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1. Introduction 

We consider the elliptic problem 

V . a =  f, g = - a V u  in C2 
u = o  on aC2 
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where a ( x )  is a uniformly positive definite, bounded, symmetric tensor, f ( x )  E L2(S2), 
and S2 is a bounded domain in R3 with a polygonal boundary aS2. 

Problems of this type arise in various groundwater applications, in particular, in modeling 
of fluid flows in highly heterogeneous and anisotropic porous media in fairly complex 
domains Q. The first equation in (1.1) expresses mass conservation in an arbitrary volume 
in S2. This is a fundamental property which is required for any solution method for (1.1) 
related to groundwater applications. In such applications the transport of various species 
in the flow is driven by the Darcy velocity O.  Accurate computing of ~7 is another very 
desirable feature of a numerical method for solving (1.1). Finite differences with harmonic 
averaging of the coefficients have been extensively used for such applications. For problems 
in domains covered by rectangular grids with jumps in a ( x ) ,  which are aligned with the 
grid partition, the finite difference method is both accurate and locally conservative. Owing 
to [32] it is known that this scheme can be obtained from the lowest order mixed finite 
element method with numerical integration. Now it is accepted that the mixed methods 
provide a systematic approach for deriving locally conservative and accurate discretizations 
for problems in general domains with highly inhomogeneous coefficients a(x) .  

Let ( . , .)s denote the inner product in L 2 ( S )  (we omit S if S = a), and let 

V = H(div; 52) = { u  E (L2(R))3 : V . u E L2(S2)] 

w = L2(S2) 

Then (1.1) is formulated in the following mixed form for the pair (0, u )  E V x W: 

( V .  (3, w >  = ( f ,  w ) ,  

(a-la, u )  - ( u ,  v . u )  = 0, 

v w  E w 
vu f v (1.2) 

To define a finite element method, we need a partition 5-/7 of Q into elements r ,  say, 
simplices, rectangular parallelepipeds, and/or prisms. We assume that adjacent elements in 
g h  completely share their common edge or face; 8 y h  denotes the set of all interior faces 
e of 5-h .  

Let v h  x Wh c V x W be a standard mixed finite element space for second order elliptic 
problems defined over Th (see, e.g., [8,9,10,13,29,30,31]). Then the mixed finite element 
approximation to (1.1) is to find (Oh, U h )  E vh x wh: 

(v ' f f h ,  w) = ( f ,  w ) ,  

(U-lCTh, U )  - (Uh, v . U )  = 0, 

V W  E w h  

v u  E v h  
(1.3) 

Problem (1.2) is a typical saddle-point problem. Its finite element approximation (1.3) 
represents a linear algebraic system with a symmetric but indefinite matrix. Various precon- 
ditioning algorithms for solving saddle-point problems have been proposed and studied in 
the last decade (see, e.g., [3,5,6,16,18,33,35]). However, their efficiency strongly depends 
on the geometry of the domain, the coefficient matrix a(x) ,  and the type of finite elements. 
For example, the method implemented by Ewing and Wheeler [ 181 eliminates the velocity 
and reduces system (1.3) to its Schur complement form. This method can be very efficient 
for rectangular domains and rectangular finite elements. A particular multigrid realization 
of this method for a ( x )  being a diagonal tensor is given in [7]. The method of Bramble and 
Pasciak [5] introduces a new inner product which transforms the indefinite problem (1.3) 
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to a definite one. This approach combined with preconditioned conjugate gradient itera- 
tions can be applied for general equations and finite element spaces. The method studied by 
Rusten and Winter in 1331 (modified and improved in [35]) uses the preconditioned minimal 
residual iteration method for the indefinite system. The inexact Uzawa method studied in 
[16,6] is another general iteration method for (1.3). The efficiency of the discussed algo- 
rithms in all these papers depends on the choice of the preconditioner. This in turn is a 
non-trivial problem for highly inhomogeneous media with orthotropy and domains S2 with 
complex geometry. 

The main objective of this paper is construction, study, and testing of optimal (or almost 
optimal) preconditioners for the algebraic problem (1.3) with symmetric full tensors a (x) 
and possibly large jumps and anisotropy. Our analysis is restricted to domains which are 
topologically equivalent to parallelepipeds or are unions of such subdomains. The proposed 
construction uses the hybridized version of (1.3) and its equivalence to certain modifications 
of the non-conforming Galerkin approximation to (1.1) (see, e.g., [1,2,11,12,27]). Below 
we explain our approach in detail. 

Since v h  C V the vector functions in v h  have normal components which are continuous 
across the interelement boundaries. Following [2], we relax this constraint on v h  by defining 

c h  = (8 E L2(n)  : U1r E V h ( t )  for each Y E $ h ]  

where v h ( r )  = V h l T .  Further we shall also use the notation W h ( t )  = Whir. In order 
to impose the continuity of the normal components of the vector function in v h  we use 
Lagrange multipliers. For this purpose we define the space of the Lagrange multipliers: 

where u is the unit normal to e. To establish a relationship between the mixed method and 
the non-conforming Galerkin method, following [ll], we introduce the projection of the 
coefficient tensor a- ' (x)  on w h ,  i.e., Crh = P h a - l ,  where P h  is the L*-projection onto w h .  

This will lead to a new approximation of (1.2) which we shall show is equivalent to (1.3) 
with u-' replaced by P h a - ' .  This modification simplifies the analysis of the method and 
produces an approximate solution which is O ( h )  close to the solution of (1.3). 

