector case.
The bilinear form G(:, -) in (3.7) is a symmetric positive semi-definite form
generated on each local element K.

Using the above notation, the stabilized finite element formulation of
system (2.10) and (2.11) reads: Find (i1, py) € (Xu, My), t € [0, T], such that,
for all (vy, g5) € (X, Mp),

(@pe, v) + By, pr); (i, qn)) + b (g, iy, vy) = (f, vn), (3.8)
up(0) = ugp, (3.9)

where ug, is some approximation of uy in X, satisfying the approximation
property (3.1) and

B (G, pn); (i, qn)) = ality, vi) — d(n, pp) + d(in, gn) + G(Pr, qn)

is the stabilized bilinear form. The following theorem establishes the continuity
and weak coercivity of (3.8) for the equal-order finite element pair P; — P,
[2, 3, 26]:

Theorem 3.1 Let (X, My) be defined as above. Then there exists a positive
constant 3, independent of h, such that

1B ((u, p); (v, g)| =c(lully + I pllo) vl + llgllo) YV, p), (v, q) (X, M),

(3.10)
Bn((un, pn); (vn, qn)
Bllunl + lIpalle) = sup  12n(Gn Pw): O g))]
(p,qn)e(Xn, Mp) ||Uh||l + ||Qh||0
V(un, pn) € (Xn, Mp), (3.11)
IG(p. | = llp—Tpllollg — Tagllo  VYp.q € M. (3.12)
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_To _derive error estimates, we define the Stokes projection operators
(Rp, On) = (X, M)— (X, My) by

Bi(Ru(v, q), On(v, 9)); (0, qn)) = B((v, 9); (i, qn))  ¥(v, q) € (X, M),

(v, qn) € (Xn, Mp), (3.13)

which are well defined and satisfy the following approximation properties:

Lemma 3.2 Under the assumption of (Al), the projection operators (R, Qh)
of the finite element method satisfy

lv = Ruw. @)llo + A (v = Ruw. )11 + llg — On(v. @)llo) < ch*(llvll2 + llgll).
(3.14)

forall (v, q) € (D(A), H'(Q) N M).

Proof The proof of Lemma 3.2 is classical and can be easily derived from

the classical Galerkin finite element method. More details can be found in
[21, 27]. O

The next optimal error estimate holds for the stabilized finite element
method (3.8) and (3.9) for the transient Navier-Stokes equations.

Theorem 3.2 [27] Under the assumptions of (Al) and

‘ 12
luoll3 + ([ (Il IS + 11 £:115) ds) <c¢ 1tel0,T],
0
it holds that

' 20)llu(t) — an@llo + h(lu) — an@ll + ' 2O p@) — pa®llo) < ch?,
te [0, Tl. (3.15)

4 A stabilized finite volume method

Let N}, be the set containing all the interior nodes associated with the triangu-
lation K}, and N be the total number of the nodes. To define the finite volume
method, a dual mesh K, is introduced based on Kj: the elements in K, are
called control volumes. The dual mesh can be constructed by the following
rule: For each element K € K, with vertices P}, j = 1, 2, 3, select its barycenter
Q; and the midpoint M; on each of the edges of K, and construct the control
volumes in K}, by connecting O jto M;as shown in Fig. 1.
Associated with K}, the dual finite element space is defined as

Xy =0 e (L2@): dlg € Po(K) VK € Ky 1l =0}
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Fig.1 Control volumes B;
associated with triangles

By

P

Py

Obviously, the dimensions of X} and X, are the same. Furthermore, there
exists an invertible linear mapping I', : X;,— X, such that for

N
vi(X) = Y vn(PPei(x), X €Q, vy € Xy, (4.1)
=1

we have

N
Thva(x) = D vn(P))x(x). xe€Q, vy € X, (4.2)
j=1

where {¢;} indicates the basis of the finite element space X} and {x;} denotes

the basis of the finite volume space X, that are the characteristic functions
associated with the dual partition Kj,:

1 ifxe fg € Kh,
xj(x) =

0 otherwise.

The above idea of connecting the trial and test spaces in the Petrov-
Galerkin method through the mapping I'j, was first introduced in [31] in the
context of elliptic problems.

To introduce a variational formulation of the finite volume method, we
multiply (2.1) by I'ju, € X), and integrate over the dual elements K € Kj,,
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multiply equation (2.2) by g, € M;, and integrate over the primal elements
K € Kj, and apply Green’s formula to obtain the following bilinear forms:

N
d
Aup, Tpop) = _th(Pj) : / s, . v € X,
P ok, on

N
D(Tyvp, pn) = — Y vn(P)) - / puiids,  pp € My,

N
(f,rhvh)=zvh(Pj)'/kde, vp € X,

j=1
where 7 is the unit normal outward to 9 K j- Also, we define the trilinear form
b(-,-,): X x Xy x X, — 9 for the finite volume method

1 .
b (up, v, Thwp) = ((wy - Vv, Thwy) + 5((d1Vuh)Uh» Cpwp)  Yup, vy, wy € Xp.

(4.3)

Here, the trilinear terms defined in (4.3) still holds the same form as the finite
volume method in [29]. However, it does not satisfy anti-symmetric property as
(2.7) any more. Thus, it is a key difficulty in theoretic analysis of finite volume
method for the nonlinear Navier—Stokes equations.

Now, the stabilized finite volume method is defined for the solution
(un, pn) € (Xp, My), t € [0, T] as follows: For all (v, gi) € (Xn, My,),

(U, Tnon) + Cn(@ns pr); (s qn)) + b un, un, Thop) = (f; Thon),  (4.4)
up(x, 0) = Ppuo(x), (4.5)
where the approximation uj; € X, of the initial value uy is given as follows:
(Ppug — ug, Lpvp) =0,
which satisfies (3.1), and the bilinear form C,(-; -) on (X, M) x (X, M) is
Cn((u, p); (Vn, qn)) = A(u, Tpvp) + D(Tpon, p) + d(u, qn) + G(p, qn)-
The next lemmas will heavily be used in the error analysis of problem (4.4)

and (4.5). The mapping I';, satisfies the following properties [32]:

Lemma 4.1 For each K € Ky, if v, € Xp, 1 <r < o0, and g > 0 is an integer,
then

/ (on — Tpomdx = 0, [Tavalo < crllvallos (4.6)
K

—1/r
lon — Chvallosk < cshicllvnllirg, v — Tnvnllorox < csh% " lonllgrk
4.7)

where hg and dK are the diameter and boundary of the element K, respectively.
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Obviously, the mapping I'y, is a bridge between the finite volume methods
and finite element methods. We can apply the existing results of finite element
method to analyze the finite volume method. Unfortunately, there is still no
optimal order error O(h?) between them. Thus, it is another major difficult to
analyze the finite volume method for the nonlinear Navier-Stokes equations.

