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Abstract

In this paper, we study the computer simulation of gas cycling in a rich retrograde condensate reservoir.
Two prediction cases are studied. The first case is gas cycling with constant sales gas removal, and the
second case is cycling with some gas sales deferral to enhance pressure maintenance in the early life of
this reservoir. In this problem the great majority of cycling takes place at pressure below the dew point
pressure, indicating the need for modeling the compositional three-phase, multicomponent flow in the
reservoir. This compositional model consists of Darcy’s law for volumetric flow velocities, mass conser-
vation for hydrocarbon components, thermodynamic equilibrium for mass interchange between phases,
and an equation of state for saturations. The control volume finite element (CVFE) method on unstruc-
tured grids is used to discretize the model governing equations for the first time. Numerical experiments
are reported for the benchmark problem of the third comparative solution project (CSP) organized by
the society of petroleum engineers (SPE). The PVT (pressure-volume-temperature) data are based on a
real fluid analysis.

AMS Subject Classifications: 35K60, 35K65, 76S05, 76T05.

Keywords: Compositional model, reservoir simulation, control volume finite element, unstructured grids,
gas cycling, condensate reservoir, numerical experiments.

1. Introduction

The finite difference method has been widely used in the numerical simulation of
fluid flow in porous media. However, this method causes numerical dispersion and
grid orientation problems [9]. It also gives rise to difficulties in the treatment of
complicated geometry and boundary conditions. To overcome these deficiencies,
one has utilized the intrinsic grid flexibility of the finite element method [3], but this
method does not conserve mass locally. Recently, the control volume finite element
(CVFE) method has been developed to enforce such a conservation property [10]. In
addition, recent interest on unstructured grid reservoir simulation has been rapidly
increased because of improved geological modeling and new well drilling technology
[1]. The CVFE is well suited to this purpose.

The CVFE method has been applied to the numerical simulation of the black oil
model [12], [13], [21]. In the hydrocarbon system of this model, only two compo-
nents are present: gas (mainly methane and ethane) and oil. In the compositional
model under consideration, only the number of chemical species is a priori given,
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and the number of phases and the composition of each phase in terms of the given
species depend on the thermodynamical conditions and the overall concentration of
each species. This general model incorporates compressibility, compositional effects,
and mass interchange between phases. It consists of Darcy’s law for volumetric flow
velocities, mass conservation for hydrocarbon components, thermodynamic equilib-
rium for mass interchange between phases, and an equation of state for saturations.
It models important hydrocarbon recovery processes such as natural depletion or
gas cycling drive for gas condensate reservoirs and miscible flooding for volatile oil
reservoirs. To understand complex thermodynamic and physical processes of multi-
phase, multicomponent flow in porous media, it has become increasingly important
to simulate numerically such a realistic model.

A qualitative analysis of the compositional model was given in [6]. The mathematical
structure of the differential system describing this model was studied, and numerical
results were given for a one-dimensional version of this model in [20]. Numerical
results for a three-dimensional compositional model were presented in [5] using finite
differences. The CVFE method on unstructured grids is here used for the first time
for the discretization of the compositional governing equations. As noted above,
in addition to the intrinsic grid flexibility of the finite element method, the CVFE
conserves mass locally (i.e., on each control volume). Moreover, it reduces grid ori-
entation effects, is efficiently adapted in local grid refinement, and can easily handle
faults, corner points, and slanted wells [18]. These features are extremely important
in numerical reservoir simulation.

Fluid flow models in porous media involve large systems of nonlinear, coupled,
time-dependent partial differential equations. An important problem in reservoir
simulation is to develop stable, efficient, robust, and accurate solution methods
for solving these coupled equations. Essentially, there are three types of solution
methods in reservoir simulation: the IMPES (implicit in pressure and explicit in sat-
uration), the fully implicit, and the sequential. The fully implicit solution method,
which is also called the simultaneous solution method [8], solves all of the coupled
nonlinear equations simultaneously. This method is stable and can take large time
steps, while its stability is maintained. However, due to a large number of partial
differential equations to solve for the compositional model, this solution method is
computationally prohibitive, even on today’s most powerful supercomputers. The
sequential solution method [14] splits the coupled system of nonlinear governing
equations of reservoir simulation up into individual equations and solves each of
these equations separately and implicitly. This method is less stable but more efficient
than the fully implicit method for the compositional model, and will be investigated
in our future study for this model. In the present paper, by a careful choice of the
primary unknowns an iterative IMPES solution method is employed to solve the
system of the compositional governing equations. When the IMPES is used within
a Newton-Raphson iteration, we call it the iterative IMPES. Numerical results are
reported for the benchmark problem of the third comparative solution project (CSP)
organized by the society of petroleum engineers (SPE), and show that this iterative
IMPES method performs very well for problems of a moderate size.
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2. Basic Differential Equations

We consider a compositional model under the assumptions that the flow process is
isothermal (i.e., constant temperature), the components form at most three phases
(e.g., water, oil, and gas), there is no mass interchange between the water phase and
the hydrocarbon phases (i.e., the oil and gas phases), and the diffusive effects are
neglected.