The hybrid form of the mixed finite element method for (1.2) is: find ( O h ,  U h ,  A h )  E 
&, X w h  X Lh such that 
- 

c (v ' a h ,  W ) T  = (ft w), V W  E w h  
T E d h  

(1.4) ( a h a h ,  u )  - [ ( U h ,  v .  U ) r  - ( A h .  u .  v r ) a r \ a ~ ]  = 0, vu E f h  

Note that the last equation in (1.4) enforces the continuity requirement mentioned above, so 
in fact O h  E v h .  In [2,27] it was shown that in the case of the lowest order Raviart-Thomas 
elements the solution to (1.4) can be recovered from the Galerkin method which uses 
non-conforming linear elements augmented with bubble functions. In this paper, following 
[1,12,14], we show that the linear system generated by (1.4) can be algebraically condensed 
to a symmetric and positive definite system for the Lagrange multiplier h h .  It is then shown 
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that this linear system can be obtained from the Galerkin method for non-conforming linear 
elements without any bubbles. 

It should be pointed out that in many groundwater applications a ( x )  has large jumps 
and domain 52 may have fairly complex geometry. A classical general method for pre- 
conditioning such problems can be based on incomplete factorization. For theoretical and 
experimental comparison of a variety of realizations of this approach we refer to 1281. 

Multilevel/multigrid methods for conforming finite element approximations of various 
elliptic problems including cases with large jumps and anisotropy (in 2-D) are studied in 
[4,20,21,25,26,36]. Most of the methods discussed there can be extended to 3-D elliptic 
problems. Our approach can be viewed as an extension of these methods and algorithms to 
3-D mixed and non-conforming finite element approximations. 

In this paper the suggested method for solving (1.3) involves two steps: (1) solving the 
system for the Lagrange multipliers which is shown to be produced by the Galerkin method 
using linear non-conforming Raviart-Crouzeix finite elements; (2) recovery of the mixed 
finite element approximations ah and Uh from the Lagrange multipliers. Since the second 
step uses explicit formulas for recovering Oh and uh over each element, only the first step 
is computationally expensive. 

The construction of the preconditioner for the Lagrange multipliers system can be sum- 
marized as follows. We introduce the partition of the domain into distorted parallelepipeds 
(called super-elements). This is our coarse level. These super-elements are split into 
simplices, and the approximation (1.4) is done on this triangulation. The construction of 
the preconditioner is done in three main stages. 

First, we introduce a two-level preconditioner for the system of the Lagrange multipliers 
which leads to a block ‘seven-point’ algebraic system with 2 x 2 blocks on the coarse 
level. The condition number of the preconditioned matrix is estimated effectively and does 
not depend on the mesh-size parameter h. The explicit bounds of the spectrum of the 
preconditioned matrix are obtained using the super-element approach. 

On the second stage, introducing a special rotation we reduce the block seven-point alge- 
braic system to a series of plane problems and an exact seven-point-scheme problem with 
one unknown per parallelepiped. The constructed preconditioners are spectrally equivalent 
to the original stiffness matrix and their arithmetic cost depends on the method of solving 
the latter seven-point problem on the coarse level. 

In the last step we use an algebraic multigrid method [4,21,25,36] to solve this seven- 
point problem. It is shown that the application of such solvers for the problems on the coarse 
level gives the preconditioner with an optimal complexity. Explicit estimates of condition 
numbers are also obtained for these multilevel preconditioners. 

The rest of the paper is organized as follows. In Section 2 we consider an elimination 
procedure for (1.4). Then, in Section 3 we develop multilevel preconditioners for the re- 
sulting linear system. There we analyze the case where a ( x )  is a diagonal tensor and 52 is 
a regular parallelepiped. In Section 4, we extend these results to the case in which a ( x )  is 
a full tensor and S2 is a rather general domain. Finally, in Section 5 extensive numerical 
results are presented for both regular and logical parallelepiped domains to illustrate the 
present theory. 
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2. The mixed finite element method 

We now consider the most useful partition g h  of C2 into tetrahedra. The lowest-order 
Raviart-Thomas-Nedelec space [29,31] defined over r E gh is given by 

v h w  = CB ( ( x ,  Y ,  z ) P ~ ( ~ ) )  
Wh(r)  = Po(r) 
L h ( e )  = PO@) 

where P; (t) is the restriction of the set of all polynomials of total degree not bigger than 
i 2 0 to the set r E gh. For each r in gh, let 

where ( r (  denotes the volume of r .  Also, set a h  = (Crij) and ffhlr  = (DTI, ffr2,ffr3) = 
(4: + t r x ,  q: + t r y ,  q: + t r z ) .  Then, by the first equation of ( 1 4 ,  it follows that 

tr = f r l 3  (2.1) 

Now, take u = (1 ,0 ,0)  in r and u = 0 elsewhere, u = (0, 1,O) in r and u = 0 elsewhere, 
and u = (0, 0, 1) in r and u = 0 elsewhere, respectively, in the second equation of (1.4) to 
obtain 

4 

Cr"D ', 1 + [ e l l  U L ( j )  Ahle t  = 0, j = 1, 2, 3 (2.2) (g r1  ) r i= l  

where lei1 is the area of the face e i ,  and u i  = (u:"), u : ' ~ ) ,  u:'~'). Let /3 = (pi,) = 
((a;,, l)r)-l. Then (2.2) can be solved for q i :  

Let the basis in L h  be chosen as usual. Namely, take p = 1 on one face and = 0 elsewhere 
in the last equation of (1.4). Then, apply (2.1) and (2.3) to see that the contributions of the 
tetrahedron r to the stiffness matrix and the right-hand side are: 

where TJ~ = l e i  1.; and Jrf = f r ( x ,  y ,  z)/3. Hence we obtain the system for A h :  

AA = F (2.4) 
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After the computation of A h ,  we can recover a h  via (2.1) and (2.3). Also, if U h  is required, 
it follows from the second equation of (1.4) that 

The above result is summarized in the following lemma. 