For the subsequent analysis, we now introduce a discrete analogue A of
the Laplace operator A through the condition

(Apup, vp) = (Vuy, Vup), up, vy € Xp.
Define
Vii={vn e Xj, :d(vp,qn) =0 VY q;, € My}

The restriction of Ay, to V}, is invertible, with the inverse A;l. In addition, A,
is self-adjoint and positive definite. Therefore, we define the discrete Sobolev
norm on V}, for any order r € R by

2
ol = 147 vallo, v € Ve

This discrete Laplace operator is firstly introduced in [22] to analyze and obtain
optimal results for the complicated unsteady Navier—Stokes equations. In this
paper, optimal and superconvergence results can be made by reasonable reg-
ularity and useful techniques because of complexity of finite volume method
and the lower order O(h) error between the test function of the finite volume
method and that of finite element method.
Lemma 4.2 The mapping Uy, is self-adjoint with respect to the L*-inner product:

(un, Tpvp) = (Cpttn, vp)  Yup, vp € Xp. (4.8)
In addition, the norm

et lllo = Guan, Tpun)'/?

is equivalent to the usual L*>-norm

collunllo < Ilunlllo < crollunllo, (4.9)

where the constants cy > 0 and c,o > 0 are independent of h. In particular, if
up(-, 1) € Xy, vy, € Xy, t €0, T, it holds

(iny Tpvn) = (Cptten, vp). (4.10)
Finally, if v, = uy, it holds
1d.
Wi, Trug) = (Chug,, up) = §E|”uh|“o~ (4.11)

Proof Results (4.8) and (4.9) can be found in [7]. For completeness, we
prove (4.10). Denote the vertices of an element K by P;, P,, and P; (see
Fig. 2). Let ¢; be the basis function in K and e;, i = 1, 2, 3, be the quadrilateral

@ Springer



On the semi-discrete stabilized FVM for the Navier-Stokes equations 293

Fig.2 A triangular element

PM;OM,», (Ms = M, Mqs= M,). For fixed ¢, any functions u;(-,f) and
vp (-, 1) have the unique representations

3 3
wp(x, Ok =Y wi@ei(x), vix Dl =Y v(D9;(x), x € Q, g:(x) € X),
i=1 j=1

(4.12)

where u;(f) and v;(1), i, j= 1,2, 3, are the values of u;, and v, at the node P;,
respectively.
Then we see that

(um, Trop) k = Z / Z uz(f)%rhvh dx

KEK/,

Zv](t)/ Zd u;(t); dx

KeKj, j=1 € j=1

3
- Y YO, [ e

KeK; i=1 j=1

= ZZ o 10)/% dx

KeK), i=1 j=1

> Z/ Zv](z)%rhd”‘(t) dx

KeKj i=1

= (Pnttn, vi) K, (4.13)
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where we used fei @jdx = fe/ @;dx [7]. In particular, if v, = uy;, we have

1d
(e, Cottp) = (Cptdgn, up) = wummné. (4.14)

Consequently, (4.10) and (4.11) are proven. ]

Lemma 4.3 [25, 40] It holds that

Aup, Thpop) = a(uy, vy) Yuy, v, € Xy, (4.15)
with the following properties:
A(up, Tnop) = A(vp, Dnp), (4.16)
| AQun, Trop)| < cllunllillvalls (4.17)
| A(vp, Thup)| = clloall}- (4.18)

Moreover, the bilinear form D(-, -) satisfies

DT pon, qn) = —d(vp, qn) Y(vn, qn) € (Xn, My). (4.19)

Lemma 4.4 [25] It holds that
[Ch((ns pr)s Wi, @) < ¢ (lunllt + 1 prllo) Ulorlls + lgallo)

Y(un, pr)s (i, qn) € (Xp, My). (4.20)
Moreover,
[Ch((r, pr); (Wn, qr))|
sup > B Ulunlt + I prllo)
(onqi) (X, M) lvrlls + ligallo
(un, pr) € (Xp, M), (4.21)

where 8 is independent of h.
To derive error estimates for the finite volume solution (i, pj), we define
a projection operator (R, Qp) : (X, M)— (X, My) by
Cn((w — Ry(u, p), p — On(u, p)); (vn, qn)) = G(p, qn)¥(u, p) € (X, M),
(vn, qn) € (Xn, My), (4.22)
which is well defined by Lemma 4.4. Also, it satisfies the following stability and
approximation properties:
Lemma 4.5 Under the assumption of (Al), the projection operator (R, Q)
satisfies
| Ru(u, p)lli + 11Qn(u, p)llo < c(llulli + liplo), (4.23)
lu— Ry, p)lit + I1p — On(u, p)llo < ch(lullz + I pll), (4.24)
for all (u, p) € (D(A), H'(Q) N M).
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Proof The stability property (4.23) can easily be shown by using Lemma 4.4.
We focus on the proof of the approximation property (4.24). Setting (Iu —
Ry(u, p), Jnp — On(u, p)) = (e,n) and E = u — Iu in (4.22), we see that

Ale, Tpop) + D(Tpon, 1) + dle, gn) + G(n, qn)
= —A(E, Tpvp) — D(Tpon, p — Jnp)
—d(E, qn) — G(p = Jup. qn) + G(p. qn). (4.25)
Obviously, we deduce from (3.1), (3.2), (3.4) and (3.6) that
|d(E, gn) + G(p = Jup. qn) — G(p. gn)| = ch(llull2 + lIpIlDNgnllo.  (4.26)
Then, using Green’s formula, the Cauchy-Schwarz inequality, (3.2), (4.7) and

Lemma 4.1, we have

| D(Cpvp, p— Jnp)| =

n— v k| + V(P —Jup), va)l

<Y IV = Iup)lo.x ITavn = vallo.x + |(divos, p — Jup)]

K
< chlplillvili. (4.27)
Since
A(E, Ty = Z Z/ —Fhvhds
JENK KNK; Kink on

= Z /aK %Fhvhds — Z(AE, Chon)k
8H E
_ Z/ < h ) (Fhvh — Uh)ds — Z(AE, Fhvh - Uh)K

K
— —upds + ) (VE, Vuy)k,
]I TEEED

a similar argument yields

|ACE, Thon)l < Y IV(E = T E) ook IThvn — vllo.ax
K

+ > N El2.&lvn = Cavallo.x + cll Ellillval
K

< chllull2llvall;. (4.28)
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Using all the inequalities (4.26)—(4.28) in (4.25), we find

ICh((e, n); (Vn, gn))l

lells + linllo < B sup
1 ’ naneXnmy  1oalln +1lgnllo
= ch(llullz + lIpll)- (4.29)
Finally, combining (4.29), (3.1), and (3.2) gives (4.24). O

So far, we refer to two kinds of the Stokes projections, based on Galerkin
system and Petrov—Galerkin system. The first Stokes projection defined in
(3.13) has optimal convergence results and leads to the optimal error estimate
for the finite element discretization of the transient Navier-Stokes equations.
As for the second one defined in (4.22), we can not obtain the optimal error
estimate of ||u — Ry (u, p)|o because of lower order error between test function
of the finite element method and finite volume method. However, it is worth
to mention that both projects complement perfectly each other to obtain the
optimal results for the finite volume method of the transient Navier-Stokes
equations without any additional regularity on the exact solution.

Then, we will prove several useful estimates for the trilinear terms.

