
PRISMATIC M I X E D  FINITE ELEMENTS FOR SECOND O R D E R  
ELLIPTIC PROBLEMS (~) 

Z. CHEN (2) . j .  DOUGLAS JR. (2)' 

ABSTRACT - In this paper, three families of mixed finite elements based on prisms are 
introduced. These spaces are analogues to those based on simplices and cubes 
in three space variables. Error estimates in L z and H -s are given. 

I. Introduction 

We introduce three families of spaces of mixed finite elements over prisms to 
approximate the solutions of second order elliptic equations in three variables. 
The first family is an analogue of the space described by Nedelec [9] for three- 
dimensional problems, but different degrees of freedom are used and the number 
of these degrees is lower than required in [9]. The other two families are based on 
the spaces recently introduced in [1] and [2] for the same problems and lead to a 
much lower number of degrees of freedom than the first family. 

I n  w we define the first family and introduce locally defined projections. In 
w and w we give the second and third families and the corresponding projec- 
tions. The last section, w discusses very briefly some computational and other 
aspects of these methods. We shall apply the theory of Douglas and Roberts [8] to 
obtain error estimates in L 2 and H -s for Dirichlet problems on a domain D of the 
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form g2=Gx [0,1] with GC R2; appropriate assumptions on the regularity of 0G 
will be made where needed. 

Certain notations will be employed throughout the paper. A prism whose 
base is a triangle in the (Xl,X2)-plane with three vertical edges parallel to the 
x3-axis will be denoted by K, its boundary will be OK, n will be the normal to OK 
(vectors will be represented by the mark ~) ,  and e will be a face of K. The  space 
of polynomials of degree less than or equal toj in three variables will be written as 
Pj; Pm,n is the space ofpolynomials of degree m in the two variables xt and x2 and 
of degree n in the variable x~; Qm,. is the space of polynomials of two variables 
(xt,x2) of degrees m and n in variables xl and x2, respectively. Denote by ~ (K) 
the vector analogue of Pj (K) consisting of three copies of Pj (K).Let (',')K indicate 
the inner product  in L2(K) and < ' , '>e  that in L2(e). 

We shall use the elementary differential operators 

Oxl Ox2 

= ( ) ,  
Oxt Ox2 Ox3 

d i v , . . , V  = OV[+ OV2, 
, ~, v ~  OXl Ox2 

divV = 0Vt.+ 0V____22+ OV3 
Oxl Ox2 Ox3 

curb~ + ~ o =  (O~~ _ O~o), 
~ k  I~A2J 

Ox2 Oxl 

curl V = ( OV3 OV20Vl  OV30V2 OV1) 

~ Ox2 Ox3 Ox3 Oxt Oxl Ox 2 

2. Nedelec-type Prismatic Mixed Finite Elements 

We now introduce a family of mixed finite elements on the prism K that  will 
be analogous to those of Nedelec [9]. 



DEFINITION 1. 

(1) 

(2) 

for Second Order Elliptic Problems 

Let 

V(j,K) = {P=(pl,P2,p3):(Pl,P2) ~ Pj,i-I(K) 2, P3 ~ Pj-ld(K)}, 

W(j,K) = Pj_Ij_I(K). 

Let 

Bj+~j_~(K) = {p e Pj+Ij-I(K): p ] ~ 0  on the three vertical faces}, 

and set 
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Hp(div,K) = ( v c  LP(K): d i v v r  L2(K)}, 

where p is any fixed number greater than two. Then, when K has flat faces, we 
define Hi: Hp(div,K)--~V(j,K) by 

(2.1a) < (p-HJp) �9 ne, q >e = 0, q S Pj_l(e), for the two horizontal faces, 

(2.1b) < ( p - - - H i p )  " n..y, q >~ = 0, q ~ Qjj_l(e), for the three vertical faces, 

(2.1c) (pz---(HJp..)3, q~)K = 0, q3 C Pj_Ij_z(K), 

(2.1d) ((pbp2)-(/-/Jp)1.2, ~(x,,x2)W)z = 0, w r Pj-Ij-I(K), 

(2.1e) ((pbp2)-(/-/Jp.),,2 , curl/x,,x2)q)K = 0, q r Bj+Ij-I(K), 

where we indicate the third component and the first two components of Hip  by 
(Hip...)3 and (HJp..)x,2, respectively. 

Note that, by [4], the relations (2.1 a) and (2.1 b) are well-defined. 