Lemma 2.1. Let 

f where J f  is such that J f  15 = J ,  . Then Ah E %h satisfies 

where 
%h = { P  E Lh : @ I e  = 0 for each e c an) 

Note that there are at most seven non-zero entries per row in the stiffness matrix A.  Also, 
it is easy to see that matrix A is symmetric and positive definite; moreover, if the angles of 
every r in g h  are not bigger than n/2, then it is an M-matrix. Finally, (2.4) corresponds to 
the Pi non-conforming finite element method system, as described below. This equivalence 
is used to construct our multilevel preconditioners later. 

Let 
Nh = { u  E L ~ ( s ~ )  : ulT E P ~ ( T > ,  VT E u is continuous at 

the barycenters of interior faces and 
vanishes at the barycenters of faces on X2) 

(2.6) 

Proposition 2.1. Let f h  = Ph f. Then (2.4) corresponds to the linear system produced by 
the problem: find $h E Nh such that 

ah($h, bp) = ( f h l  bp), vbp E Nh (2.7) 

whereah($h, bp) = ~ r & - , ( ~ ~ i V $ h 3  Vbp)r. 

Proof From the definition of the basis (q:) of Nh, for each r E g h  we have 

qi I ,  = --V: . ( ( x ,  y, z )  - pr), h ' '  
i # 1 

151 

where p~ is the barycenter of face I. Then, we see that 

(a;%$;, v$;), = i7; j3 iTJl 
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which is A,.,,. Also, note that for any linear functions @ and $J on a tetrahedron r E g h  

where the pi’s  are the barycenters of the faces of t, so that 

3. Multilevel preconditioners over a cube 

In this section we consider multilevel preconditioners for (2.4) based on partitioning regular 
parallelepipeds into tetrahedral substructures, following the ideas in [ 17,231. Here we treat 
the case where $2 is a unit cube and a ( x )  is a diagonal tensor. A general case is considered 
in the next section. 

3. I .  Two-level preconditioners 

Let %h = {C( i ,J ,k ) }  be a partition of 52 into uniform cubes of length h = l / n ,  where 
( x i ,  y j ,  Z k )  is the right back upper corner of the cube C(i . j .k) .  Next, each cube C(ivj,k) is 
divided into two prisms PI = and P2 = Pii‘J’k’ as shown in Figure 1. The resulting 
partition of 52 is denoted by p h .  Finally, we divide each prism into three tetrahedra as 
illustrated in Figure 1 and denote this partition of 52 into tetrahedra by T h .  Clearly, there are 
various ways to subdivide a cube into two prisms. In our approach we partition each cube 
by plane parallel to the ‘z-direction’. The importance of such partitioning will be explained 
later. 

Let W c , h  be the space of piecewise constants associated with % h ,  and P c , h  be the L2- 
projection onto W c , h .  To define our preconditioners, we introduce f f h  = P c J U - l  in the 
hybrid form (1.4) instead of f f h  = P h U - ’ .  Obviously, Lemma 2.1 and Proposition 2.1 are 
still valid for this modification since g h  is a refinement of % h .  With this modification, a;’ 
is a constant on each cube. For notational convenience, we drop the subscript h and simply 
write a;’ = diag(a1, u2, a3). 

Let N h  be the non-conforming finite element space associated with %h as defined in 
(2.6), and let its dimension be N .  All the unknowns on the faces of a52 are excluded. For 
any function v h  E Nh, we denote by v E (WN the corresponding vector of its degrees of 
freedom. Introduce the inner product 

( ’  

(u, v ) N  = U h ( p i )  v h ( p i ) ,  u h ,  v h  E Nh (3.1) 
p i E a 5 h  

where the pi’s are the barycenters of the interior faces. By (2.8) the norm induced by (3.1) 
is equivalent to the L2-norm on 52. 

For each prism P = P ( i * j * k )  E P h ,  denote by .!f[ the subspace of the restriction of the 
functions in N h  onto P .  For each v E xi, we indicate by vp its corresponding vector. 
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Figure 1. The partition of a cube into prisms and tetrahedra 

The dimension of Nhp is denoted by N P .  Obviously, for a prism without faces on as2 its 
dimension is N p  = 10. 