Lemma 4.6 It holds that, for uy,, vy, wy € Xp,

1D (un, vi, Thwn — wp)|

< chllupllillvalli llwal, (4.30)
|b(up, v — vy, Cpwp — wp) + b (v — vy, up, Cpwp — wp)|

< ch"flupllg*luen 1y 10 = villy lwi (4.31)
bW, v — vy, Cpwp — wp) + b (v — vy, u, Thwy — wy)|

= cllull2llv = vall ITaws — whllo. (4.32)
Proof Using (2.3), (3.3), (3.6) and Lemma 4.1, we see that
b s vy, Trwn — wi)|
= (((uh — Mpup) - Viv, + %diV up(vp — Mpvp), Thwp — wh)
< c(lup — MpuplloIVonll e + llvn — pvallollV upll L) IThwn — wallo

2 1/2 1/2 3/2 1/2 1/2 1/2 3/2 1/2
< o (1A o143 2ol + ol 1A a0 A3 P2l ) Nl

< chllupllillonll llwpll.
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Setting e = v — vy, we deduce from (2.3), (3.3), (3.6), and Lemma 4.1, that

1D (up, v — v, Tpwp — wy)|
1
= <(uh -V)e + EdiV up(e — Iye), TFhywy, — wh)

< (lunliz=llelly + IVunl L~ lle = Tpello) ITrwn — wallo

1/2 1/2 1/2 1/2 3/2 1/2
< ch (lanlly 1 Anaenll el + 14} 2unly 1 47l lle = Thyello)

1/2 1/2 1/2
< ch"|unlly* Nun ), v = valli wall -

Similarly, we can obtain estimate of the second trilinear terms of (4.31) by the
same approach. Also, by (2.3) and the Cauchy-Schwarz inequality, we have

[b(u, v —vp, Cpwp — wp) + b — vy, u, Cpwy, — wy)|

IA

c(lullz=llv = vplly + [IVull o llv = vpll LONTrws — wllo

IA

cllull2llv — vplli ITrwp — wallo-

As aresult, (4.30), (4.31) and (4.32) are shown. |

5 Stability and error analysis

In this paper, the main focus is to analyze the stabilized finite volume method
based on the relationship between the finite element method and the finite
volume method and some additional analytical techniques. As noted earlier,
there are several difficulties in analyzing this finite volume method for the
transient Navier-Stokes equations. Some remarks need be made. First, the
analysis requires a slightly extra regularity on the source force to obtain the
optimal L?-norm for the velocity. The counterexample in [14, 23] showed that
the finite volume solutions approximated by the conforming linear elements
cannot have the optimal L?-norm convergence rate if the exact solution is in
H?(Q) and the source term is only in L?(2) for a saddle point problem. Second,
additional attention is here required to treat the trilinear term for the nonlinear
Naiver-Stokes equations because of its losing the anti-symmetric property.
Third, additional techniques need be provided to analyze the parabolic system
that is in the form of the Petrov—Galerkin system generated by two different
Stokes projections.

From the point of view of implementation, the stabilized finite volume
method consists of several subroutines for solving the transient Navier—Stokes
equations. First, we solve the Stokes equations approximated by the lowest
equal-order finite element pair to obtain an initial value for the iterative
finite volume method for the transient Navier—Stokes equations. Then two
nested loops in the algorithm are involved in time and space for solving these
equations. In addition, a nested loop in space is contained in the loop of time
by the Picard iterative finite volume method at each fixed time step.
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Finite volume algorithm for the transient Navier—Stokes equations
StepI Find (u), p)) € (Xj, M) satisfying the following Stokes equations:
Cr(@l), pD); (i, qn)) = (f: Thvp)  Y(on, qn) € (Xn, My).

Moreover, set the iterative step m =0, 1, 2, .. ., the error of two suc-

cessive solutions e,, = \/(uf - Lt,l"“l)2 + (P — pZH)2 m=0, e, =
0), and a sufficient small iterative tolerance ¢ > 0.

Step I Solve the stationary linear Naiver-Stokes equations (LNS) at
each fixed step by applying the Picard iterative finite volume
approximation:

(i = ™") /7, Ton) + Co (. PY) 5
(. qn) + b (W)~ ), Thop) = (f. Thop).

Routine:

(1), p)1=Stokes(Ky, f);
fori=0,1,2,..--T/dt,
while (e, > ¢) do
s pp— G~ P

[, pyI=LNS(K, ™", pp=", 1
end while

end for

We now prove that the system in (4.4) and (4.5) is solvable at each fixed
time. As an example, we prove a stability result in the next lemma.

Lemma 5.1 Under the assumptions of (A1) and (A2), there is the parameter hy
such that

2 log h|'/?h?
0 < ho(h) = ZCacecskolloghl 7h™ - (5.1)
vV

for sufficiently small h > 0, it holds that, for t € [0, T,
lun O3 + fo (Vlunll? + G(pn, pr)) ds < c, (52)
lu(®) — wn O3 + [y (vllu = unl? + G(p — pr. p — pn)) ds < ch®.  (5.3)

Furthermore, we have

t
Vlur @12 + G(pa(), pu(®) + / lunel2ds < c. (5.4)
0

Proof Based on the previous finite volume algorithm, the initial value pro-
duced by the finite volume solution of the Stokes equations can obviously be
bounded by some positive constant independent of 4 [25]. At a fixed time step,
we consider the iterative finite volume scheme described above:

(e, Tnon) + Cu(n, pr)s (s qn)) + b (0O, up, Thvp) = (f, Thop). (5.5)
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Then we assume that
t
vIonllt + G(gn, gn) + / I onllgds < c.
0

Taking (v, i) = (un, pp) in (5.5) and using Lemma 4.2 and (2.7), we see that

%%Hmhlﬂé +vllupll} + G(pu, pr) + b W, un, Tty — up) = (f, Thup).  (5.6)
Using (2.3), (3.3), (3.6), and (4.7), we have
|b (Un, up, Tnuty — up)|
= (((U_h — pop) - Viu, + %diV Up(up — Mpup), Cpup — Lth)

< (lvy — Mpvpllol Vunll L~ + llup — MpugllolV Opll L) 1Tt — wpllo

1/21.2 .= 2
< 2cqcqcs| log h|R2 |0 |11 [lunl}

and
Lo 2
[(f, Thup)| < crll fllollunllo < ZC7||f||o + llunlly-

Then we deduce from (5.5) and (5.6) that

1d

1
5 dt|||uh|||3 + (1 = ho)lunll} + G(pn. pr) < Sl fllg + Znuhné.