Let φ and k denote the porosity and permeability of a porous medium � ⊂ �3, and
Sα, µα, pα, uα, and krα be the saturation, viscosity, pressure, volumetric velocity,
and relative permeability of the α phase, α = w, o, g, respectively. Also, let ξio and
ξig represent the molar densities of component i in the oil (liquid) and gas (vapor)
phases, respectively, i = 1, 2, . . . , Nc, where Nc is the number of components. The
molar density of phase α is given by

ξα =
Nc∑

i=1

ξiα, α = o, g. (2.1)

The mole fraction of component i in phase α is then defined by

xiα = ξiα/ξα, 1, 2, . . . , Nc, α = o, g. (2.2)

The total mass is conserved for each component, i = 1, . . . , Nc:

∂(φξwSw)

∂t
+ ∇ · (ξwuw) = qw,

∂(φ[xioξoSo + xigξgSg])
∂t

+ ∇ · (xioξouo + xigξgug) = xioqo + xigqg,

(2.3)

where ξw is the molar density of water (that is the water mass density ρw in the
present case) and qα stands for the flow rate of phase α at wells. In Eq. (2.3), the
volumetric velocity uα is given by Darcy’s law:

uα = −krα

µα

k (∇pα − ρα℘∇z) , α = w, o, g, (2.4)

where ρα is the mass density of the α-phase, ℘ is the magnitude of the gravita-
tional acceleration, and z is the depth. The mass flow rates qα of wells are given by
Peaceman’s formulas [16].

In addition to the differential equations (2.3) and (2.4), there are also algebraic
constraints. The mole fraction balance implies that

Nc∑

i=1

xio = 1,

Nc∑

i=1

xig = 1. (2.5)

In the transport process, the saturation constraint reads

Sw + So + Sg = 1. (2.6)
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Finally, the phase pressures are related by capillary pressures

pcow = po − pw, pcgo = pg − po. (2.7)

Mass interchange between phases is characterized by the variation of mass distri-
bution of each component in the oil and gas phases. As usual, these two phases are
assumed to be in the phase equilibrium state at every moment. This is physically
reasonable since the mass interchange between phases occurs much faster than the
flow of porous media fluids. Consequently, the distribution of each hydrocarbon
component into the two phases is subject to the condition of stable thermodynamic
equilibrium, which is given by minimizing the Gibbs free energy of the compositional
system [2], [6]:

fio(po, x1o, x2o, . . . , xNco) = fig(pg, x1g, x2g, . . . , xNcg), (2.8)

where fio and fig are the fugacity functions of the ith component in the oil and gas
phases [7], [17], respectively, i = 1, 2, . . . , Nc.

Equations (2.3)–(2.8) provide 2Nc + 9 independent relations, differential or alge-
braic, for the 2Nc + 9 dependent variables: xio, xig, uα, pα, and Sα, α = w, o, g,

i = 1, 2, . . . , Nc. With appropriate boundary and initial conditions, there is a closed
differential system for these unknowns.

3. Iterative IMPES Solution Method

When the IMPES is used within a Newton-Raphson iteration, we call it the iterative
IMPES, as mentioned.

3.1. Choice of Primary Variables

As discussed in the previous section, Eqs. (2.3)–(2.8) form a strongly coupled sys-
tem of time-dependent, nonlinear differential equations and algebraic constraints.
While there are 2Nc + 9 equations for the same number of dependent variables, this
system can be written in terms of 2Nc + 2 primary variables, and other variables
can be expressed as functions of them. The choice of these primary variables is very
important. They must be carefully chosen so that main physical properties inherent
in the governing equations and constraints are preserved, nonlinearity of and the
coupling between the equations are weakened, and efficient numerical methods for
the solution of the resulting system can be devised.

