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Abstract. In this paper we develop and numerically study an improved IMPES method for solving
a partial differential coupled system for two-phase flow in a three-dimensional porous medium. This
improved method utilizes an adaptive control strategy on the choice of a time step for saturation and
takes a much larger time step for pressure than for the saturation. Through a stability analysis and
a comparison with a simultaneous solution method, we show that this improved IMPES method is
effective and efficient for the numerical simulation of two-phase flow and it is capable of solving
two-phase coning problems.
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1. Introduction

An IMPES method was originally developed by Sheldon et al. (1959) and Stone
and Gardner (1961). The basic idea of this classical method for solving a partial
differential coupled system for two-phase flow in a porous medium is to separate
the computation of pressure from that of saturation. Namely, this coupled system
is split into a pressure equation and a saturation equation, and the pressure and
saturation equations are solved using implicit and explicit time approximation ap-
proaches, respectively. This method is simple to set up and efficient to implement,
and requires less computer memory compared with other methods such as a sim-
ultaneous solution (SS) method (Douglas et al., 1959). It is still widely used in
petroleum industry. However, for it to be stable, this classical method requires very
small time steps for the saturation. This requirement is prohibitive, particularly for
long time integration problems and for small grid block problems such as coning
problems.

In our numerical experiments and studies of the classical IMPES method with
computational time and stability, we have observed that the implicit computation
of pressure takes far more time than the explicit computation of saturation, and the
explicit scheme for the saturation is stable only if time steps are sufficiently small.
For example, for a water and oil system, the water—oil production ratio (WOR)
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curve oscillates if the time steps are not severely restricted. In the light of the
fact that the numerical simulation of two-phase flow is still widely used and the
IMPES method is still popular in petroleum industry, it is necessary and important
to improve this solution method.

In this paper we develop and numerically study an improved IMPES method
for solving a partial differential system for two-phase (e.g. water and oil) flow
in a three-dimensional porous medium. Based on the above mentioned observa-
tions, together with the fact that the pressure changes less rapidly in time than
the saturation in this two-phase flow system, it is appropriate to take a larger time
step for the former than for the latter to save computational time. On the other
hand, for it to be stable (in particular, to get rid of the oscillation of the WOR),
this improved method utilizes an adaptive control strategy on the choice of the
time step for saturation. This control strategy is adaptively based on the saturation
variation. Through a stability analysis and a comparison with an SS method, we
show that our improved IMPES method is effective and efficient for the numerical
simulation of two-phase flow and it is capable of solving long time integration
and small grid block problems. For a benchmark two-phase coning problem, our
numerical experiment shows that this improved IMPES method is stable, efficient,
and accurate and is 6.7 times as fast as the SS method. As far as the authors know,
the classical IMPES method is not able to solve a two-phase coning problem.

This paper is outlined as follows. In the next section we introduce a two-phase
flow model in a three-dimensional porous medium. Then, in the third section we
review the classical IMPES method, and in the fourth section we test the stability
of this method. In the fifth section, we develop an improved IMPES method for the
two-phase flow system. In the sixth section we apply this improved method to the
numerical simulation of a two-phase coning problem and compare it with the SS
method. Finally, in the last section we conclude with a few remarks.

2. A Two-Phase Flow Model

In this section we review the flow of two incompressible, immiscible fluids in a
porous medium © C 9> The mass balance equation for each of the fluid phases is

9 (PaSa)

¢8t

+ V- (pulle) = Poqu, o =W,O0, 2.1

where oo = w denotes the wetting phase (e.g. water), o = o indicates the nonwet-
ting phase (e.g. oil), ¢ is the porosity of the medium, and p,, sy, Uy, and g, are,
respectively, the density, saturation, volumetric velocity, and external volumetric
flow rate of the a-phase. The volumetric velocity u, is given by the Darcy law

K['OL

u, = ——KV(py, — 0u8Z), a=w,o, (2.2)

Mo
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where K is the absolute permeability of the porous medium, py, 1y, and K, are
the pressure, viscosity, and relative permeability of the a-phase, respectively, g
denotes the gravitational constant, Z is the depth, and the z-coordinate is in the
vertical downward direction. In addition to (2.1) and (2.2), the constraint for the
saturations is

Sw+ 8o =1, (2.3)
and the two pressures are related by the capillary pressure function
Pe(Sw) = Po = Pw- (2.4)
We introduce the phase mobility functions

Kr(x
)“Ol(xv SOL) = ’ o= W? 07
o

and the total mobility
A(X, §) = Ay + Ao,

where s = s,,. The fractional flow functions are defined by
Ao
fulx,5) ==, a=w.o.