Integrating the above inequality from O to ¢ with respect to time, applying the
Gronwall inequality, and noting that

N (O 1o < 11 Rr(uo, po)lllo < c(lluolls + I pollo) < ci1,

we obtain
t t
lan O + / Wlunll? + G(pp. pr)ds < ;' <2c% / ||f||éds+c%1)em,
0 0

which implies the desired result (5.2). ;
Multiplying (2.1) and (2.2) by I'yv, and gy, integrating over K and K,
respectively, and using (4.4) and (4.5), we see that
(= tpe, Tpon) + Cp( — up, p — pn); W, qn)) + b (w — up, u, vp)
+ b (up, u — uy, vy) + b — uy, u, Cpvy — vp)

+ b (up, u — up, Thvp — vp) = G(p, qn)- (5.7)
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Setting (e, n) = (Ru(u, p) — un, On(u, p) — pp) and E =u — Ry(u, p), using
Lemma 4.2 and (2.7), and taking (v, g) = (e, n) in (5.7), we have

1d

2Uhmeu% + vllelli + G, n) + b(E +e,u, e) + b (up, E, )

+b(E+eule—e)+b(uy, E+e T'ye—e)=—(E, e
— A(E,Tye) — D(The, p — On(u, p))
— d(u— Ru(u, p).n) — G(p — Ou(u, p).m) + G(p,n).  (5.8)
Using Lemma 2.2, (2.3), (2.7)—(2.9), and the Young inequality, we see that
[(Er, Twe)l < cllEdlollello < ch® (ludlt + | pclG) + llelg,
|b(E,u,e)| <cllEllillullel < 11)—6||€||% + Il ElTullf,

172, 13/2

‘ 1/2
Ib(e, u,e)| < C{Ilellollelllllulll + llelly " llelly /

Jaaly et}
V
< Bnen% +c (1 + lluld) lullilell3,

V
b (un, E, e)| < clunlh I Ell llell; < Rnen% + cllunl2IIE|3.

Also, using (2.3), Lemma 4.6 and (5.2), an inverse inequality, and the Schwarz
inequality, we obtain

v
|b(E, u,The — o) < cllEll1llull2[Tre —ello < Ellellf + chP|lul3 | EIIT,

%
2 2010112
b (e, u,Tre —e)| < cllull2llell1[ITre —ello < Telell +cllulizllels,

V
b (up, e, Tre — )| < chlluglillellllell; < Rueu% + cllunlifllell3,
V
|b (un, E, The — )| < ch|unlly* lunll,* | Ellillell, < Telellf + el Eli.
Moreover, we deduce from (2.1), (2.2), (3.13), (4.4), (4.5), (4.15) and (4.19) that
|A(E,Te) + D(Tye, p — On(u, p))| = (f —u, — (u- V)u, The — e)
< ch(ll fllo + llucllo + llull2llull) el
v
< Euen% + ch® (I FI§ + Nluell) -
ld(E, n) + G(p — On(u, p), ) — G(p, )| = 0. (5.9)
Now, substituting these inequalities into (5.8) and using (A2), we find

d
E|||e|||é +vleli + G, n) < c{h2 (1§ + 11 IS + Meell2fleell)

+ (L4 Nluell3 + Nunll?) Nulfllell§ + (1 + lunllF + lul3) ||E||%}-
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Therefore, integrating the above inequality from 0 to ¢, we deduce from the
Schwarz inequality, Lemmas 2.1 and 2.2, (5.2), and (4.9) that

t
le@I2 + f (vllel + G(n. m) ds < ch?, (5.10)
0

which, together with Lemmas 2.2 and 3.2, yields

t
lu(®) — un ()13 + / (vl = unll} + G(p — pu. p— pw)) ds < ch®.  (5.11)
0

Thus the desired result (5.3) follows.
Differentiating the term d(us, g») + G(pn, ) With respect to time ¢, taking
(vn, qn) = (up, pp) in (4.4) and (4.5), and using Lemma 4.3, we see that
1d
el + 5 = lunllt + G(Pa, p1)) + b ans 1 = wn, e = Tata)
— b —up, u, Chup) — b (up, w— up, up) + b, w, Tpug) =(f, Thitpe).
(5.12)

Applying (2.3), (2.7)-(2.9), (3.3), Lemma 4.6 and the Young inequality,
leads to

1/2 1/2 1/2
b (up, tt — up, e — Chtng)| < ch{lug ) lenlly e — wn s ot
1
2 -2 2 2
< ghunell§ + ch™ unlFlue — wally,

|b(u — up, u, Cpup)| < cllu — upllilull2)IT ptenlo

1
2 2 2
=gl + cllulizllue = unlly,

b (u, w, Tpipe — up))| <cllull2 el llundlo

1
2 201,112
=g lunlo + cliellllullz.

The combination of the inverse inequality (3.3) and the Cauchy-Schwarz
inequality implies that
b (un, u — up, up))|
_ 1/2 1/2 1/2 1/2
< ™72 (N g/ oanll e = sl -+ Doanll e = g e = w1177 Netne o

1
2 -2 2
= glundio + ch™Nunllo (lunllollee — unlly + lunlli lu — unllollu — uplli) -

In addition, a simple computation shows that

1
|(f, Tatne) | <Il Fllollttnello < Znumn% + |l fII3-
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Combining all these inequalities with (4.2) and (5.2) yields

d
el + E(vnuhn% + G(pn, pr) < e {lull3llu — wpll? + Nl + 1 FI5
+ B lunllo (Ilunllollu — wnll} + llunll e — wpllollu — unlh)} . (5.13)

Then, integrating (5.13) from 0 to ¢ with respect to time, using Lemma 2.2 and
(4.23), and noting that

V[[un(0) 13 + G(pr(0), pr(0)) < | Ry(u(0), p(ON 1 + || On(u(0), p(0))|I3
<c(llullf+1plg),

we deduce from (5.2), (5.3), (A2), and Lemma 2.2 that
t
Vw7 + G(pu(t), pa(®) +/ lunllgds < ¢ (lull} + 1pIg)
0

t t t
+c{||u||§/ ||u—uh||%ds+/ (||u||%+||f||é)ds+h—2/ lu — wyll7ds
0 0 0

t 1/2 t 1/2
+h2||u—uh||o</ ||uh||%ds) (f ||u—uh||gds) }Sc.
0 0

By using a mathematical induction argument, we complete the proof
of (5.4). |

Lemma 5.2 Under the assumptions of (A1)-(A2), it holds that, fort € [0, T],
t
e (D15 + / (vllunlt + G(pres pa)) ds < ¢, (5.14)
0
t
(1) (vllun @17 + G(pre(®), pue(2))) +/ () lupall§ds <c.  (5.15)
0

Proof By differentiating (4.4) and (4.5) with respect to time, it follows that

Whits Tnon) + Cn(Wne, pre)s (Un, qn)) + b (Wpg, up, Trop) 4+ b (up, upe, Tpop)
= (fi, Thon) Y (vn, qn) € (Xi, My). (5.16)

Taking (v, gn) = 2(up, pre) in (5.16) and using Lemma 4.2, we have

d
E” g + 2v1undl} +2G(Phes Pre) + 2B (Upe, tn, Tt — wpg)

+ 2b (g, U, Upe) + 2b W, tpe, Tptpg — tpg) < llune + <l £113-

(5.17)
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Using (2.3) and (4.30), we see that

1/2 1/2 1/2 3/2
21b W, s )| < € (aanelo e eanels + ol a1/ w5/ eane 1

2 2 2 2
< 5 lunelly 4 cllunllgllwn 17l n .

| <

2|b (upe, up, Tptipe—up) 4+ b gy, wpe, Tty — wp) | < chllup |l e || llened

v
2 2 2
= 5 llundly + cllunllylundo.

which, together with (5.17), gives

d
Enmmué + vllunl; + G(Pes pre) < ¢ {1+ Tun I NI w1 + 11 £} -
(5.18)

Integrating (5.18) with respect to time and using Lemmas 2.1,4.2,5.1 and (A2),
we obtain (5.14).