To simplify the expressions in Eq. (2.3), we introduce some notation. We utilize the
potentials

�α = pα − ρα℘z, α = w, o, g. (3.1)

Also, we use the total mass variable F of the hydrocarbon system [15], [23]

F = ξoSo + ξgSg, (3.2)
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and the mass fractions of oil and gas in this system

L = ξoSo/F, V = ξgSg/F. (3.3)

Note that L + V = 1. Next, instead of exploiting the individual mole fractions, we
use the total mole fraction of the components in the hydrocarbon system

zi = Lxio + (1 − L)xig, i = 1, 2, . . . , Nc. (3.4)

Then it is easy to see, using (2.5), (3.2), and (3.3), that

Nc∑

i=1

zi = 1, (3.5)

and

xioξoSo + xigξgSg = Fzi, i = 1, 2, . . . , Nc. (3.6)

Consequently, applying (2.4) and (3.1), the second equation of (2.3) becomes, i =
1, 2, . . . , Nc,

∂(φFzi)

∂t
− ∇ ·

(
k
[
xioξokro

µo

∇�o + xigξgkrg

µg

∇�g

])
= xioqo + xigqg. (3.7)

Adding the equations in (3.7) over i and exploiting (2.5) and (3.5) give

∂(φF)

∂t
− ∇ ·

(
k
[
ξokro

µo

∇�o + ξgkrg

µg

∇�g

])
= qo + qg. (3.8)

Equation (3.7) is the individual flow equation for the i-th component (say, i =
1, 2, . . . , Nc − 1) and Eq. (3.8) is the global hydrocarbon flow equation.

To simplify the differential equations further, we define the transmissibilities

Tα = ξαkrα

µα

k, Tiα = xiαξαkrα

µα

k, α = w, o, g, i = 1, 2, . . . , Nc. (3.9)

We now summarize the equations needed in the iterative IMPES. The equilibrium
relation (2.8) is recast, i = 1, 2, . . . , Nc,

fio(po, x1o, x2o, . . . , xNco) = fig(po + pcg, x1g, x2g, . . . , xNcg). (3.10)

Using (3.9), Eq. (3.7) becomes, i = 1, 2, . . . , Nc − 1,

∂(φFzi)

∂t
= ∇ · (Tio∇�o + Tig∇�g) + xioqo + xigqg. (3.11)

Similarly, it follows from (3.8) that

∂(φF)

∂t
= ∇ · (To∇�o + Tg∇�g) + qo + qg. (3.12)



36 Z. Chen et al.

Next, applying the first equation of (2.3) and (3.9) yields

∂(φξwSw)

∂t
= ∇ · (Tw∇�w) + qw. (3.13)

Finally, using (3.2) and (3.3), the saturation state equation (2.6) becomes

F

(
L

ξo

+ 1 − L

ξg

)
+ S = 1. (3.14)

The differential system consists of the 2Nc + 2 equations (3.10)–(3.14) for the
2Nc + 2 primary unknowns: xio (or xig), L (or V ), zi, F, S = Sw, and p = po,

i = 1, 2, . . . , Nc − 1.

3.2. The Iterative IMPES

Let n > 0 (an integer) refer to a time step. For any function v of spaceand time, we

write vn(·) = v(·, tn), and use δ̄v to denote the time difference

δ̄v = vn+1 − vn.

A time approximation at the (n+1)-th level for the system of equations (3.10)–(3.14)
is given by, i = 1, 2, . . . , Nc,

fio(p
n+1
o , xn+1

1o
, xn+1

2o
, . . . , xn+1

Nco
) = fig(p

n+1
g , xn+1

1g
, xn+1

2g
, . . . , xn+1

Ncg
),

1

t

δ̄(φFzi) = ∇ · (Tn
io∇�n+1

o + Tn
ig∇�n+1

g ) + xn+1
io qn

o + xn+1
ig qn

g ,

1

t

δ̄(φF ) = ∇ · (Tn
o∇�n+1

o + Tn
g∇�n+1

g ) + qn
o + qn

g ,

1

t

δ̄(φξwS) = ∇ · (Tn
w∇�n+1

w ) + qn
w,

[
F

(
L

ξo

+ 1 − L

ξg

)
+ S

]n+1

= 1,

(3.15)

where 
t = tn+1 − tn. Observe that the transmissibilities and well terms in (3.15)
are evaluated at the previous time level.