The model is completed by specifying boundary and initial conditions. In this
paper we consider no flow boundary conditions

u,-v=0, o =Ww,o, X € 092, (2.5)

where v is the outer unit normal to the boundary 92 of €2. The initial condition is
given by

s(x,0) =s50(x), xe€Q. (2.6)

For a theoretical study of the model in this section, the reader may refer to the paper
by Chen (2001), for example.

3. The Classical IMPES Method
We use the oil phase pressure as the pressure variable

P = Do, 3.1
and define the total velocity

u=uy -+ u,. (3.2)
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Under the assumption that the fluids are incompressible, we apply (2.3) and (3.2)
to (2.1) to see that

V-u=q(p,s) =qw(p,s) +qo(p,s), (3.3)
and (2.4) and (3.2) to (2.2) to obtain
u=—-K(ASVp —r()Vpe — (Awpw + 1opo)gVZ) . (3.4)

Similarly, apply (2.4), (3.2), and (3.4) to (2.1) and (2.2) with o = w to have the
saturation equation

as ch
d’a + V. {wa(s))‘o(s) ( ds

Vs + (po — pw)gVZ) +

+fw(S)u} = qw(p, $). (3.5)

We substitute (3.4) into (3.3) to give the pressure equation
—V - (KiVp) = = V- (K Vpe + Gwpu + 2opo)gV Z). (3.6)

Let J = (0, T) (T > 0) be the time interval of interest, and for a positive integer
N,let0 =1 <t' < ... <" = T be apartition of J. In the pressure computation
in the IMPES method, the saturation s in (3.6) is supposed to be known, and (3.6)
is solved implicitly for p. Thatis, foreachn =0, 1, ..., p" satisfies

—V - (KA(s")VP") = F(p", 5", (3.7)

where F'(p, s) denotes the right-hand side of (3.6) and s” is supposed to be given.
It follows from (3.5) that

dp
d

Vs + (po — pw)gVZ> + fw(s)u}-

as
¢a— = qw— V- {wa(S)?»o(S) (
t Ky
(3.8)

In this classical IMPES method, (3.8) is explicitly solved for s; that is, for each
n=0,1,2,...,s""! satisfies

asn—H

— GO ", 5", 3.9
» (p",u’,s") (3.9)

¢

where G (p, u, s) represents the right-hand side of (3.8).

Now, the standard IMPES method goes as follows: After startup from (2.6), for
n=20,1,..., we use (3.7) and s" to evaluate p" and then (3.4) to evaluate u”;
next, we exploit s”, p", ", and (3.9) to compute s"*!. As noted, the time step
At" = t" — t"~! must be sufficiently small for this method to be stable; see the
next section.
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4. Numerical Stability Tests

We present numerical experiments of the classical IMPES method with compu-
tational time and stability. For this, we define the source and sink terms in (2.1)

by
Zq’ "(x — a=w,o, 4.1)

where g™ indicates the volume of the fluid produced or injected per unit time at

the /th well and the mth perforated zone, x™, for phase o and § is the Dirac delta

function. Following Peaceman (1991), g-™ can be defined by

2n K Ky AL'™
po Inrt/rl

Im __

7 (Pt — Pa = pug(Ziy — 2)) (4.2)
where AL"™ is the length (in the flow direction) of a grid block (containing
the /th well) at the mth perforated zone, p{,h is the flowing bottom hole pressure
at the datum level depth th, r! is the equivalent well radius, and r! is the radius of
the /th well. The quantity K is some average of K at wells (Peaceman, 1991). For a
diagonal tensor K = diag (K, K11, K33), forexample, K = K at a vertical well,
where K; and K33 are the permeabilities in the horizontal and vertical directions,
respectively. In this case, the equivalent radius is calculated by
i (4.3)
where DX and DY are the x- and y-dimensions of the grid block which contains
this vertical well. For a horizontal well (e.g. in the x-direction), K = +/K{; K33
and

r.=0.14(DX* + DY?)