Now, differentiating again the term d(upn, qi) + G(pw, qn) in (4.4), and
taking (vi, gn) = (Uni, pue), We see that

|

iz |(2) + (V”uhz”% + G(pnu, Pht)) + b (u, up, Chttpg) + b (U, w, Thtdp)

N =
QL

t
1
+ b (upe, wup — u, Thtpg) + D (up — u, wpy, Tptigy) < glluhnllé +cll fill3.
(5.19)
Obviously, using (2.9), (3.3), and Lemma 4.6, we have
|b (u, e, Tntipy) + b (upe, u, Tty
< < l 2 2 2
< cllull2ltndli | unello < 4IILthnllo + cllullzllunlly,
| (upe, up — w, Tpttpge — tpee) + b (wpy — w0, wpe, Chttpee — Wpgt) |
12

1/2 1/2
< ch"upllg Nlenelly* N — wnlly g

2 -2 2 2
< =llupellg + ch lleeneliglle — wplly.

O | =—

Combining these estimates with (5.19), it follows from Lemmas 2.2, 4.2 and
(3.3) that

d
llttnee I + o (vllunll; + Gpaes o))

< c{llul3lundl} + A Nundl§lue — unllt + 1 £il15} - (5.20)
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Finally, multiplying (5.20) by 7(¢), integrating from 0 to ¢, and using Lemma
2.2, we obtain

t
(@) (VIun O} + G(pu (), pu(0))) +/0 7 (9) | unelI5ds

t t t
s(c{nun%/ ||um||%ds+h—2||um||§/ ||u—uh||%ds+/ ||ﬁ||%ds}
0 0 0

t
+/ vllunl? + G(ph, th)) ds. (5.21)
0

Therefore, combining (5.21) with Lemmas 2.2, (5.3), (5.14) and (A2) completes
the proof of (5.15). o

Lemma 5.3 Under the assumptions of (A1)-(A2), it holds that, fort € [0, T],

t
vlu) — w7 + f e — upell§ ds < ch?. (5.22)
0

Proof Differentiating the term  d(u —up, qn) + G(p — pn, qn), taking
(vha Qh) = (elv 77) = (Rhl(uv p) — Upt, Ql’l(u5 p) - Ph) in (57)9 and USing Lemma
4.2, we see that

1d

lecllg + 5 2 (Vllellt + GGr m) +b (@ =, u, e) + b, u =y, )
—bu —up, u—up, e)+bu, u —up, Tne, — e)+bu — up, u, Lne, — e;)
—b W —up, u—up, Tpe, — ) = —(Ey, The)) — ACE, The)

—D(Ther, p— On(u, p)) — d(E;, ) — G(p; — Ow(u, p), 1) + G(ps, n).
(5.23)

Applying (2.3), (2.7)—(2.9), (3.3), and Lemmas 2.2, 4.1, we have

[b(u — up, u,Ure) + b (u, u—up, e)| < cllull2llu — upllllello
1
2 2 2
<—lledlg + cllullsllu — unlly,
12
3/2 1/2 1/2

1/2
|b(un —u, u —up, e)| < cllu—uplly” llu—uplly" ey el

1
2 -1 3
=15 el +ch™ i — uplloflu — unlly,
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Due to (2.3), (3.3), (4.32), (5.3) and the Cauchy-Schwarz inequality, we bound
the following two inequalities

b, u—up, Tpe;—e) +b(u—up, u, e — e

=< cllull2llu — wpllrlletllo

1
2 2 2
< —lledl + cllulBllu — unl?,
12
|bw—up, u—up, e, — Thep)|
1/2 3/2
< cllu — uplly* Nu — unlly* 1 Ther — el 2

1/2 3/2 1/2
< chllu — w1 llu — w1 A e 1o

< ch'llu—unlly”lledllo
1 2 2
= plledlo + cCiunli + lulllw — unlly.
Using Lemma 3.2 and the Young inequality, leads to

1
I(E., The)| <cllEcllolledlo < ch? (lludlf + 11 pig) + Euetuﬁ.

Moreover, using (3.4)—(3.6), (3.13) and the same approach as (5.9) gives
| ACE, Ther) + D(Tper, pr— One(u, p))
=|(f—@-Vyu—u —p(f = - Viu—u), Ine, — e)|

1
<ch* (I FIT + luli}) + Enetné,

|d(Eq, 1) + G(p; — On(u, p), 1) — G(py, )| = 0.

Hence combining these inequalities with (5.23) yields

d
lle g + - (vlel: + G, n)

=< C{(IIMII% + llunll?) e = wll + 1 (1w + A7)

+ ch Hlu — g lloClunlly + lulh) llu — uhllf}-

Integrating the above inequality from O to ¢ and using (5.3) and (5.4) and (A2),
we can see that

t
vlle®IE + G, n(®) + / ledl2ds
0

t
<o’ / (el T F1T) ds+ch® (lullf +lunl}) < ch?, (5.24)
0

which, together with Lemmas 2.2 and 3.2, yields the desired result (5.22). O

@ Springer



306 J.Li, Z. Chen

Lemma 5.4 Under the assumptions of (A1)-(A2), it holds that, fort € [0, T],

t
T() |lue(t) — up (O + v / t(s)llellids < ch®. (5.25)
0

Proof Multiplying (2.1) and (2.2) by I';u, and gy, integrating over K and K,
respectively, and using (4.4) and (4.5), yields that

(ur — tpe, Thon) + Cp((u — up, p — pn); (n, qn)) + b (W — up, u, Tpop)
+ b, u—up, Tpup) — b —up, u—uy, TChop) = 0.

Differentiating the above equations with respect to time ¢ and noting that the
definition of L2-projection satisfies

(Uy — Pputy, Upop) =0,
we obtain that
(e — tpee, Tnvn) + Co((Pptte — tp, pr— Jnpo)s (n, qn)) + b (ue — wpe, u, Tpvp)
+ bW — up, uy, Tpop) + b (wy, u — up, Tpop) + b (u, up — upe, Thop)
— by — up, u—uy, Tpop) — b (u— uy, uy — up, Tpop)
= G(pi, qn) — Ay — Ppug, Tpvp) — D(Tpon, pe— Jnpo)
— d(u; — Pypus, qn) — G(pr = Jnpr, qn)- (5.26)
Taking (vy, gn) = (e;, 0) = (Phu, — uy,, 0) in (5.26), we see that
1d ) )
Ed—t|||€t|||o +vlledly + b (e — upe, u, Une, — e) + b (w — up, ug, Une, — ;)
+ bWy, u —up, Tpe, —e) + b (u, uy — up, U'pey — e)
— bW — up, u—up, Tpe, —e)) — b —up, uy — up, Upey — €;)
+ b —up, u,e) + b —up, u,e) + by, u—up, e)
+ b U, uy — upg, e)) — b Uy — wpg, u — up, e;) — b — up, Uy — Uy, ;)
= —A(u; — Ppug, Tye;) — D(Tper, pr — Jnpe). (5.27)
By Lemma 4.6 and the Young inequality, it follows that
|b(u; — up, w, e, —e) + b (u, uy — up, Tyer — e)|
< clluy — upllr lull2 I Ther — ello
< Sl + eh? (lul + )
|b(u — up, ug, Tpe; —er) + b (ug, u — up, Ther — ;)|

< cllu — upllillull2lITre; — edllo

V
< 1—6||et||% + el lul3 (lullf + llunll?) -
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Applying (2.3), (3.3) and (4.7), we estimate as follows:

|y — e, w— up, The, — e))|

1/2 1/2 1/2
< 2 (Nene g/ lanel}* + Nl ) e = w1 1 D — el

< c(lundlo + lullDllwe = wnll1[ITre: — exllo

v
2 2 2 2
= feledi+ ¢ (Hlunellg + NluelI) Nl — w3

Thanks to (2.8) and (2.9), (2.3), and the Young inequality, we find that

|b (U — upe, u, ) + b (w, u; — upy, e;)]
< cllull2lle (et — wnello + llecllo)

)
< —lle

=16 17 + cllulzlles + ch® (i + Il pl7) »

[b(u — up, u;, e)| 4 |b W, u—up, e)|

=< cllucllillecllloe — wnlly

v
2 2 2
= eledy + cliwdlylle = unlly.