System (3.15) is nonlinear in the primary unknowns, and can be linearized via the
Newton-Raphson iteration, for example. For function v, we set

vn+1,l+1 = vn+1,l + δv,

where l refers to the number of Newton-Raphson’s iteration and δv represents the

increment in this iteration step. When no ambiguity occurs, we will write vn+1,l+1and

vn+1,l by vl+1 and vl , respectively (i.e., the superscript n + 1 is omitted). Note that
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vn+1 ≈ vl+1 = vl + δv, so δ̄v ≈ vl − vn + δv. Using this approximation in system
(3.15) yields, i = 1, 2, . . . , Nc,

fio

(
pl+1

o , xl+1
1o

, xl+1
2o

, . . . , xl+1
Nco

)
= fig

(
pl+1

g , xl+1
1g

, xl+1
2g

, . . . , xl+1
Ncg

)
,

1

t

[
(φFzi)

l − (φFzi)
n + δ(φFzi)

]

= ∇ ·
(

Tn
io∇�l+1

o + Tn
ig∇�l+1

g

)
+ xl+1

io qn
o + xl+1

ig qn
g ,

1

t

[
(φF )l − (φF )n + δ(φF)

]
= ∇ ·

(
Tn

o∇�l+1
o + Tn

g∇�l+1
g

)
+ qn

o + qn
g ,

1

t

[
(φξwS)l − (φξwS)n + δ(φξwS)

]
= ∇ ·

(
Tn

w∇�l+1
w

)
+ qn

w,

[
F

(
L

ξo

+ 1 − L

ξg

)
+ S

]l+1

= 1.

(3.16)

We expand the potentials in terms of the primary unknowns. Toward that end,
we must identify these unknowns. If the gas phase dominates in the hydrocarbon
system (e.g., L < 0.5), the primary unknowns will be xio, L, zi, F, S, and p, i =
1, 2, . . . , Nc − 1. That is, the so-called L − X iteration type is used. If the oil phase
dominates (e.g., L ≥ 0.5), the primary unknowns will be xig, V, zi, F, S, and p, i =
1, 2, . . . , Nc − 1, which corresponds to the V − Y iteration type. As an example,
we illustrate how to expand these potentials in terms of δxio, δL, δzi, δF, δS, and
δp, i = 1, 2, . . . , Nc−1; a similar expansion can be performed for the V −Y iteration
type.

For the i-th component flow equation,

δ(φFzi) = cipδp + ciF δF + cizδzi, i = 1, 2, . . . , Nc − 1, (3.17)

where

cip = φocR (Fzi)
l , ciF = (φzi)

l , ciz = (φF )l ,

with φo being the porosity at a reference pressure po and cR the rock compressibility.
For the global hydrocarbon flow equation,

δ(φF) = cpδp + cF δF, cp = φocRF l, cF = φl. (3.18)

For the water flow equation,

δ(φξwS) = cwpδp + cwSδS, cwp = φocR (ξwS)l +
(

φ
dξw

dp
S

)l

, cwS = (φξw)l .

(3.19)

In iterative IMPES, all the saturation functions (krw, kro, krg, pcw, and pcg), densi-
ties, and viscosities are evaluated at the saturation values of the previous time step
in Newton-Raphson’s iteration. The phase potentials are calculated by

�l+1
α = pl+1 + pn

cα − ρn
α℘z, α = w, o, g, (3.20)
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and the transmissibilities are computed by

Tn
α = ξn

α kn
rα

µn
α

k, Tn
iα = xn

iαξn
α kn

rα

µn
α

k, α = w, o, g, i = 1, 2, . . . , Nc. (3.21)

It follows from (3.20) that

�l+1
α = �l

α + δp, α = w, o, g. (3.22)

We now expand each of the equations in system (3.16). For this, we replace the deriv-
atives in xig by those in the primary variables, i = 1, 2, . . . , Nc. Applying relation
(3.4), we see that

∂xig

∂xio

= L

L − 1
,

∂xig

∂zi

= 1
1 − L

,
∂xig

∂L
= xio − xig

L − 1
, i = 1, 2, . . . , Nc.

Consequently, the chain rule implies

∂

∂xio

= ∂xig

∂xio

∂

∂xig

= L

L − 1
∂

∂xig

,
∂

∂zi

= ∂xig

∂zi

∂

∂xig

= 1
1 − L

∂

∂xig

,

∂

∂L
= ∂xig

∂L

∂

∂xig

= xio − xig

L − 1
∂

∂xig

.