THEOREM 1. The projection IlJ given by Definition 1 is unisolvent and conforming in the 
space Hp(div,K). Moreover,/f/'/*J/s the L2-projection on Pj_Ij_i(K), then 

(2.2) H*Jdivp = div/'/Jp, Vp e H.p(div, K). 

Proof. First, note that d im(V( j ,K) )= j ( j+ l ) ( j+2)+j ( j+  1)2/2. Then, the number 
of degrees of freedom of types (2.1a),...,(2.1e) arej( . j+l) ,  3j(j+l),  (.j-1)j(j+l)/2, 
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j2(j + 1)/2-j, and j2(j-1)/2, respectively, so that the number of degrees of freedom 
is exactly the dimension of the space V(j,K). Thus, to show the existence of Hi it 
suffices to prove that a vector in V(j,K) having vanishing degrees of freedom 
must itself vanish when K is the reference prism having vertices (0,0,0), (1,0,0), 
(0,1,0), (0,0,1), (1,0,1) and (O,l,1). 

If  the degrees of freedom on the faces are zero, then 

(2.3) p . ~ =  0. 

(This proves the conformity in Hp(div,K), assuming the unisolvence to be de- 
monstrated below). It follows from (2.3) that 

and (2.1c) implies that 

(2.4) p3 -- 0. 

P3 = xs(l-x3)qs, q3 ~ Pj-ld-2, 

(2.5) div(xl,x2)p ~ O. 

Thus, there exists q~ e Pj+l,j-I such that 

(2.6) Pl Oq~ Oq~ 
= - - ,  P2 = - 

O x 2  Oxl 

It follows from (2.3) for the vertical faces that we can take q~=0 on the three 
vertical faces, so that ~ e Bj+tj-I; then (2.1e) implies that 

Pl m 0 and P2 m 0, 

which with (2.4) means that p-~0. Thus, unisolvence is established. 
Again using Green's formula, we see that 

Using Green's formula and the degrees of freedom of type (2.1d), we have 

/ <d~v ~ d ~  = - / < ,  Zd~v ~ dx +/~ _ ~ __  ~ n ~ i v , d , = O ,  _ 

s o  that 
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(2.7) f K d i v ( j ~ - - l l J p ) c p d x = - f K ( P - I l J p ) . g r a d f o d x + f o ~  ~ ~ ~, (p--/TJp) �9 nq~ d y . ~  ~ 

The degrees of  freedom are such that the righthand side is zero when  q~ is in 
Pj-lj-1- Thus,  (2.2) holds, and the proof  is complete. 

Now, let 32 be a bounded domain in R 3 and let K be a boundary  pr ism with 
one curved, Lipschitz face lying in the boundary  of 32. It is necessary to modify 
the definition of/ ' / j  on such prisms. Let V(j ,K) be exactly as above for the ordin- 
ary prism. Now, let/-/J:Hp(div,K)--}V(j,K) be determined by the relations 

(2.8a) 

(2.8b) 

(2.8c) 

(2.8d) 

< (p-/'/Jp..) �9 n~, q > e m  0, f~ Pj-l(e) for each flat horizontal  face, 

< (p-Hip.) �9 n y, q >e  = 0, q r Qjj_l(e) for each flat vertical  face, 

(div(p--HJp..),w)~ = 0, w e Pj-ld-h 

(p---/-/Jp,v)K = 0, V e  {U~ V(j ,K):  d i v u = 0  

and u �9 ne = 0 for each flat face}. 

Again, it is easy to see that/TJ is uniquely determined by (2.8) and  that (2.2) 

holds for boundary  prisms. 
We have now the local properties of our spaces V ( j , K ) a n d  W( j ,K) .  To 

construct the spaces globally, we allow a boundary  prism K to have one curved 
face, which we shall assume Lipschitz. Let ( K } = . ~ h  be a decomposi t ion of  the 
domain 32 into nonoverlapping prisms such that 

(2.9a) the intersection of two distinct K ' s  in Yh is either a face, an edge, a 

vertex, or void; 

(2.9b) if K C 32, K has flat faces; 

(2.9c) if d iam(K)  = hk, hk~<h; 

(2.9d) if rk is the radius of  the ball inscribed in K, hk/rk~<constant. 

Set 
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(2.10a) Vh = V~, = {u ~ H(div,t2): u[K e V(j,K), K ~ #-h}, 

(2.10b) Wh = W~ = {w ~ L2(g2): wlK ~ W(j,K), K ~ Y-h}, 

(2.10c) Mh = Vh X Wh. 