Also, the same approach described above can be used to obtain the following
estimate:

[b Uy — wp, 0 — up, e + 16w —up, uy — upy, )|

=I|b(E,u—upe)+bwu—uy E,e)+b(e,u—uy, el

< cllEdllillu — unliilledls

1/2 3/2 1/2 172
+C(||€t||0||et||l||u_uh”l+||et||o el " llu — unlly™ llee — unlly )

v
< Rnefn% + c(ludl? + | Ru(u, p)ID 1w — wp?
+ clledigllu — upllf (1 + llu — unllg)
V
< Enetn% + ¢ (llulf + lulls + 1pI7) I — unll} + clledls (el + lunll}) -

Similarly, with the same approach as for Lemma 4.5, we arrive at

|A(u; — Ppuy, Tre)| <chllul2llel:

A

v
2 2 2
= 1 ledlly + ehlludly,

|D(Tner, pe — Jnpodl =chlipellilled

A

v
< 1—6||et||% + ch?|| piI3.
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Also, using the inverse inequality (3.3), Lemmas 4.1, 4.6, (5.3), and the Young
inequality leads to

|b(u — Up, Ur — Ups, Tper — e)]
= |bW — up, us, Tpe; —e)) — b — up, up, Cnep — e)|
1/2 1/2 1/2
< cllugllallu — unll 1Tne; — edllo + i uaelld ot 11t = w1 lle

=< ch(llucll> + lluncllo) eyl — unlly

Vv
< Bllezllf +ch? ()3 + llundlls) -

Applying these inequalities, Lemmas 2.2 and 5.1-5.3, and the triangle inequal-
ity yields

d
d—[me,u% +vllel} < c{h2 (el + 1 pelT + Nndl?) + (NunllT + luel3) lledd

+ (el + 1Pl + Nunellg) Ne — uhn%}. (5.28)

Substituting these inequalities into (5.27) by 7(¢), integrating from 0 to ¢, we
conclude that

t
@ lle)lg +v / T(s)llell7ds
0
t
< c{h2/ t(s) (Il + I plT + Nunl?) ds
0
t
+ llu(t) — uh<r>||%f t(s) (luell3 + Nl + 1l pll3) ds
0

t t
+f (s) (lunll} + lul3) |I€t||3ds+f IIezllédS},
0 0

which, together with (3.1), (3.2), (5.24), Lemmas 2.1 and 2.2 and 5.1-5.3,
completes the proof. O

Lemma 5.5 Under the assumptions of (A1)-(A2), it holds that, fort € [0, T},

20l p0) — pr@®llo < ch. (5.29)
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Proof Setting (e(t), n(t)) = (Ru(u(t), p(t)) — un(1), Qp(u(®), p(t)) — pn(t)) and
using (2.3), (3.3), (4.21), (4.24) and (5.7) yield that
Blin®lo

_ Cn((e, n); (vn, qn))

" e My Torlln +llgnllo

= sup

{ (e — tpe, Cpop) + b (u — up, u, vp) + b (uw— up, u, Tpop — vp)
(Vn.qn) (X, My)

llvrlly + llgnllo

N (b(uh,u—uh,Fhvh—vh)+b(”hvu_”h’vh)}_ (5.30)

lvallt + llgnllo

In view of (2.8) and (2.9), Lemma 4.6, it follows that

[b(w— up, u, vp) + b (up, u —up, vp)| < c(llully + llupll)llw — wplltllvall,

|b @ — up, u, vy — vp)| < cllullzlu — wuplli ITRvE — vally
< chllullallu — upl1llvnll-

The combination of Lemmas 5.3 and 5.4 shows that

20 n@lo < et 2O () — un @ llo + u@) —up @) < ch.  (5.31)
As a result, applying Lemmas 2.2 and 4.5 and (5.31) gives

20l p6) — pr®llo < T 2O UN®Ollo + clp® — On(u(t), p®)llo) < ch,
which is (5.29). ]

Theorem 5.6 Under the assumptions of (5.1) and (A1)-(A2), it holds that, for
te|0, T],

lu(®) — up @) + 2Ol p@) — pr®)llo < ch. (5.32)

This theorem follows from Lemmas 5.3 and 5.5.

6 L?-error estimates

Observed from the previous analysis in Section 5, we can find that different
analysis techniques are applied to the finite volume method from those for the
finite element method for the transient Navier—-Stokes equations. As for the
L*-norm estimate for velocity, we must take special care of the optimal order
convergence analysis because there is only an O(h) error between the test
functions of the finite element method and those of the finite volume method.

In this section we estimate the error ||u — uy||o using a parabolic duality ar-
gument for a backward-in-time linearized Navier-Stokes problem [21, 22, 24].
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The dual problem is to seek (@ (¢), V(f)) € X x M such that, for ¢ € [0, T] and
ge L0, T;Y),

(v, ;) — B((v, q); (P, \IJ)) —bu,v,®) —b(,u, ®) = (v,u—uy), (6.1)

for all (v, q) € (X, M), with ®(T) = 0. This problem is well-posed and has a
unique solution (®, W) satisfying [24]

®eCO,T;:V)YNL*0, T; D(A)NH'Y0,T;Y), e L*0, T; H () N M).
We recall the following regularity result [24].

Lemma 6.1 Under the assumption of (Al), the solution (®, V) of (6.1) satisfies

T

T
0supT||<I>(t>||%+/ (||<I>||§+||\If||%+||<I>t||é)drsc/ lu —upllg dr.  (6.2)
<t< 0 0

Based on the results provided in Section 5, a duality argument is applied to
overcome the lower order convergence rate of the Stokes projection defined
in (4.22) by involving the Stokes projection defined in (3.13). Then, optimal
analysis is provided in the following two Lemmas.