Thus, after using (2.5) and (3.5) to eliminate xNco and zNc , the first equation in (3.16)
can be expanded as follows:

Nc−1∑

j=1

{(
∂fio

∂xjo

)l

−
(

∂fio

∂xNco

)l

+ Ll

1 − Ll

[(
∂fig

∂xjg

)l

−
(

∂fig

∂xNcg

)l
]}

δxjo

+ 1
1 − Ll

Nc∑

j=1

(
∂fig

∂xjg

(
xjo − xjg

))l

δL

= f l
ig − f l

io +
[(

∂fig

∂p

)l

−
(

∂fio

∂p

)l
]

δp

+ 1
1 − Ll

Nc−1∑

j=1

[(
∂fig

∂xjg

)l

−
(

∂fig

∂xNcg

)l
]

δzj ,

(3.23)

where, for i = 1, 2, . . . , Nc,

f l
io = fio(p

l
o, x

l
1o, x

l
2o, . . . , xl

Nco
), f l

ig = fig(p
l
g, x

l
1g, x

l
2g, . . . , xl

Ncg
).

Equation (3.23) is used to solve for (δx1o, δx2o, . . . , δx(Nc−1)o, δL) in terms of
(δz1, δz2, . . . , δzNc−1, δp). Note that this equation is linear in (δx1o, δx2o, . . . ,

δx(Nc−1)o, δL).
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Next, applying (3.17) and (3.22), from the second equation in (3.16) it follows that,
i = 1, 2, . . . , Nc − 1,

1

t

[
(φFzi)

l − (φFzi)
n + cipδp + ciF δF + cizδzi

]

= ∇ · (Tn
io∇�l

o + Tn
ig∇�l

g) + ∇ ·
((

Tn
io + Tn

ig

)
∇(δp)

)

+ (
xl
io + δxio

)
qo(δp) +

(
xl
ig + δxig

)
qg(δp).

(3.24)

Equation (3.24) is solved for (δz1, δz2, . . . , δzNc−1) in terms of (δF, δp). Similarly,
from the third equation in (3.16) we see that

1

t

[
(φF )l − (φF )n + cpδp + cF δF

]

= ∇ ·
(

Tn
o∇�l

o + Tn
g∇�l

g

)
+ ∇ ·

((
Tn

o + Tn
g

)
∇(δp)

)
+ qo(δp) + qg(δp),

(3.25)

which is employed to solve for δF in terms of δp. From the fourth equation in (3.16),
(3.19), and (3.22), we have

1

t

[
(φξwS)l − (φξwS)n + cwpδp + cwSδS

]

= ∇ · (
Tn

w∇�l
w

) + ∇ · (
Tn

w∇(δp)
) + qw(δp).

(3.26)

Equation (3.26) is utilized to obtain δS in terms of δp,

Note that

1
ξα

= Zα(pα, x1α, x2α, . . . , xNcα)RT

pα

, α = o, g.

Then, applying (2.5) and (3.5), it follows from the last equation in (3.16) that

(
FLRT

p

)l Nc−1∑
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= 1 −
(
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[
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.

(3.27)
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After substitution of δxjo, δL, δzj , δF , and δS, j = 1, 2, . . . , Nc−1 into (3.27) using
Eqs. (3.23)–(3.26), the resulting equation will become the pressure equation, which,
together with the well control equations, is implicitly solved for δp. The CVFE intro-
duced in the next section is applied to the discretization of equations (3.23)–(3.27)
in space.

In summary, the iterative IMPES for the compositional model has following
features:

– The difference between the iterative IMPES and the classical IMPES is that the
iterative IMPES is used within each Newton-Raphson iteration loop, while the
classical one is utilized before the Newton-Raphson iteration.

– The saturation constraint equation is used to solve implicitly for pressure p.
– The equilibrium relation is solved for (x1o, x2o, . . . , x(Nc−1)o, L).
– The hydrocarbon component flow equations are utilized to obtain explicitly for

(z1, z2, . . . , zNc−1).
– The global hydrocarbon flow equation is exploited to solve explicitly for F .
– The water flow equation is explicitly solved for S.
– Relation (3.4) generates (x1g, x2g, . . . , xNcg).