Extend the projections//J and H *j to Hp(div,g2) and L2(g2), respectively, as 
follows: 

(2.11a) /Th = //~: Hp(div,s ~ Vh s a t i s f i e s / ' / h [ U p ( d i v , K  ) ----- /-/J, 

(2.11b) //*h = //h'J: L2(f2) --) Wh sa t i s f ies  /'/*h[L2(K) = /--/*J. 

The followingproperty of Hh and H*h results from the local property (2.2): 

(2.12) div//h = H*hdiV : Hp(div,g2) ~ Wh. 

The approximation properties of Hh and H*h can also be seen directly from their 
local properties: 

(2.13a) II -n  Jlo cll jl hL Hr(~ '~) ,  l ~ r ~ j ,  

(2.13b) Ilw-//*hWl[_~ ~ cHwllrh ~+~, w ~ W(~2), 0~r,  s~j. 

3. Prismatic BDDF Mixed Finite Elements 

DEFINITION 2. Let 

(1) V(j,K) = Pj(K) + Span[curl(x~+lx3,0,O), 

curA(x2xi § 

curl(0,xi+lx~-~x3,0); i=  l,. . .j]; 

(2) W(j,K) = Pj_I(K). 

LEmaA 1. The j+2 polynomial vectors of degreej+ l added to ..~(K) in Definition 2 are 
linearly independent. 
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Proof Suppose that 

/~ ci(-x~+tx~-i,0,(i+ 1)xilx~-ix3) + a(0,x~+t,-(j+ l)x~x3) 
i----1 

+ b(j+l)x ,x~,  ( j+l)x2x~,-2x~ +') = 0. 

Summing on the first component shows that b=0 and cl=. . .=cj=0. Then, 
the vanishing of the remaining term implies that a=0. 
EXAMPLE. The space V(1,K) has dimension 15 and consists ofPx (K) plus the span of the 
three vectors (0,x~,-2x2~), (2xlx2,2x2x~,-Zxa2), and (-x~,0,2~'lx3). 

Let 

Bj+I(K) = (~ ~ Pj+I(K): ~]e-~0 on the three vertical faces}. 

Let p>2. Then, when K has fiat faces, we define HJ:H.(div,K)--.V(j,K) by 

(3.1a) < (~/...-HJ~) " n.~, q >e = 0, q r Pj(e), for the five flat faces, 

(3.1b) (v2r-(/ZJZ)3,qa)K = 0, q3 r Pj-2(K), 

(3.1c) ((~p,,v/2)-(HJ~),,2,~(x,,x,)w)K = 0, w (Pj - I (K) ,  

(3.1d) ((~pb~p2)-(/TJ~)x,2, curl(x,,x,)q)i~ = 0, q ~ Bj+I(K). 

TnzogEta 2. The finite element given by Definition 2 is unisolvent and confirming in the 
space H(div,K). Moreover,/fH *j /s the L 2-projection on W(j,K), 

(3.2) n*Jdivz = divr~0, V) ~ Hp(div,K). 

Proof. Again the total number of degrees of freedom is equal to the dimension of 
V(j,K), since dim(V(j,K))= (j3+6j2+ 13j+ 10)/2, while 

#dof(3.1a) = 5(j+ 1)(j+2)/2, 

#dof(3.1b) = G-1)j(j+I)/6, 

#dof(3.1c) = j ( j+l ) ( j+2) /6- j ,  

#dof(3.1d) = ( j- l) j( j+l) /6.  
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As above, to show the existence of I/j it suffices to prove uniqueness on the 

reference prism. Let all degrees of freedom vanish. Then, the components o f ~  are 

of the form 

~0, = - J ;  cix~+lxd -+ + b(j+llxtxJ3 + r,, 
i = l  

~P2 = a-x~ +I + b(j+l)x2xJ3 + r2, 

~3 = - a ~ j + l ) x ~ x 3 -  2bx;+' + } c i ( i+l)xixd-% + r3, 
i = l  

where ri r Pj(K). Then,  (3.1a) applied on xx=0 implies that 

rl = xtsb Sl ~ Pj_I(K). 

Similarly, (3.1a) applied on x2=0, x3 = l, and x l + x 2 = l  shows that 

r2 = x2s2, s2 ~ Pj_~(K), 

r3 = x3s3, s3 ~ Pj_I(K), 

a = 0, cl = ... = cj = 0, r3 = x3(1-x3)q3, q3 e Pj-2, 

b = 0 .  

Hence, (3.1b) shows that 

(3.3) ~03 - 0. 