The local stiffness matrix A' on prism P E PQ~ is given by 

Then the global stiffness matrix is determined by assembling the local stiffness matrices: 

(3.3) 

Now we consider a prism P of a cube that has no face on the boundary aQ and enumerate 
the faces s j ,  j = 1, . . , , I0  of the tetrahedra in this prism as shown in Figure 2. Then the 
local 

3h 
2 

AP= - 

- a 2  0 0 0 0 0 
O U l O  0 0 0 
0 O U ]  0 0 0 
0 0 O a . 2  0 0 
0 0 0 O a 3  0 
0 0 0 0 O a 3  
0 0 - a 1  0 0 0 
0 0 0 - a 2  0 0 

-a2 0 0 0 -a3 0 
0 -a1 0 0 0 -a3 

0 0 -a2 0 
0 0 0 -01 

-a1 0 0 0 
0 -a2 0 0 
0 0 - 0 3  0 
0 0 0 -a3 

-a2 0 
0 al+u2 0 

0 -a1 

a1+a;? 0 
-a1 

-a2 0 2 ( U 2 + U 3 )  -a3 
-a3 2(ai+u3) 
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A 5 

(a) Prism P1 

~ l = ( l , 4 , 3 )  ~ 3 = ( 1 , 2 , 5 )  ~ 5 = ( 1 , 2 , 3 )  ~ 7 = ( 2 , 5 , 3 )  ~ y = ( 1 , 5 , 3 )  
S2 = (1, 4 , s )  S4 = (3, 4 ,6)  Sg = (4, 5,6) Ss = (3 ,5 ,6)  S1o = (3,4,5) 
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which we write as 
3h A11 A12 
I[ A21 A22 ] (3 .4)  

Along with matrix A we also introduce the matrix B '. The purpose of introducing B 
is to simplify the graph of connectedness in the local stiffness matrix in such a way that the 
kernel is preserved and the elimination of the unknowns internal for the prism leads to a 
simpler Schur complement. Matrix B P  is defined on the same space Nhp by 

3h A i l  A12 
B P  = T [ A21 B22 ] (3.5) 

where 

2a1 -:l +a3 1 ai  + a2 + b -b -a2 
-b a l+a2+b  0 
-a2 0 2a2 +a3 0 

0 -01 0 

B22 = 

with some parameter b. This parameter will be chosen in such a way that matrix B P  is 
spectrally equivalent to A P  (with respect to the kernel) with a smallest possible relative 
condition number. 

Proposition 3.1. Assume that b > 0. Then it holds that kerAP = kerBP.  

Proof It is easy to see from the definitions of A' and B P  that 

k e r A P = k e r B P = { v = ( v l , u 2 , . ~ . , v l o ) T ~ I W ' o : v i  = v l ,  i = 2 ; . . , 1 0 )  

Remark 1.  If the prism P E gh has a face on aB, then the matrix A P  does not have the 
rows and columns which correspond to the nodes on that face, and the modification of B22 
is obvious. 

Now we define the N x N matrix B by the following equality: 

( B u , v ) N  = C ( B ' U p , v p ) N p ,  VU,V E RN 
P E 9 h  

Since matrix B is used for preconditioning the original problem (2.4), it is important to 
estimate the condition number of B-l  A .  Thus, we consider an eigenvalue problem: 

A u = , u B u  (3.6) 

Lemma 3.1. Let pup # 0 satisfy the equality 

(3.7) 
P APUp = p p B  U p ,  P E Ph, U p  # O 

Then we have 
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Proof For each P E yh, it follows from (3.7) that 

f (A 9 uf )NP = pf ( B f  uf 3 up) ,p  

Then, from the fact that all the local stiffness matrices are non-negative it follows that 

Hence from the definitions of A and B we see that 

(Au, U)N 5 max ~ P ( B u ,  U)N 

Consequently, the first inequality in (3.8) is true. The same argument can be used to verify 

From Lemma 3.1, we see that, to estimate the condition number of B- 'A,  it suffices to 
consider the local problems (3.7). Using a super-element analysis [22] to estimate max p p  

and min p p ,  it suffices to treat the worst case where the prism P E Pt, has no face on the 

boundary 82. From (3.4) and (3.5), direct calculations show that the eigenvalues are 
within the interval [ p i ,  p:], where 

f fph 

the second inequality. rn 

P68h 

f E"Qh 

) (3.9) p p  = - (1 + a3 - + a3 - + '> (1 * j, - 4a3 / b  
a1 a2 b (1 + a3/ai + a3/a2 + a3/bI2 2 

Obviously, p$ depends on the parameter b. We shall choose b to minimize the ratio p;/pF, 
which then gives an upper bound for the condition number Cond( B-' A). 

Until the end of the section we shall use the following assumption. 

Assumption 31.. Assume that the matrix coefficient of equation (1.1) is a diagonal tensor 
a ( x )  = diag (al, a2, a3), where ai, i = 1, 2,3, are constants on each prism P E gh, and 
there exists a parameter K such that 

(3.10) 

Remark 2. Generally speaking, we need only the assumption that the coefficient a, in 
some direction multiplied by some fixed parameter 1 / ~  is not greater than the coefficients 
in the other directions. For the sake of simplicity we assume that this is the 'z-direction'. 

The optimal choice of b is given in the following theorem. 

Theorem 3.1. The eigenvalues ofproblem (3.7) with theparameter b-' = a;'+a;' +a;' 
belong to the interval 
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and the condition number is then estimated as follows: 

Cond ( B - ' A )  5 3 + 8~ 
Proof With the choice b-' = uT1 + uF1 + uT1, the expression p$ can be written as 

Then we consider the functions 

Note that f+ is a non-decreasing function and f- is a non-increasing function. Hence, the 
desired result follows from the definition of K .  rn 
Remark3. If the parameter b is chosen by the simple relation b = a3, then the eigenvalues 
of problem (3.7) belong to the interval 

[l + K  - JKz+2K, 1 + K  + J K L + z K ]  

and the condition number is thus estimated by 

Cond ( B - l  A )  5 3 + 8~ + 4 ~ *  

We stress that the condition number of the matrix B-' A is bounded by a constant inde- 
pendent of the step size of the mesh h.  Since we introduced a two level subdivision, matrix 
B can be referred to as a two-level preconditioner. 

