PRISMATIC MIXED FINITE ELEMENTS FOR SECOND ORDER
ELLIPTIC PROBLEMS (})

Z. Cuen () - J. Doucras Jr. (%)

ABSTRACT - In this paper, three families of mixed finite elements based on prisms are
introduced. These spaces are analogues to those based on 51mphces and cubes
in three space variables. Error estimates in L2 and H™® are given.

1. Introduction

We introduce three families of spaces of mixed finite elements over prisms to
approximate the solutions of second order elliptic equations in three variables.
The first family is an analogue of the space described by Nedelec [9] for three-
dimensional problems, but different degrees of freedom are used and the number
of these degrees is lower than required in [9]. The other two families are based on
the spaces recently introduced in [1] and [2] for the same problems and lead to a
much lower number of degrees of freedom than the first family.

In §2 we define the first family and introduce locally defined projections. In
§3 and §4 we give the second and third families and the corresponding projec-
tions. The last section, §5, discusses very briefly some computational and other
aspects of these methods. We shall apply the theory of Douglas and Roberts [8] to
obtain error estimates in L? and H™® for Dirichlet problems on a domain & of the
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form 2=Gx[0,1] with G C R?; appropriate assumptions on the regularity of 9G
will be made where needed.

Certain notations will be employed throughout the paper. A prism whose
base is a triangle in the (x|,xp)-plane with three vertical edges parallel to the
xs-axis will be denoted by K, its boundary will be 8K, n will be the normal to 9K
(vectors will be represented by the mark ~), and e will be a face of K. The space
of polynomials of degree less than or equal to j in three variables will be written as
Pj; Py, o is the space of polynomials of degree m in the two variables x; and x; and
of degree n in the variable x3; Q5 is the space of polynomials of two variables
(x1,X2) of degrees m and n in variables x; and xo, respectively. Denote by E,-(K)
the vector analogue of P;(K) consisting of three copies of P;(K).Let (‘,))k indicate
the inner product in L(K) and <-,>, that in L%(e).

We shall use the elementary differential operators

dp dg
z(xl1x2)¢ = A= —_)’
6X| 6x2

9
Vo = (2% d¢ Bw)

—_— —y —— )

ox, ’ dxq dxj

div(x,,xz)v = i\il_'*' a_w,

6x1 GXQ

divv = Wiy W2, 8Vs

- axl aXQ 6X3

o9 d
curl(x“xﬂ)qJ = (——, - _(p_),
~ 9%, 09X,

cut v = V2 V2 Vi aVs 3V v,

9x; Oxg 9x; Ox; Ox; Ox,

2. Nedelec-type Prismatic Mixed Finite Elements

We now introduce a family of mixed finite elements on the prism K that will
be analogous to those of Nedelec [9].
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DerFntTION 1. Let
(1) VG.K) = {£=(P1,P2,P3)5(P1,P2) € P (K)% pse Py(K)),
(2)  W(.K) = Pij(K).

Let

Bjs1:1(K) = {p € Pjs1;1(K): plc=0 on the three vertical faces},
and set
H,(div,K) = {Xe LP(K): div v e LK)},

where p is any fixed number greater than two. Then, when K has flat faces, we
define IT: H,(div,K)—>V(j,K) by

(2.1a) < (p-IPp) - n,, q >. =0, q € P,_,(e), for the two horizontal faces,

(2.1b) <(p-IPp) - n., q >, = 0, q € Q;;1(e), for the three vertical faces,

(2.1c) (p—(ITp)s, q3)x = 0, q3 € Pi_1;-2(K),

(21d)  ((PL.P)-(IT'P)12s VxmgW)k = 0, w € Pjy;51(K),
(2.1e)  ((pu,P2)—(TP)12; curly )@k = 0, g € Byyy1(K),

where we indicate the third component and the first two components of IT’p by
(II'p)s and (IIp), o, respectively.