Using Green's formula and the degrees of freedom of type (3.1c), we have 

f K ( d i v ~ p ) 2 d x = - f K ~ ' V d i v ~ d x + f ~ - -  -- -- -- K-~p 'nd iv~pdy=O' - -  _ 

so that 

(3.4) div,x x ,lp -- O. 
x l~ 2 ] ~  

As for the first family, there exists q0 r Pj+t such that 

(3.5) ~P~ = 0r g ' 2 = -  0r 
Ox~ Oxt 
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It  follows from ~ e P j ( K )  and (3.1a) applied on the vertical faces tha t  q~ can be 
taken to vanish on the three vertical faces, so that q~ ~ Bj+I(K). T h e n  (3.1d) 
implies that  

41 --- 0and~02-1  0, 

which with (3.3) means that ~0---0. 
Again by Green's  formula, we have 

(3.6) fKdiV(~-HJ~)q~dx=-fK(~-'-HJ~)'~dx+foK (~0-HJ7;) " n q~ d ~ " - -  ~ 

The  degrees of freedom are such that the r ight-hand side is zero when q~ e 
Pj-x (K). This completes the proos 

Boundary  elements are allowed to have one curved face. The  projection/TJ 
can be defined in a way analogous to (2.8): 

(3.7a) < (~p...-/-/J~) �9 n.~, q >e = 0, q ~ Pj_l(e), for each flat face, 

(3.7b) (div(~0-/-/J~), w)K = 0, w r Pj_I(K), 

(3.7c) (7>-/7J~, V.)K = 0, ve {u~ V(j,K): divu=0 

and u �9 ne = 0 for each flat face). 

It is clear that  H j is defined on boundary elements. 
Let .Y-h = {K} be a decomposition of g2 into prisms satisfying (2.9). Construct  

global projections./'/h:Hp(div,g2)---~gh and /-/*h:L2(g2)--->Wh by piecing together 
the appropriate  HJ's and H*~'s, respectively. The following approximation prop- 
erties of the projections are easily seen from the local nature of their definitions: 

(3.8a) II nh J0 ClI II  h s, l~s~j-I-1.  

(3.8b) Ilw-n* wll-  ~< cHw//~h ~+~, w ~ H~(D), l~<r, s~j .  

4. Prismatic BDFM Mixed Finite Elements 

Denote by Pj(hom,xl,x2) the homogeneous polynomials of  degree j in the 
variables xl and x2. Then  we introduce the third family of mixed finite elements: 
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DEFINITION 3. Let 

(1) V(j,K) -- (~--(W~,W2,~O3):(~,~o2) e [Pj\{x~}]2l~, 

~P3 

(2) W(j ,K)  = Pj_I(K). 

EXAMPLe.. 

(4.1a) 

(4.1b) 

(4.1c) 

(4.1d) 

(4.1e) 

[PjN, Pj (hom,xbx2) ] [K }, 

The space V(1,K)  has dimension eight and consists of the po~nomials 

~Pl = ao+al+a2x2,  

~P2 = bo+blxl+b2x2,  

7)3 = co+c3x3. 

Let p>2  and let K have fiat faces. Then we define m:Hp(div ,K)~V(j ,K)  by 

< (~-/-/J~) �9 n e, q >e = 0, q ~ Pj-l(e) for the two horizontal  faces, 

< (7>-/7J~) �9 n e, q >~ = 0, q e Pj\{x~}Ie, for the three vertical  faces, 

(~P3-(HJ~)3, q3)K = 0, q3 e Pj-2(K), 

((q,a,~P2)-(/-/J~)l,2, V(x,,x,)W)K = 0, w e Pj-2(K), 

((~pl,~p2)--(//J~)l,2, curl(x,,x,)q)K = 0, q e Bj+x(K). 

THEOREM 3. The vector element given in Definition 3 is unisolvent and conforming in the 
space H(div ,K) .  Moreover,/f//*J/s the LL-projection on W(j,K),  

(4.2) H*Jdiv~ = div/ ' / J~,  V ~  ~ Hp(div,K).  

Proof. I t  can be seen that  the dimension of V(j ,K) and the n u m b e r  of  degrees of 
f reedom are (j3+6j2+9j)/2.  Then ,  it follows~rom (4.1a-b) that  

(4.3) 7) " n = 0, 
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which proves the conformity in H(div ,K) .  The proofs of  unisolvence and of the 
expression of  (4.2) are similar to those of  Theorem 1. 