Lemma 6.2 Under the assumptions of (A1)-(A2), it holds that, fort € [0, T],
T
/ e — wp||5ds < ch*. (6.3)
0
Proof Let (®y(t), ¥y,(¢)) be the dual Galerkin projection in (Xj, Mj) of
(® (1), ¥(1)) such that
B ((wns gn)); (@p, W) = B((v, qn); (P, W) VY (v, qn) € (Xn, My), (6.4)
with
1Prllt + 1Wallo < c(I®@ll1 + W 1lo),
[ — ®pllo + AP — plly + 1V — Wyllo) < ch*(| ]+ []).  (6.5)
Taking (v, ) = (Pp, ¥y) in (5.7), we can find that

(e Th®n) + Cu((e.m); (P, Wi)) + b (u, e, Ty ®p)

(6.6)
+b(e,u,T'y®y) —b(e e, T®y) =0,

where (e, n) = (u — uy, p — pn). Adding (6.6) and (6.1) with (v, q) = (e, n), we
see that

d
lellg = E(e’ @) — (e, @ — I ®p) + Ale, Tp®p) — ale, @) + DI Pp, 1)

+d(®@p, ) —ale,® — Pp) —d(e, ¥ — V) +d(® — Py, ) + G(n, Vp)
— b(e, u, b — icbh) — b(u, e, b — th)h) — b(e, e, th)h).
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That is,

d
lelly = d_t(e’ D) — (e, @ —I'pPp) + A(u, I'y®p) — a(u, ) + DT Pp, p)

+d(Pp, p) — Bp((e, m); (P — p, ¥ — W) + G(n, V)

—be,u,® —T'y®,) —bu,e,® —T,0,) —b(e, e I),Pp). (6.7)
Noting that
|(er, @ — ®p)| < ch*(lucllo + llunello) P12,
[(er, p — Tp®p)| =|(e; — Mper, p — Tp®Pp)l
< ch*(ludlly + lunl D@1,
we have

l(er, @ — Tp®p)| <[(er, P — Pp)| + [(er, P — TnPp)l
< ch* (gl + llund D[ P12
Thanks to (2.8) and (2.9), (4.32), and (6.5), we have

b (e, u, ® — T @p)| < cllull2llelli (19 — Pallo + 1Pr — LnPallo)
< chllull2llell 1| P11

Similarly,

b, e, ® —TpPp)| <|b(u,e, ® — Op)| + |b(u, e, &, — ' Pp)|
=cllul2llelli (| = Ppullo + P — T Prllo)
< chlul:llell1[I®]l;.

By a triangle inequality, (2.8) and (2.9), (3.3), (4.7), (4.31), and (6.5), it
follows that

|b(e, e, Tn®p)| < |b(e, e, Pp) + ble,u, ®p — Tp®y) + b (e, up, @p — In®p)l
< cllell @l + chlilizlell @1 + ek luslg sl el @1
< cllelf 1l + chllullz + lunllo) el 1@
Also, the same approach as (5.9) shows that
A(u, Tp®p) — a(u, @) + DTV, p) + d(Pp, p)
=(f— W -Vyu—u, T'y®, — Pp)
172

3/2
< oh® (LIl =+ Nl + Nl ) 101
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Then, using (3.3), (6.4), and (6.5), gives
1Bu((e. ); (@ — ®p, ¥ — W) — G(n, W)
= Bu((u — Ry, p), p — On(u, p)); (& — &p, W — W) + G(n, ¥)
ch*(ullz + IIpI) U@z + 111 + chllnlloll |1

The combination of these estimates with (A2), (6.4), (6.5), and (6.7), we
see that

A

d
lell§ < (e @) +c{h2 (ol + ol + 1 £+ el 23 1012

+ llellF @l + Aulla + lunlio) el 1

+ K (lully + IplD APl + W) + hllnlloll‘lflll}
172, 13/2

d
= € ®) -I-C{h2 (Iluzlll A Netnelle 4 1 F Il el leelly )(II®|I2 + WD)

+llelf @l + hdi®ll + 1wl lell + ||77||0)}- (6.8)

Integrating (6.8) from 0 to T yields

T
/ le(s)|I§ ds
0

T
- c{hz (/ (Hut”f ) + 1 FI+ ||u||g)/2||u||§/z) ds>
0

x ([OT (o103 + 1wli7) ds)l/2 +h (fOT (llell? + 1inlig) ds)

T 1/2
X(/o (||d>||§+||wn%)ds) — (e(0), ®(0))

172

172

T
+ sup ||<I><t>||1/0 ||e||%ds}. (6.9)

0=<t<T

In addition, by the definition of the projection R;, and the initial approxima-
tion, we have

|(€(0), ®(0)| = |(ug — Pytg, @(0))] < ch*(luolla + I pol DIPO) 1. (6.10)

Combining (A2), (5.3) and (5.4), (5.12), (6.2), (6.9), and (6.10) completes the
proof of (6.3). O

Lemma 6.3 Under the assumptions of (A1)-(A2), it holds that, fort € [0, T],
() —un(@®)llo < et~ (@0)h*. (6.11)
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Proof Taking  (vx, qn) = (e,0) = (Rn(u, p) —up,0) and setting E =u—
Ry (u, p) in (5.7), we see that
1d
2dt
—bWw—up,u—uy, Tne—e)+bu,u—uy,e)+bw—uy,u,e)
—bu—up,u—uy e)=—(E,The) — A(E,Tye) — D(Tye, p — On(u, p)).
(6.12)

lellls + vlell; +2G@, n) + b (u, u — up, Tpe — €) + b (u — uy, u, Tre — e)

Clearly, using Lemmas 3.2 and the Young inequality, gives
|(E.. The)| <l Edllollello < ch*lucdlz + [l pell) lello
< ch* (lludll3 + 1 pelI7) + llellg.
Thanks to (2.8) and (2.9), we have
b (u, u —up, e) +bw—up u,e)| <clullllellillu— unllo
< s llel} + cllulln — s,
|b (= un, e — up, ) <llu—wyllell

< el + cllu — upll.
10

By (4.32), it follows that
|b@, u—up, Tpe—e)+bu—up u The—e)| <cllull2llu —uplliITre — ello

2 2,V 2
< ch”|lull2llu — uplly + E||€||1~

Obviously, we deduce from L* estimate in (2.3), the inverse inequality (3.3)
and Lemma 4.1 that

|b(u—up, u—up, Tpe —e)| < chllu—upllo(lluell L~ + lunll L) ITre — ello
< ch'?lu—upllo(ullz + llunl) llelh
< chllu— gl (1l + s 1) + 5 el
Also, it follows from the same approach as (5.9) and the Young inequality that

|A(E, Tye) + D(Tne, p — Ou(u, p))|
= |([f = T f1 = [ - VYu — Ty - V] — [, — Tpug), The — e)|

1/2 3/2
< on® (I -+ Dl 10l + el ) Tl

V
< Enen% +ch* (I F1IF + llullollull3 + llucl?) -
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Therefore, combining these estimates with (6.12) gives

d
E|||e|||3 +vllell} + G, n)

< c{h“ (luel3 + 1 pelF + LFIT + Nullolll3) + llelld + el llu — unlll

+||u—uh||?+h2||u—uh||%+||u—uh||o||u—uh||?}. (6.13)
Note that
T T T
/nenédss/ ||u—uh||3ds+f |EN ds
0 0 0

T T
s/ ||u—uh||3ds+ch4/ (llell3 + 1 plIT) ds < ch®.
0 0

(6.14)

Multiplying (6.13) by t(¢), integrating from O to ¢, and using (6.13), (6.14), and
Lemmas 2.2 and 4.2, we obtain

t
r(r>||e<r>||3+/ v(s) (vlel’> + GGy, m)) ds

0

t t t
sc{/ ||e||éds+h4f r(s)(||ut||§+||p,||%)ds+||u||§f it — wp B
0 0 0

t t t
+/ ||u—uh||?ds+h2/ ||u—uh||%ds+f ||u—uh||o||u—uh||?ds}
0 0 0

< ch*. (6.15)
Using Lemmas 2.2 and 3.2, we have

le(t) = Ru(u(@), p)llg < ch* (Jlu@l)5 + 1p@17) < ch, (6.16)

which, together with (6.15), yields (6.11). ]

The next theorem follows from Lemmas 5.6 and 6.3.