—~ ~

Note that, by [4], the relations (2.1a) and (2.1b) are well-defined.

TuEOREM 1.  The projection ID given by Definition 1 is unisolvent and conforming in the
space H,(div,K). Moreover, if IT i is the L2-projection on Pi_1-1(K), then

(22)  M*divp = divil'p, Vp € Hy(div,K).

Proof. First, note that dim(Y(j,K))=j(j+ 1)(j+2)+j(j+1)%/2. Then, the number
of degrees of freedom of types (2.1a},...,(2.1e) are j(j+1), 3j(G+1), -1)j(+1)/2,
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j2(+1)/2—j, and j2(j—1)/2, respectively, so that the number of degrees of freedom
is exactly the dimension of the space V(j,K). Thus, to show the existence of IT/ it
suffices to prove that a vector in V(T,K) having vanishing degrees of freedom
must itself vanish when K is the reference prism having vertices (0,0,0), (1,0,0),
(0,1,0), (0,0,1), (1,0,1) and (0,1,1).

If the degrees of freedom on the faces are zero, then

(2.3) p-n=0.

(This proves the conformity in Hy(div,K), assuming the unisolvence to be de-
monstrated below). It follows from (2.3) that

ps = x3(1—x3)qs, q3 € P19,
and (2.1c) implies that

(24) ps=0.

Using Green’s formula and the degrees of freedom of type (2.1d), we have

/ (div p)2dx = -—/ R-Ydivg dx + f pn div pdy = 0,
K 9K

- £
so that
(2.5) divig x,)p = 0.

Thus, there exists ¢ € Pj,1;; such that

d 9
26) pi="2 p=-"%

>

6x2 6x1

It follows from (2.3) for the vertical faces that we can take =0 on the three
vertical faces, so that @ € B4 1j-); then (2.1e) implies that

pr=0 and‘pg = (,

which with (2.4) means that p=0. Thus, unisolvence is established.
Again using Green’s formula, we see that
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(2.7) / div(R—I'ij)q) dx = —/ (p~IT'p) - grad ¢ dx + f (p~IT’p) - ng dy.
K - ) S ) S

The degrees of freedom are such that the righthand side is zero when ¢ is in
P_ij-1. Thus, (2.2) holds, and the proof is complete.

Now, let 2 be a bounded domain in R* and let K be a boundary prism with
one curved, Lipschitz face lying in the boundary of Q. It is necessary to modify
the definition of I} on such prisms. Let V(j,K) be exactly as above for the ordin-
ary prism. Now, let Hj:ij(div,K)ﬂY(jTK) be determined by the relations

(2.8a) < (B—HJE) "N, q > = 0, fe P, (e) for each flat horizontal face,
(2.8b) < (B—HJB) "De, q > = 0, q € Qj;_i(e) for each flat vertical face,
(2.8¢) (div(E—HjR),w)K =0,we Py,

(2.8d) (B_ng’l)x =0,ve {Ee Y(},K) div B,:O

and u - n. = 0 for each flat face}.

Again, it is easy to see that IT is uniquely determined by (2.8) and that (2.2)
holds for boundary prisms.

We have now the local properties of our spaces V(j,K) and W(j,K). To
construct the spaces globally, we allow a boundary pris?ﬁ K to have one curved
face, which we shall assume Lipschitz. Let {K}=.7}, be a decomposition of the
domain Q into nonoverlapping prisms such that

(2.92a) the intersection of two distin¢t K's in 7, is either a face, an edge, a
vertex, or void;

(2.9b) if KC 2, K has flat faces;
(2.9¢) if diam(K) = h, hy<h;
(2.9d) if ry is the radius of the ball inscribed in K, hy/r,<constant.