Boundary  elements are again allowed to have at most one curved face. The  
projection/-/J can be defined for such elements similarly: 

< (7.~--HJ~) �9 n.:, q >~ = 0, q r Pj_l(e), for each flat horizontal  face, (4.4a) 

(4.4b) 

(4.4c) 

(4.4d) 

< (7~-HJ~) �9 n y, q >e = O, q e Pj\{x~}l~, for each flat vertical face, 

(div(y-~--/'/J~),W)K = 0, w e Pj-I(K), 

(7>-/-/J~,v)K = 0, V e  {U~ V(j ,K):  d i v u =  0 

and u �9 ne = 0 for each flat face}. 

The  approximation properties for the globally defined H h and H*h are the 
same as given in (2.13). 

5. The Dirichlet Problem 

Consider  the Dirichlet problem 

(5.1a) Lu = f, in D, 

(5.1 b) u = - g, on OD, 

where L u = - d i v ( a ( x ) g r a d  u), D = G  x [0,1] with G C R 2 and 0G being smooth,  and 
a(x) is a smooth, positive function on the closure of D. We assume that  the prob- 
lem (5.1) has a periodic solution in the direction ofxa of period D. The  periodicity 
assumption is made to permit the application of the general a rgument  of  Douglas 
and Rober ts  [8] to obtain optimal order estimates in Sobolev spaces of  negative 
index by means of  duality; it is not needed for the L 2 estimates stated below. 

Let  

(5.2) q = -  a grad u, c(x) = a(x) -1, 

and factor (5.1a) into the first order system 
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(5.3a) 

(5.3b) 
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c q + g r a d u  = 0 ,  

div q -- f, 

for x ~ D. The weak form of (5.3) and (5. l b) appropriate for mixed finite element 
methods is given by seeking {q_ u} ~ H(div,g2)xL2(f2) such that 

( 5 . 4 a )  

(5.4b) 

(cq, v)-(div v) = < g, v -  n >,  v r H(div,g2), 

(divq, w) = (f,w), w ~ L2(y2). 

Let ~h be a decomposition of g2 into prisms and assume that ~-h satisfies 
(2.9). The mixed finite element approximation {qh, Uh} ~ VhXWh is defined as 
the solution of the equations 

(5.5a) 

(5.5b) 

(c q.h, v)-(divv_ Uh) = < g, V" n >,  v e Vh, 

(div q..h, w) = (f,w), w ~ Wh. 

The  existence and uniqueness of {qh, Uh} follow from the general argument  
of Douglas and Roberts [8]. Moreover, the error analysis of [3] applies without 
modification to any of three spaces Mh=VhXWh corresponding to the above de- 
finitions, since the derivation of the estimates depends only on the properties of 
the projections Hh and H*h and the regularity of G. Note that the general argu- 
ment  of [6] shows that one extra derivative is required ofu for s=j-1 estimate and 
two for s=j.  We now state two theorems as follows. 

THEORE~ 4. Let MhmVhXWh be determined by either Definition 1 or by Definition 3, 
and let {qh, Uh} r Mh be the solution of  the mixed finite element method (5.5). Then, 

IIo-R,,L 

cllullrh % 

cllullr_,.,h 

cllullr+2h % 

O~s~j-2,  2~ r~ j ,  

s=j-1,  1 ~ r ~ j ,  

s=j,  O~r~j;  
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cllUllr+th r+', O~<s~<j-1, l~r~<j, 

cllulL2h r+j, s=j, O~<r~<j; 

Ildiv(q-qh)lL -< cllull~+~h ~+*, O-<s-<j, O-<r-<j. 

Moreover, 

THEOREM 5. 

Iluh-n*hullo ~ cllulh+~hJ § ~. 

Let M h = ! h X W  h be determined by Definition 2, and let {qh,ut,} 
the solution of the mixed finite element method (5.5). Then, 

[[U-Uhll-~ ~< cllUllrhr+L 2<~r~<j, O~<s~<j, 

Ih-qhlL -< clIUlIr+ 1 hr+s, 1 <~r~<j + 1, O<~s~<j--l, 

]]div(q-q2)]~ ~< c[[div qJ~hr+% O<~r<~j, O~<s~<j. 

Mh be 

Moreover, 

Ilu~-ZZ*~u[Io ~ cllulb+2h ~i"ci+2'2j). 

We have seen that the last two families have a much lower number of degrees 
of freedom than the first family for corresponding rates of convergence. We can 
post-process the approximate solution as in [3], [1], or [2] to obtain better appro- 
ximations for the scalar filed u. Hybridization of the mixed method, alternating- 
direction iterative techniques, and superconvergence can be considered in the 
same manner as in the papers [1], [2], [7], [6], and [5]. 
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