,_ 0.14((Kx/Ki)'? DX? + (Ku/Kx)'? DZ2%)'"”

fe = 0.5 ((Ks/Ki)"* + (K11/K33)'*)

where DZ is the z-dimension of the grid block containing this horizontal well.
The physical data used are taken from the paper by Nghiem et al. (1991). The
reservoir dimensions are

, (4.4)

NX NY NZ
ZDX(i), ZDY(j), and ZDZ(k), (4.5)
= = k=1

respectively, in the x-, y-, and z-directions, where NX = 9, NY = 9, NZ = 6,
and (in feet)
DX (@) = 300, i=1,2,...,9,
DY) = DY(9) = 620, DY (2) = DY (8) = 400,
DY@3) = DY(7) =200, DY (4) = DY (6) = 100, DY (5) = 60,
DZ(1) = DZ(2)=DZ@3) = DZ4) =20,
DZ(5) = 30, DZ(6) = 50. (4.6)
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A horizontal oil production well is located in the first layer (k = 1) and stretched
in grid blocks with i = 6,7, 8 and j = 5, and a horizontal water injection well is
located in the sixth layer (k = 6) and stretched in grid blocks withi =1,2,...,9
and j = 5. Thus we have two wells in this experiment: a horizontal production
well and a horizontal injection well. The radius of both wells is 2.25 in. The per-
meability tensor K is diagonal with K;; = 300md and K33 = 30md, and the
porosity ¢ is 0.2. The depth Z of the centers of the six layers is, respectively,
3600, 3620, 3640, 3660, 3685, and 3725 ft, and the initial water saturation at each
layer is 0.289, 0.348, 0.473, 0.649, 0.869, and 1. The densities and viscosities are
0o = 0.8975 g/em?, p,, = 0.9814 g/cm?, ju, = 0.954 cp, and p,, = 0.96cp. The
relative permeability and capillary pressure data are shown in Table 1.

Table 1. The relative permeability and capillary pressure data

s 022 0.3 0.4 0.5 0.6 0.8 0.9 1
Kiw O 0.07 0.15 0.24 0.33 0.65 0.83
Ko 1 04 0125 0.0649 0.0048 0 0 0

Pe 6.3 3.6 2.7 2.25 1.8 0.9 045 0.0
) .S !
12 H
) !
s 8- | ]
<2
o
o
=
4_
0 T T T I T T T I T T T I T T T
0 400 800 1200

Tcum (days)

Figure 1. Water—oil ratio versus time. D Spax = 0.05.

Finally, the pressure at the wells is fixed, the datum level depth Zy; is 3600 ft,
and the bottom hole pressures pyy, for the injection and production wells are, 3651.4
and 3513.6 psi, respectively. In the following calculations, the final time 7 is 1500
days.
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As noted, to control the variation of saturation, we need to find a suitable time
step At"*! before we solve Equation (3.9) for s"*! for each n = 0,1, ... The
control strategy is defined as follows: We calculate the maximum value of ds"*! /9t

WOR (stb/stb)

[ T T 1
0 400 800 1200
Tcum (days)

Figure 2. Water—oil ratio versus time. D Spax = 0.02.

WOR (stb/stb)

T T
800 1200
Tcum (days)

|
400

Figure 3. Water—oil ratio versus time. D Spax = 0.01.
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Figure 4. Water—oil ratio versus time. D Spax = 0.005.

at all computational nodes, denoted by (ds"*'/dz) , which is, by (3.9),

(asn-H) _ (G(pn’un’sn)) ' (47)
ot max ¢ max

Then we apply the following formula to find A" *!:

Al‘n—H _ DSmax

= O Y

where D Sp,.x is the maximum variation of the saturation to allow. Now, we use
this time step in (3.9) to obtain s"*!. This approach guarantees that the saturation
variation does not exceed D Sp.x. Note that D S« can depend on the time level 7.

The numerical method used is based on a seven-point block-centered finite dif-
ference method with harmonic averaged coefficients (equivalently, a mixed finite
element method (Russell and Wheeler, 1983)) in three dimensions. To test stability,
we study the curves of the WOR at the production well versus time (days) in
the cases of DS,.x = 0.05, 0.02, 0.01, 0.005, 0.002, and 0.001. The results are
displayed in Figures 1-6. From these figures we see that WOR does not oscillate
only when D Sy,.« is smaller than 0.002.