Set
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(2.102) V= Y{, = {ue g(div,.Q):EIK € V(i,K), Ke g},
(2.10b) W, = = {we L¥Q): wlx ¢ W(,K), Ke 4},
(2.10c) M;, = Vi X W

Extend the projections /I and IT™ to Hp(div,Q) and L%(9), respectively, as
follows:

(2.11a) I, = Ii; H,(div,Q) — V), satisfies Hh|ﬂp(div,K) = I,
(2.11b)  IT% = II¥: L}(Q) — W), satisfies IT%|rx) = ITY.

The following property of 1T, and IT% results from the local property (2.2):
(2.12) divil, = II%div : ij(div,Q) — Wy

The approximation properties of 1T, and IT%, can also be seen directly from their
local properties:

(2.132)  [ly-Mylo < dlyllb, v € HY(Q), 11,
(2.13b) [w—Ir4w| < cJwll:h™*, w e H(2), 0=, s<j.
3. Prismatic BDDF Mixed Finite Elements
DEeFiNiTION 2. Let
(1) VG.K) =PF(K) + Span[curl(x§*'x3,0,0),
cug(x2x§+’,—x1x§+l,0);
curl( xﬂ %3,0); i=1,...,j];
(2)  W(.K) = Py(K).

LemMa 1. The j+2 polynomial vectors of degree j+1 added to B(K) in Definition 2 are
linearly independent.
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Proof. Suppose that
_il' ci(=x{ %40, 31+ 1)xixdx3) + a(0,x4*! ~(j+1)x4xs)

+ b(j+1)x sk, (j+1)xoxh, —2x§*!) =0

Summing on the first component shows that b=0 and ¢;=...=¢;=0. Then,
the vanishing of the remaining term implies that a=0. -
ExampLE. The space V(1,K) has dimension 15 and consists of B\(K) plus the span of the
three vectors (0,3, 2X2X3) (2x1X9,2X9X3,~2x3), and (~x 2,0, 2X1X3)

Let

Bi+1(K) = {£ € Pj+1(K): &.=0 on the three vertical faces}.
Let p>2. Then, when K has flat faces, we define Hj:I;Ip(div,K)—>Y(j,K) by
(3.1a) < (E_sz{) ‘O, > = 0, q € Pj(e), for the five flat faces,
(3.1b)  (ys—(IPy)s,q3)k = 0, g3 € Pi5(K),
(3.1c) ((w1,p9)—-(I1 )lz,v(x, WK = 0, w e P (K),

(31d) ((1/)1,1/)2) ( )1 2 Curl(xI xz)q) 0, qc¢ BJ+1(K)

THEOREM 2.  The finite element given by Definition 2 is unisolvent and conforming in the
space H(div,K). Moreover, if IT% is the L2—projection on W(,K),

(3.2) H*J'divg{ = divify, y € Hy(div,K).

Proof.  Again the total number of degrees of freedom is equal to the dimension of
V(j,K), since dim(V(j,K))=(>+6j*+13j+10)/2, while

#dof(3.1a) = 5(+1)(j+2)/2
#dof(3.1b) = (j-1)j(j+1)/6
#dof(3.1c) = j(j+1)(+2)/6,

#dof(3.1d) = (j-1)j(+1)/6
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As above, to show the existence of ITJ it suffices to prove uniqueness on the
reference prism. Let all degrees of freedom vanish. Then, the components of y are
of the form

Y = —i___i"l cxitlxd™ + b(j+1)xxh + 1y,
Yo = axd™! + b(j+1)xoxh + 1y,
w3 = —a(j+1)xhxs — 2bxj*! +i=£1 c(i+1)xixdx3 + rs,
where r; € P;(K). Then, (3.1a) applied on x;=0 implies that
r; = x5, 51 € Py (K).
Similarly, (3.1a) applied on x9=0, x3=1, and x,+x,=1 shows that
Iy = X989, 52 € Pj_j(K),
r3 = x383, 53 € P 1(K),
a=0,¢ =..=¢=0,r; = x3(l-x3)q3, q3 € P}y,
b= 0.
Hence, (3.1b) shows that
(3.3) Y3 = 0.