Remark 4. Because the condition number of matrix B - ' A  depends on the value of the 
parameter K it is very important to choose the 'z-direction' in the proper way. Note that 
we can always rearrange the co-ordinate axes (make a change of co-ordinates) to ensure 
Assumption 3.1. 

3.2. Three-level preconditioners 

While preconditioner B has good properties, it is not economical to invert it. In this subsec- 
tion we propose a modification of matrix B and consider its properties and computational 
scheme. Toward that end, in this section we divide all unknowns in the system into two 
groups: 

1. The first group consists of all unknowns corresponding to the faces of the prisms in 

2. The second group consists of the unknowns corresponding to the faces of the tetrahedra 
partition Yh, excluding the faces on aQ (see Figure 2). 

that are internal for each prism (these are faces s9 and s10 in Figure 2). 

This splitting of the space IWN induces the presentation of the vectors: v = (v:, v : )~ ,  
where v1 E RNI and v2 E RN2. Obviously, N1 = N - 4n3. Then matrix B can be presented 
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3 4 

Figure 3. Enumeration of the vertices of a cube C ( i % j - k )  

in the following block form: 

(3.1 1) 

Denote now by 611 = B11 - B12BG1B21 the Schur complement of B obtained by 
elimination of vector v2. Then B11 = b11f B12BG1 B21, and hence matrix B has the form: 

(3.12) 

Note that for each prism P E gh the unknowns on faces sg and s10 (see Figure 2) 
are connected only with the unknowns associated with this prism and therefore can be 
eliminated locally; that is, matrix B22 is diagonal. Thus matrix b11 is easily computable. 
The proposed modification of matrix B in (3.12) is of the form 

B12 B22 1 B = [ Bo + B12B2lB21 
B2 1 

where Bo is to be defined later. 

3.2.1. For the sake of simplicity of representation 
of matrices and computational schemes we introduce the partitioning of all nodes in 8 y h  
into the following three groups. Denote by s:!i,y' the tetrahedral face in the cube C('sjqk) 

with vertices r, 1 ,  m (see Figure 3). 

Group partitioning of grid points 

1. First, we group the nodes on the faces 
- (i. j , k )  OJh) 

~ 2 . 4 . 5  and s4,5,7 , i, j ,  k = 1, n 

- 
we denote the unknowns at these nodes by VZj''J'k', C = 1,2,  i, j ,  k = 1, n. 
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~1+72+b -b 
-b ~ 1 + ~ 2 + b  

--a1 0 

2. Second, we number the nodes on the faces perpendicular to x, y ,  and z axes: 

-a1 0 0 0 0 0 -a2 0 

a l 0 0 O O 0 O  0 
0 0 0 -a2 0 0 0 --a 1 

- - ( ’  ‘ we denote the unknowns at these nodes by V X ; ~ ’ ~ ~ ) ,  l = 1,2, i = 2, n ,  j ,  k = 1, n .  

( i , j . k )  ( i , j . k )  __ ~ 

(ii) s1,3,5 . s5,3,7 , j = 2, n ,  i, k = 1, n 

( ’  ’ we denote the unknowns at these nodes by V y ; 9 J 3 k ) ,  l = 1,2, j = Zn, i, k = 1,. 

0 0 
-a2 0 

- 0 -a1 

- 
we denote the unknowns at these nodes by V Z ~ ’ ~ ’ ~ ) ,  ( ’  ’ l = 1,2, i, j = 1, n ,  k = s. 

3. Finally, we number the remaining nodes on the faces 

0 0 0 0 0 a 3  0 -a3 
0 0 -a2 0 -a3 0 2a2+a3 0 
0 --a1 0 0 0 -a3 0 2alSa3 

- 
~i+U2-th -b 

-b ~1+72+b 
0 0 

3h 
B1= - 

2 

0 0 - a 2  0 0 0 
0 -a1 0 0 0 0 

a l 0 O O O O  

3h 
B2=- 

2 

0 0 
0 0 
0 -a2 
0 0 

0 a 1  0 0 0 0 
0 0 a 2  0 0 0 
0 0 O f 2 2  0 0 
0 0 0 O a 3  0 

0 --a1 

-a2 0 
0 0 

-a3 0 

0 -a1 
-a2 0 
0 0 
0 0 
0 0 

-a1 0 
- 0 -a2 

0 a 1  0 0 0 0 
0 0 a 2  0 0 0 
0 0 O a 2  0 0 
0 0 0 0 a 3  0 
0 0 0 0 0 u 3  

-a1 0 0 0 -a3 0 
0 0 0 -a2 0 -a3 
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al+a2+b+s2 -b 
-b al+a2+b+sl 
-a1 0 
0 -a1 

-02 0 
0 -a2 

The partitioning of nodes into the above three groups induces the following block forms 
of matrices B,, p = 1 ,2 :  

-a1 0 -a2 0 -s2/2 -s2/2 
0 -a1 0 -a2 -s1/2 -s1/2 
a 1 0 0 0  0 0 
O a l O O  0 0 
O O a 2 O  0 0 
0 O O a 2  0 0 

S l + S 2  

(3.13) 

where blocks B22,, correspond to the unknowns of the last group and blocks B11,, corre- 
spond to the unknowns of the first and second groups. 