We now check the computational time for the present experiment at 7 = 1500
days for the six choices of D Sy.x, which is shown in Table II. In this table, the
CPU time is in second and N (the number of time steps) is such that N =T.All
the computations are carried out on an SGI-O, workstation. Table II shows that the
computation of pressure takes far more time than that of saturation. For example,
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in the case of DS,,x = 0.002, the CPU time for the former is 47.68 s, while it is
0.46 s for the latter. Thus in this case the difference is 100 times more.

In summary, from the above stability analysis and CPU time study we conclude
that (1) WOR is stable only when D S, is smaller than 0.002, (2) the total CPU

12

WOR (stb/stb)

0 I T T T I T T T I T T T I
0 400 800 1200
Tcum (days)

Figure 5. Water—oil ratio versus time. D Spax = 0.002.

WOR (stb/stb)

O I T T T I
0 400

T T
800 1200
Tcum (days)

Figure 6. Water—oil ratio versus time. D Spax = 0.001.
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Table II. The CPU time versus D Smax

D Smax 0.05 0.02 0.01 0.005 0.002 0.001
N 70 91 86 122 226 432
Pressure-CPU 14.81 19.18 18.13 25.86 47.68 89.49
Saturation-CPU 0.14 0.20 0.19 0.35 0.46 0.88

time almost doubles as D Sp.x decreases, and (3) most of the CPU time is spent on
the pressure computation.

5. An Improved IMPES Method
5.1. THE IMPROVED METHOD

As discussed in the previous sections, most of the computational time in the clas-
sical IMPES method is spent on the implicit calculation of the pressure. Also, it
follows from the mechanics of fluid flow in porous media that the pressure changes
less rapidly in time than the saturation. Furthermore, the constraint for time steps
is primarily used for the explicit calculation of the saturation. For all these reas-
ons, it is appropriate to take a much larger time step for the pressure than for the
saturation.

Again, for a positive integer N, let 0 =t < t! < ... <tV = T be a partition
of J for the pressure into subintervals J" = (t"~!, t"), with length Ar, =1" —n L
Each subinterval J” is divided into sub-subintervals J"" = (¢*~1Lm=1 ¢n=Lmy for
the saturation:

mAt)
otm =t P =1, ., M.
Mn
The length of J™™ is denoted by Af}""™ = robm _gn=bm=1 oy — MY
n = 0,1, ... The number of steps, M", can depend on n. Below we simply write

7710 = =1 and set v = v(-, ™).
We denote the right-hand side of (3.4) by H(p, s). Now, the improved IMPES
method is defined as follows: For eachn =0, 1, ..., find p” such that

—V - (KA(s")Vp") = F(p",s"), 5.1
and u” such that
u" = H(p", s"). 5.2)

Next, form=1,...,M",n =0, 1, ..., find s such that

asn—H,m

d’T — G(pn, un, sn-i-l,m—l)' (53)
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The time step A#"+1 in (5.3) is chosen as follows: Set

9 n+1,m G n, n, n+1,m—1
> _ (G AT (5.4)
ot max ¢ max

and then calculate

Al‘;,H_l’m _ DSmax

= =1,....M", n=0,1,... 5.5
(asn+1’m/at)max " 8 ( )

5.2. NUMERICAL TESTS

We now perform a numerical experiment with the improved IMPES method for
the same example as in the fourth section. The selection of pressure time steps is
automatic, and the total variation of the saturation for one pressure time step is fixed
at 0.05. We test three values of D S,.x for the choice of At;’“*m, m=1,...,M",
n =0,1, ... The numerical results are illustrated in Table III, and the WOR curves
for these three values are shown in Figure 7, where the final time is such that the
calculated water cut is up to 98% at the production well.