Theorem 6.4 Under the assumptions of (A1)—-(A2), it holds that, fort € [0, T},

20 lu(®) — up®llo + h(lu@) — upn @l + 2Ol p(©) — pr®llo) < ch*.
(6.17)

7 Numerical experiments

Two examples are presented to check the stability and convergence proper-
ties of the stabilized finite volume method for the transient Navier-Stokes
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Fig. 3 Uniform and unstructured triangulations of € into triangles

equations over different types of meshes. Here the most robust backward
Euler scheme is applied to solve the transient Navier—Stokes equations in
order to test the efficiency of the present stabilized finite volume method: The
time variable is discretized by the common time difference scheme, and each of
these problems is then solved by the spatial discretization method as described
in Section 5.

Example I The exact solution is designed to test the finite volume method on
two kinds of uniform grids: a box grid and a criss-cross grid (see the first and
second grids in Fig. 3). We consider the transient Navier—Stokes equations on
Q =(0,1) x (0, 1), with the fluid viscosity v = 0.01 and the body force f(x, )
such that the true solution is

u(x, t) = (ui(xy, X2, ), us(x1, X2, 1)), p(x, 1) =102x; — 1)(2x; — 1) cos(?),
Uy (x1, %2, 1) = 103 (x; — 1)?x2(x2 — 1)(2x2 — 1) cos(?),

Us(x1, X2, ) = —10x; (x; — 1)(2x; — Dx3(x2 — 1)? cos(?).

Moreover, the initial value uy = (u(x, 0), u»(x, 0)) is set by the value of the
above exact solution u, (x, £) and u, (x, f) at t = 0 satisfying assumption (A2) on
the exact solution. The errors in the L?- and H'-norms for velocity and in the

Table 1 The results for the 1k el lle—uy = pullo B

finite volume method [l [ [plo h

(v = 0.01 on uniform mesh-1) 10 0.354496 0.891072 0.0301807 0.00276376
20 0.0829056  0.333391  0.00762608  0.000386261
30 0.0356544  0.191583  0.00348278  0.000115246
40 00196911 0130815  0.00201759  4.83689¢-005
50 0.012454 0.0975029  0.00133284  2.45913e-005
60 0.00857769  0.0767381  0.000956569  1.41373e-005
70 0.00626485  0.0627375  0.000726293  8.85208¢-006
80  0.004776 0.0527669  0.00057414  5.90172e-006
90  0.00376193  0.0453648  0.000467739  4.12822¢-006
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Table 2 The results for the \/h lue—uy, llo lee—up 1 Il p=pallo e

finite volume method lullo lleells Ipllo h

(v = 0.01 on uniform mesh-2) 10 0.270911 0.692647 0.0620917 0.00311491
20 0.0667608 0.285343 0.0135366 0.000488715
30 0.0291311 0.168417 0.00577026 0.000153989
40 0.0161934 0.116187 0.0032025 6.6697¢-005
50 0.0102811 0.0872674  0.00204596 3.46346e-005
60 0.0070996 0.0691545  0.0014264 2.02176e-005
70 0.00519519  0.0568705  0.00105532 1.2806e-005
80 0.00396631  0.0480595  0.000815067  8.6147e-006
90 0.00312776  0.0414693  0.00065032 6.06916e-006

L?>-norm for pressure are shown in Tables 1 and 2 and Fig. 4. The results show
that optimal order error estimates are obtained for the transient Navier—-Stokes
equations approximated by the present finite volume method. In addition,
superconvergence results occur for the pressure in the L?-norm for both the

rate analysis for the velocity with L2-norm rate analysis for the velocity with H2-norm

Theoretical rate Theoretical rate
o | [ FuMbox 1 0.5} | —*—FvM:box
- —&— FVM: criss—cross —6— FVM: criss-cross

log(error)
log(error)

-7F
-8 -4
9 L L L L _45 L L L L
-45 -4 -35 -3 -25 -2 -45 -4 -35 -3 -25 -2
log(h) log(h)
rate analysis for the pressure with L2-norm rate analysis for the stabilized term
_2 T T T T -4 r T T T

Theoretical rate
_g || —*—Fh:box
—&— FVM: criss—cross

Theoretical rate
—#— FVM: box
_3t —6— FVM: criss—cross

log(error)
&
log(error)

-6

35 -4 -35 -3 -25 -2 185 -4 -35 -3 -25 -2

log(h) log(h)

Fig. 4 Comparison of rates for the finite volume method on the box and criss-cross grids

@ Springer



On the semi-discrete stabilized FVM for the Navier-Stokes equations 317

IsoValue

mB0E68

ke
i 0388 830663

Fig. 5 Streamline pattern: finite element method, Taylor-Hood element

box grid and the criss-cross grid. Also, the stabilized term is computed, element
by element, by using
/ u,-nds
9K

From Tables 1 and 2 and Fig. 4, there is superconvergence result on
the stabilized term. Along with the mesh scale 4 decrease, the error of the
stabilized term approaches zero. Thus, it seems that there is no negative effect
on the original model.

= max

e, = max
KEK),

KEK},

/ (divuy, — divu)ds| .
K

Example I Cavity flows have widely been used as test cases for validating
an incompressible fluid dynamics algorithm. It is well known that corner
singularities for two-dimensional fluid flows are very important because most
examples of physical interest have corners. In this example, we consider

IsoValue IsoValue Isolaue

B85

Fig. 6 Streamline pattern: stabilized finite element method, P; — P,
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IsoValue IsoValue IsoValue

Fig. 7 Streamline pattern: stabilized finite volume method, P; — P,

the driven flow in a rectangular cavity when the top surface moves with a
enough smooth velocity with uy = (x} + x3, 0) satisfying (A2) along its length.
Also, an unstructured grid is applied with three holes in the domain. Physical
phenomenon is more complicated around the holes.

In this case, we compute an approximate solution for v = 0.001 on the
unstructured grid. The methods tested include the finite element method with
the P, — P, pair (the Taylor-Hood element), the stabilized finite element
method with the P, — Py pair (see the third section), and the present stabilized
finite volume method. The stable Taylor—-Hood element performs the best
since it employs the higher order finite element pair for the velocity and
pressure. This finite element pair also has a superconvergence performance for
both velocity and pressure. Since we do not have an exact solution in this case,
we prefer to rank the accuracies of the finite element method approximated by
Taylor-Hood element as the “exact” solution. Figures 5, 6 and 7 with 10,304°
of freedom shows that the results of two velocity components and pressure of
the present finite volume method is completely in good agreement with those
of finite element method with Taylor-Hood element and stabilized P, — P,
element.

In conclusion, numerical results reported completely agree with the theoret-
ical results established in this paper.
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