We eliminate the unknowns of the last group from each matrix BPI p = 1, 2, which is 
done locally on each prism. Then we get the matrices 

i l l . ,  = Bl l , ,  - B12,,B&p2l.p. P = L 2  

where 

3h 
B12,1B2&321,1=- 2 

0 0 0 -  201 +a 0 -  
0 0 0 0  0 0 0  0 

h l + a 3  

and a similar form holds for B12,2BGt2B21,2. 

Following [23], we introduce on each prism a modification of matrices 611,~:  

3h 
Bo= - 

2 

with some parameters sl and s2. 

Proposition 3.2. Assume that s1 > 0 and s 2  > 0. Then matrices kll,,,, p = 1,2, and Bo 
have the same kernel, i.e. ker B11,, = ker Bo. 

Proof It can be easily checked that ker = ker Bo = {v = ( V I ,  u2, . . . , u d T  E !Rs : 
H ~i = ~ 1 ,  i = 2, . . - , 8 } ,  p = 1,2. 
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We now consider the eigenvalue problem 

Bll,,,u = pBou, u E R8 \ ker Bo, p = 1,2 (3.14) 

with the following choices of $1 and s2. 

Proposition 3.3. For the case of s; = 2a;a3/(2ai + a3), i = 1,2,  the eigenvalues of 
problem (3.14) belong to the interval 

3 + 2K 
[ - ( 1 - + 3 ) 1  h+z,('++3)] 

I f  we choose si = a3, i = 1,2, the eigenvalues ofproblem (3.14) are within the interval 

Both cases have the same estimate of the condition number 

where the condition number is defined as the ratio of the biggest and the smallest non-zero 
eigenvalues of problem (3.14). 

Proof A direct calculation shows that p E [p-, p+] where 

and 

With si = 2aia3/(2ai + a3), i = 1,2,  and the definition of K ,  it can be seen as in Theorem 
3.1 that 

and 

Note that 

so that the first case follows. The same argument applies to the second case. H 
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Now we define a new matrix on each prism: 

, p = L 2  (3.15) 1 Bo + B 1 2 . p B & B 2 1 . p  B 1 2 . p  

B 2 2 . p  
Bp = 

As we noted in Remark 3.1, when cube C has a non-empty intersection with an, matrices 
Bo, BIZ, . , ,  and B 2 1 q p ,  p = 1,2,  do not have rows and columns corresponding to the nodes 
on the boundary. 

For each prism P E ??h we now consider the eigenvalue problem 

B'u = ~ B ' u  (3.16) 

where B P  = B: is defined in (3.13) and B p  = B: in (3.15), p = 1 ,2 .  Below we consider 
only the simplest choice: si = ag, i = 1,2.  

Proposition 3.4. The eigenvalues ofproblem (3.16) belong to the interval 

Moreover, on each prism P E ??h the eigenvalues of the problem 

A'u = pBPu (3.17) 

are within the interval [F-.  @+I, where 

Proof The first statement follows directly from Proposition 3.3, and the second one then 
follows from Theorem 3.1. m 

Now we define the symmetric positive-definite N1 x N1 matrix bo by 

( B o u 1 ,  v1) = 1 ( B O U l . P ?  V 1 . P )  
f E 9 h  

where v 1 ,  u1 E RNl, and u 1 . p  and v 1 , p  are their respective restrictions on prism P .  As in 
(3.12), we introduce the matrix 

(3.18) 

Using Proposition 3.2 and the same proof as in Theorem 3.1, we have the following 
theorem. 

Theorem 3.2. Matrix defined in (3.18) is spectrally equivalent to matrix A, i.e. 

p*B 5 A 5 p*B 

Moreover, 
Cond (b-' A )  5 ji = p*/p* 5 (3 + 8 ~ ) ( 2  + A) (3.19) 
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Instead of matrix B in the form (3.12) we take matrix B from (3.18) as a preconditioner 
for matrix A.  Because we have introduced a two-level subdivision of matrix &, matrix 
can be considered a three-level preconditioner. 

So we concentrate on the linear system 
As we noted earlier, matrix B22 is block-diagonal and can be inverted locally on prisms. 

- 
Bou = G (3.20) 

In terms of the group partitioning in Section 3.2.1, matrix &J has the block form 

c11 c12 
Bo = [ c21 c 2 2  1 (3.21) 

where block C22 corresponds to the nodes from the second group, which are on the faces of 
tetrahedra perpendicular to the co-ordinate axes. From the definition of Bo, it can be seen 
that matrix C22 is diagonal. In the above partitioning, we present u and G in (3.20) in the 
form 

u = [  G = [  

Then, after elimination of the second group of unknowns: 

we get the system of linear equations 

where vector u1 and block C11 correspond to the unknowns from the first group, which have 
only two unknowns per cube. The dimension of vectors u1 and G1 is equal to dim (u1) = 
2n3. The above simplification of (3.20) is carried out in detail in the next subsection. 

Remark 5. We note that all the estimates in this section depend on parameter K introduced 
in Assumption 3.1. Hence, it is very important to arrange the co-ordinate axes in such a 
way that parameter K has the smallest value. 

Remark 6. Note that the estimate of the condition number of the preconditioned matrix 
(3.19) is proportional to the value of parameter K .  In some sense we benefit from anisotropy. 
The smaller the coefficient a3 of matrix a (the coefficient in the 'z-direction') the better the 
preconditioner B .  