Using Green’s formula and the degrees of freedom of type (3.1c), we have

/(divw)zdx=-fzp~Vdivzpdx+/ v ndivydy =0,
¥ L <L ZEVY

K 9K
so that
(34) diV(xl,xz)ll) = Q.
As for the first family, there exists ¢ € P;4, such that

(3.5) P py=-2%
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It follows from vy € E}j(K) and (3.1a) applied on the vertical faces that ¢ can be
taken to vanish on the three vertical faces, so that ¢ € B;; (K). Then (3.1d)
implies that

¢150and1p230,

which with (3.3) means that y=0.
Again by Green’s formula, we have

(3.6) / div( w—IIJw)qJ dx = —/ (1/)—17J ) V @dx + f (Z—IIJ'ZJ') ‘neg dy.

oK

The degrees of freedom are such that the right-hand side is zero when ¢ €
P;_;(K). This completes the proof.

Boundary elements are allowed to have one curved face. The projection IT
can be defined in a way analogous to (2.8):

(3.7a) < (p-IPy) - n,, q >, =0, q € P_(e), for each flat face,
(3.7b)  (div(y-ITy), w)k = 0, w € P;1(K),
(3.7¢) (w—HJw, vk =0,ve {ue V(,K): divu=0
and u - n. = 0 for each flat face}.
It is clear that IT is defined on boundary elements.
Let 7, ={K} be a decomposition of 2 into prisms satisfying (2.9). Construct
global projections [Ty H p(div, .Q)—)Vh and IT%:L%(2)—W, by piecing together

the appropriate IT%’s and IT%s, respectlvely The following approximation prop-
erties of the projections are easily seen from the local nature of their definitions:

(3.82)  [-TThglo < clylls b*, y € H(Q), Isssj+1.

(3.8b) [w—IT%wlLs < dfiwlsh**™, w € HY(Q), I<r, s<j.

4. Prismatic BDFM Mixed Finite Elements

Denote by Pj(hom,x;,x5) the homogeneous polynomials of degree j in the
variables x; and x,. Then we introduce the third family of mixed finite elements:
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DEeFintTION 3. Let
(1) VGK) = {p=w2v):(¥1,v2) € [P}k,
vs € [PNBj(hom,xi,%;)]lk),

2)  W(,K) = B(K).

ExampLE. The space Y(I,K) has dimension eight and consists of the polynomials
Y1 = apgta;tagxy,
Y2 = bo+bix;+boxy,
Y3 = cotcsxs.

Let p>2 and let K have flat faces. Then we define Hj:gp(div,K)—)X(j,K) by
(4.1a) < (Z—sz) ‘n,q>=0,q¢ P._;(e) for the two horizontal faces,
(4.1b) < (Z—HJE) ‘n,q>.=0,q¢ PN\{*h}|., for the three vertical faces,
(4.1c) (¥s—(Iy)s, qs)x = 0, gs € Py(K),

(41d)  (@n¥2)-(TY)10 VigyW)k = 0, w € Pyy(K),
(4.1e)  ((Y1,¥2)-(IPY)12, curlie @)k = 0, q € Bj1i(K).

THEOREM 3.  The vector element given in Definition 3 is unisolvent and conforming in the
space H(div,K). Moreover, if IT* is the L*~projection on W(j,K),

(4.2)  Mm¥divy = div [Py, Vy € Hy(div,K).

Proof. It can be seen that the dimension of YG,K) and the number of degrees of
freedom are (j*+6j2+9j)/2. Then, it follows from (4.1a-b) that

(43) y-n=0
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which proves the conformity in H(div,K). The proofs of unisolvence and of the
expression of (4.2) are similar to those of Theorem 1.