From Figure 7, we see that the WOR curves slightly oscillate when DSy =
0.01 and 0.005, and this curve is very smooth when D Sy,.x = 0.001. From Table 111,
the total CPU times as DSy, = 0.001 is 2.73 s. Also, the ratio of the pressure
CPU time to the saturation CPU time is around 1.8:1. This is in sharp contrast
with the classical IMPES method where the total CPU time doubles as D Syax
decreases and the pressure CPU is 100 times as much as the saturation CPU.
Furthermore, the total CPU time for the improved IMPES is far less than that for
the classical one. For example, as DSy.x = 0.001, the former is 2.73 s and the
latter is 90.37.

5.3. A COMPARISON WITH SS

To see further the accuracy and efficiency of the improved IMPES method, we
compare it with the SS method for the same numerical example. Here the pressure
time step is fixed at 100 days, D Si.x = 0.001, and the final time is 1500 days. The
daily oil production rate (versus time), the cumulative oil production, and the WOR

Table 11I. The CPU time for the improved IMPES

DSmax M=M" N Pres-CPU Satur-CPU  Total CPU

0.01 5 18 3.63 0.28 3.91
0.005 10 12 2.38 0.33 2.71
0.001 50 9 176 0.97 2.73
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curve using these two methods are presented in Figures 8—10. These curves match
very well for these two methods. The total CPU time for the improved IMPES is
5.03 s, while it is 31.58 s for the SS. Thus, for this example, the improved IMPES

1s 6.3 times as fast as the SS.

WOR (stb/stb)

T T T T T T T T T T T T T
800 1200 1600

Tcum (days)

!
0 400

Figure 7. Water—oil ratio versus time. x = 0.05, ¢ = 0.01, o = 0.001.

-

N

o

o
|

Qo (stb/day)

T T T 1
0 400 800 1200 1600
Tcum (days)

Figure 8. Oil production versus time for case 1a. o = IMPES, e = SS.
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1600

Figure 9. Cumulative oil prod. versus time for case 1a. o = IMPES, e = SS.

WOR (stb/stb)

O T T T I T T T I T T T I
0 400 800 1200
Tcum (days)

|
1600

Figure 10. Water—oil ratio versus time for case la. o = IMPES, e = SS.
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6. Application to a Coning Problem

As far as the authors know, the classical IMPES method has not successfully been
applied to the solution of a two-phase coning problem. In the final section, to check

Qo (stb/day)

300

T 1 ™
800 1200 1600
Tcum (days)

|
400

Figure 11. Oil production versus time for model 2. o = IMPES, e = SS.

Cumulative oil production (Mstb)

T T T T T T | T T
800
Tcum (days)

T I T T I
1200 1600

Figure 12. Cumulative oil production versus time for model 2. o = IMPES, e = SS.
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3.00

WOR (stb/stb)
n
T

0-00 T T T | T T T |
0 400 800
Tcum (days)

T I T T I
1200 1600

Figure 13. Water—oil ratio versus time for model 2. o = IMPES, e = SS.

its robustness, we apply the improved IMPES method to solve a problem of this
type. Now, the reservoir is a cylindrical domain with its axis parallel to the z-axis
and its radius equal to 1343.43 ft. There are two vertical wells located at the center
of the reservoir: An oil production well vertically sits in the first layer and a water
injection well in the sixth layer. The radii of the innermost to outermost cylinders
are, respectively, 4, 8, 16, 32, 64, 128, 256, 512, and 1343.43 ft. All other data are
the same as in the first example in the previous sections. The pressure and saturation
time steps are as in Section 5.3. For the present problem, the daily oil production
rate, the cumulative oil production, and the WOR curve using the improved IMPES
and SS methods are presented in Figures 11-13. Again, these curves match quite
well for these two methods. The total CPU time for the former is 2.54 s, and for
the latter is 17.02s. Hence this improved IMPES is 6.7 times as fast as the SS
for the present coning problem. Also, we point out that the pressure CPU time is
0.39 s, while the saturation CPU time is 2.15 s. From this experiment, we see that
the improved IMPES method is capable of solving two-phase coning problems.

7. Concluding Remarks

Based on numerical stability and computational time analyses, in this paper we
have developed an improved IMPES method for the numerical simulation of two-
phase flow in porous media. Through comparisons with the classical IMPES and
SS methods, we have showed that this improved method is stable, efficient, and ac-
curate, and it is capable of solving two-phase coning problems. We will investigate
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the application of this method to other models of fluid flow in porous media such
as the black-oil and compositional models.
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