3.2.3. We now consider the computational scheme for (3.20). 
For simplicity of presentation we consider here the case of diagonal constant tensor coeffi- 
cient a ( x )  = diag (al, u2, ag) in the whole domain Q. In terms of the unknowns introduced 

Computational scheme 
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the system (3.20) with si = a3, i = 1,2,  can be written as 

and 

__ 
k = l , n  - 1, i , j  = 1,n  

(3.23) 
where 6 i j  (the Kronecker symbol) is introduced to take into account the Dirichlet boundary 

( i , '%k) ,  .t = 1,2,  from equations (i. j , k )  (i. j . k )  conditions. Eliminating unknowns ux, , uy ,  , uz, 
(3.22), we obtain the block 'seven-point' scheme with 2 x 2-blocks for the unknowns 
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UZ;~,'*~), t = 1, 2, i, j ,  k = fi. From (3.23) we have 

(3.24) 
Substituting (3.24) into (3.22), we see that 

2 [  ul+az_+ba3+b -b ] u I ( i . j , k )  
al+a2+ag+b 

To solve system (3.25) we introduce the rotation matrix 

and new vectors v(i-j,k) = (ul ( ; J A )  , U;.j.k)17-, i, j ,  k = l,n, given by 

v(;Jh) = Q . uI ( ;J .k ) ,  i, j ,  k = l,n (3.27) 

Then multiplying both sides of the matrix equation (3.25) by matrix Q and using the 
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- Q . g ( i J k )  = - ( i . j k ) ,  i, j ,  k = - g  - 
(3.29) 

It is easy to see that problem (3.29) can be decomposed into the following two independent 
problems: 

( i ,  j . k )  2 b l  + a2 + a319 

and 

_. - 
i, j = l , n ,  V k  = l , n  

(3.31) 
Hence, we reduced the linear system (3.29) of dimension (2n3) to one linear system of 
equations (3.30) of dimension n3 and n linear systems of equations (3.31) of dimension n2. 

For all these problems we can use either the method of separation of variables [34] or 
an algebraic multigrid method [4,21,25]. An implementation cost of the first method is 
estimated by O ( r 3  In (h- ')) .  The AMG methods have the optimal order of arithmetic 
complexity ~ ( h - ~ ) .  

After we find the solution of problems (3.30) and (3.31) we easily retrieve vectors uI(i*j-k) 
by using relations (3.28). 
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3.2.4. Preconditioned conjugate gradient method The underlying method to solve sys- 
tem (2.4) is a preconditioned iterative method. The choice of a particular method within 
a certain class is not essential, but for the purpose of this exposition we may think of 
the well-known preconditioned conjugate gradient method [ 19,241, which is often used in 
practice. 

Proposition 3.5. The number of operations for solving system (2.4) by a preconditioned 
conjugate method withpreconditioner B defined in (3.16) and with accuracy E in the sense 

1lhk'+'-h*IIA (rllho-h*IIA, 0 < 6 < < 1  (3.32) 

, where A* = A-l F,  ho E RN is any initial vector, and the is estimated by cN In 
constant c > 0 does not depend on N and the coeflcients of the matrh finction a ( x ) .  

(:) 

4. Preconditioners for a general case 

In this section we consider the case when the coefficient a is a full symmetric tensor and 
the domain C2 satisfies the following assumptions: 

(a) There is an orientation-preserving smooth map 2 of the unit cube fi onto !2 and there 
are positive constants d and C (see [ 151) such that 

where $ ( x )  is the Jacobian matrix of 2 at x and (1 . 11 denotes a matrix norm. 
(b) The transformed tensor 4 ( x )  = &$Ta(n)$, x E fi is a smooth matrix function 

which is a small perturbation of a diagonal constant matrix in the entire domain. It 
means that there exist a diagonal constant matrix ii = diag ( a l ,  a2, a3), and some 
positive constants i., t ,  such that 

? i j s a ( x ) 1 2 i j ,  V X E Q  ( 4 4  

The definition of the non-conforming finite element space for the domains satisfying (4.1) 
is given below. Let %i and 36 be the partitions of fi into cubes and tetrahedra, respectively, 
which are associated with the mesh-size 6 = l / n ,  and let SITi be the PI-non-conforming 
space associated with Ti, as given in (2.6). Set h = r . h and define 

Nh(R) = ($9 = $/ ox-' : l+b E V&)J 

We also introduce the map 9 : Vh (a) + Vi (62) defined by 9 u  = u o 2. 
Now we define the stiffness matrix A on domain C2 by 
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where 
a h ( U , U )  = J a ( X ) V U ' V U d x  

r E y h  5 

(4.4) = C J m  $*a(x)$ V 9 u .  V4v dx 
?€5L 3 

and Idet($>l is the determinant of the Jacobian $(x). 
Note that taking into account (4.4), we can treat the bilinear form (4.3) as a form generated 

by some elliptic positive definite operator with a piecewise smooth 3 x 3 symmetric matrix- 
valued function a ( x )  on the cube 6. This function satisfies the uniform positive definiteness 
condition. For this reason, below without loss of generality we suppose that s1 = fi is a 
parallelepiped with the partition into cubes ( e h  and into tetrahedra g h .  