Boundary elements are again allowed to have at most one curved face. The
projection I can be defined for such elements similarly:
(4.4a) < (y-IDPy) - n,, q >. = 0, q € P_(e), for each flat horizontal face,
(4.4b) < (y-IMy) ‘n,, q>. =0, q¢ Pj\{xj3}|c, for each flat vertical face,
(44c)  (divy-TPy),w)k = 0, w e P (K),
(4.4d) (y-TPyv)x =0, ve {ue V(jK): div u= 0

and u * n. = 0 for each flat face}.

The approximation properties for the globally defined IT, and IT%, are the
same as given in (2.13).

5. The Dirichlet Problem

Consider the Dirichlet problem
(5.1a) Lu=f{ in Q,
(5.1b) u = -—g, ond9Q,

where Lu=—div(a(x)grad u), 2=GX[0,1] with GC R? and 8G being smooth, and

a(x) is a smooth, posit’i}'/e function on the closure of 2. We assume that the prob-

lem (5.1) has a periodic solution in the direction of x5 of period 2. The periodicity

assumption is made to permit the application of the general argument of Douglas

and Roberts [8] to obtain optimal order estimates in Sobolev spaces of negative

index by means of duality; it is not needed for the L? estimates stated below.
Let

(5.2) g=-a ggd u, c(x) = a(x)7,

and factor (5.1a) into the first order system
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(5.3a) cq + grad u = 0,

(5.3b) divgq = f,

for x € Q. The weak form of (5.3) and (5.1b) appropriate for mixed finite element
methods is given by seeking {q, u} € Ij(div,Q)XLZ(Q) such that

(5.4a) (cg, v)=(divv) = < g, v-n >, ve H(div,Q),

(5.4b) (divg, w) = (fw), w e LY(Q).

Let 4}, be a decomposition of £ into prisms and assume that 7, satisfies
(2.9). The mixed finite element approximation {qy, uy} € Vy,XWy is defined as
the solution of the equations

(5.5a) (cqn v)—(divv, up) = < g, v -n> ve Vy,

—~

(5.5b)  (div gn, w) = (fw), we Wi,

The existence and uniqueness of {qy, u,} follow from the general argument
of Douglas and Roberts [8]. Moreover, the error analysis of [3] applies without
modification to any of three spaces M=V, X W)}, corresponding to the above de-
finitions, since the derivation of the estimates depends only on the properties of
the projections 17, and IT%, and the regularity of G. Note that the general argu-
ment of [6] shows that one extra derivative is required of u for s=j—1 estimate and
two for s=j. We now state two theorems as follows.

THEOREM 4.  Let My=V, X Wy, be determined by either Definition 1 or by Definition 3,
and let {qy, un} € My, be the solution of the mixed finite element method (5.5). Then,

cflullh**s, 0=s<j-2, 2=rs],
fhu—uyl| < cJlulle+ 1 h™*, s=j-1, I<rsj,

cllull+2h™ s, s=j, 0=<r<j;
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cljully+ b, 0sssj-1, 1<=rsj,
||~ ~h“—s =5 )

c||u||,+2h’+1, s=j, 0=r<j;

ldivig-gulls < clullssh™, 0<sssj, 0<rs.
Moreover,

NusThullo < clfulob .

THEOREM 5.  Let M=V, XW), be determined by Definition 2, and let {qn,uy,} € My, be
the solution of the mixed finite element method (5.5). Then,

[u—up|l-s < dull;h™*s, 2<r=j, 0<s;,
la—gulls < cllufle+ 0™, 1<esj+1, Oss<j-1,

ldiv(g-gn)lls < cldiv gllh™*, 0=<rsj, 0ssj.

Moreover,
[up-ITAully < cffulfjoh™n0+22),

We have seen that the last two families have a much lower number of degrees
of freedom than the first family for corresponding rates of convergence. We can
post-process the approximate solution as in [3], [1], or [2] to obtain better appro-
ximations for the scalar filed u. Hybridization of the mixed method, alternating-
direction iterative techniques, and superconvergence can be considered in the
same manner as in the papers [1], [2], [7], [6], and [5].
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