For each cube C E %&, we introduce diagonal matrix dc =diag{al,c, a z , ~ ,  a3,cJ with 
some as yet unspecified constants ai,c, i = 1 , 2 , 3 .  Then on the reference parallelepiped fi 
we define a bilinear form 

where the constants 6c are scaling factors. One reasonable choice is to take 6c = (A1.c + 
Ao.c)/2, where h1.c and A O , ~  are the largest and smallest eigenvalues of the eigenvalue 
problem Ci(x0)v = h ~ d c v ,  v E R3, where Ci(x) = &$Ta(x)$ and xo E Y ( C )  c s1 
is some point. 

We assume that the matrix function defined above, Scdc, is a small perturbation of a 
diagonal constant matrix in the entire cube fi. 

Note that assumptions (4.1) imply that there are two constants co and c1 independent of 
r and such that 

C O a h ( U ,  U )  5 I .  b h ( 9 U ,  9 u )  5 C l U h ( U ,  K), vu E Nh (4.6) 

We choose matrices dc in the form: dc =diag(Ci(xo)), VC E %I,, i.e. the matrix dc 
is the diagonal part of Li(x0) at some point xo E 2 ( C ) .  In this case constants co and c1 in 
(4.6) depend only on the local variation of the coefficients { ( i?)k l } .  Hence the problem of 
defining a preconditioner for ah (., .) is reduced to the problem of finding a preconditioner 
for r ' bh( . ,  .), which has a diagonal coefficient tensor and is defined on the unit cube h. 
Therefore, all the analysis of Section 3 can be carried out here. 

5. Results of the numerical experiments 

In this section the method of preconditioning being presented is tested on the model problem 

in s1 
3 a  au 

- c (QiG) = f 
i=l  

u = o  on ai2 

We present three numerical examples. In the first example, the domain s1 is the unit cube: 
Q = [0, lI3. The domain is divided into n3 cubes (n in each direction) and each cube 
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Table 1. The results of experiments for anisotropic problem 

20 x 20 x 20 30 x 30 x 30 
N = 318600 

a1 a2 a3 Iter Cond Iter Cond 
1 1 1 18 7.5 17 7.6 
1 1 0.1 13 3.7 13 3.8 
1 1 0.01 10 2.8 11 3 .O 
10 1 1 16 6 16 6.2 
1 10 1 

100 1 1 14 4.7 14 5.2 
1 100 1 

N = 93600 

1 1 10 34 41 34 42 
1 1 100 75 315 80 328 

0.1 1 1 32 30 31 29 
1 0.1 1 

0.01 1 1 68 198 72 203 
1 0.01 1 

is partitioned into six tetrahedra. The dimension of the original algebraic system is N = 
E n 3  - 6n2. The right hand side is generated randomly, and the accuracy parameter is taken 
as E = lop6. The condition number of the matrix B-’  A is calculated by the relation between 
the conjugate gradient and Lanczos algorithms [ 191. In this experiment we have considered 
the dependency of the condition number on the coefficients of the problem. The coefficients 
ai, i = 1, 2,3,  are constants on each cube. The results are summarized in Table 1, where 
‘Iter’ and ‘Cond’ denote the iteration number and condition number, respectively. 

From Table 1 we see that the condition number depends on the maximal ratio K = 
max [ 2, 21. The case of K < 1 has a better convergence than the case of the Poisson 

equation (i.e., a1 = a2 = a3 = 1) as is predicted by the theory (see estimate (3.19)). 
We note that the condition numbers in all experiments depend on parameter K introduced 

in Assumption 3.1. Namely, the estimate of the condition number of the preconditioned 
matrix (3.19) is proportional to the value of parameter K .  Obviously, it is important to 
arrange the co-ordinate axis in such a way that parameter K has the smallest value. In some 
sense we can benefit from anisotropy. The smaller coefficient a3 (the coefficient in the 
‘z-direction’) leads to a better preconditioner B .  

In the second example we have considered the dependency of the condition number on 
the jump of the coefficients. Again, the computational domain is the unit cube, which is 
subdivided into n3 cubes and each cube is partitioned into six tetrahedra. The coefficient 
a (x) is piecewise constant and is defined to be 

c&h 

(5.2) 
a, 
1, elsewhere 

(x, y,  z )  E [ O S ,  11 x [ O S ,  11 x [ O S ,  11 a1 =a2 = a 3  = 

The results are summarized in Table 2. 
In the third example we treat the Poisson equation on the domain 52 as shown in Figure 4. 

The domain is subdivided into 90 x 90 x 10 cubes and the number of unknowns is then 
N = 955 440. This problem is solved with accuracy E = lov6. Twenty iterations are needed 
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Table 2. The results of experiments with jump of the coefficient 

a 

20 x 20 x 20 
N = 77600 

Iter Cond 
1 
10 
100 

1 000 

0.1 
0.01 
0.001 

104 

10-4 

18 7.50 
17 7.59 
18 7.86 
18 7.90 
18 7.90 
16 7.11 
16 7.11 
16 7.11 
16 7.11 

30 x 30 x 30 40 x 40 x 40 
N = 264600 N = 630400 

Iter Cond Iter Cond 
17 7.61 
17 7.79 
18 7.85 
18 7.90 
18 7.90 
16 7.10 
16 7.10 
16 7.10 
16 7.10 

15 6.03 
17 7.59 
17 7.84 
17 7.88 
17 7.88 
16 7.10 
16 7.10 
16 7.10 
16 7.10 

Figure 4. An example of the grid domain R 
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to achieve the desired accuracy; the computed condition number of matrix B - l A  is equal 
to 10. All experiments were carried out on a Sun Workstation. 
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