4. Numerical Results

This simulation problem is chosen from the benchmark problem of the third CSP
[11]. Nine companies participated in that comparison project. It is a study of gas
cycling in a rich retrograte condensate reservoir. Two prediction cases are consid-
ered. The first case is gas cycling with constant sales gas removal, and the second
case is cycling with some gas sales deferral to enhance pressure maintenance in the
early life of the reservoir. The data are taken from [11]. The specification of the
reservoir model is presented in Tables 1–5, where kh and kv denote the horizontal
and vertical permeabilities, respectively. A reservoir grid with 9 × 9 × 4 is shown in
Fig. 1, and it is diagonally symmetrical, indicating that it would be possible to sim-
ulate half of this reservoir. We chose to model the full reservoir. Also, the reservoir
layers are homogeneous and have a constant porosity, but there are permeability
and thickness variations between layers, a factor leading to unequal sweepout. The
two-well pattern is arbitrary and is employed to allow for some retrograde conden-
sation without significant revaporization by recycling gas to simulate what occurs
in sweep-inaccessable parts of a real reservoir.

Due to the layer structure in the vertical direction of the reservoir under consider-
ation, we divide its domain into hexagonal prisms, i.e., hexagons in the horizontal
plane and rectangles in the vertical direction, as seen in Fig. 2; also see Fig. 3 for
a planar view of the grid. The initial conditions, the location of the gas-water con-
tact, and the capillary pressure data produce a water-gas transition zone extending
to the pay zones. However, the very small compressibility and water volume make
water quite insignificant for the present problem. Relative permeability data are used
under the assumption that the phase relative permeability function depends only on
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Table 1. Reservoir grid data

NX = NY = 9, NZ = 4; DX = DY = 293.3 ft
DZ = 30, 30, 50, 50 ft; Datum=7,500 ft. (subsurface)
Porosity: 0.13 (at initial reservoir pressure)
Gas-water contact: 7,500 ft; Sw at contact: 1.0
pcgw at contact: 0.0 psi; initial pressure at contact: 3,550 psia
Water density at contact: 63.0 lb/cu ft; cw=3.0E-6 psi−1

Formation water viscosity: 0.78 cp; Rock compressibility: 4.0E-6 psi−1

Table 2. Reservoir model description

Layer Thickness (ft) kh (md) kv (md) Depth to center (ft)

1 30 130 13 7.330
2 30 40 4 7.360
3 50 20 2 7.400
4 50 150 15 7.450

Table 3. Saturation function data

Phase saturation krg kro krw pcgw (psi) pcgo (psi)

0.00 0.00 0.00 0.00 > 50 0
0.04 0.005 0.00 0.00 > 50 0
0.08 0.013 0.00 0.00 > 50 0
0.12 0.026 0.00 0.00 > 50 0
0.16 0.040 0.00 0.00 50 0
0.20 0.058 0.00 0.002 32 0
0.24 0.078 0.00 0.010 21 0
0.28 0.100 0.005 0.020 15.5 0
0.32 0.126 0.012 0.033 12.0 0
0.36 0.156 0.024 0.049 9.2 0
0.40 0.187 0.040 0.066 7.0 0
0.44 0.222 0.060 0.090 5.3 0
0.48 0.260 0.082 0.119 4.2 0
0.52 0.300 0.112 0.150 3.4 0
0.56 0.348 0.150 0.186 2.7 0
0.60 0.400 0.196 0.227 2.1 0
0.64 0.450 0.250 0.277 1.7 0
0.68 0.505 0.315 0.330 1.3 0
0.72 0.562 0.400 0.390 1.0 0
0.76 0.620 0.513 0.462 0.7 0
0.80 0.680 0.650 0.540 0.5 0
0.84 0.740 0.800 0.620 0.4 0
0.88 − − 0.710 0.3 0
0.92 − − 0.800 0.2 0
0.96 − − 0.900 0.1 0
1.00 − − 1.000 0.0 0

its own phase saturation. Oil is immobile to 24% saturation, and krg is reduced from
0.74 to 0.4 as condensate builds to this saturation with irreducible water present.

Production is separator gas rate controlled. Liquid production through multistage
separation is to be predicted. The separator train is given, and the primary separator
pressure depends on reservoir pressure as shown in Table 5. Sales gas is removed
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Table 4. Production, injection, and sales data

Production Location: I=J=7; perforations: K=3,4; radius: rw = 1 ft;
rate: 6,200 Mscf/D (gas rate); min pbh, 500 psi

Injection Location: I=J=1; perforations: K=1,2; radius: rw = 1 ft;
rate: separator rate-sales rate; max pbh: 4,000 psi

Sales rate for case 1 Constant sales rate to blowdown: 0 < t < 10 yr,
1,500 Mscf/D; t > 10 yr, all produced gas to sales

Sales rate for case 2 Deferred sales: 0 < t < 5 yr, 500 Mscf/D; 5 < t < 10 yr,
2,500 Mscf/D; t > 10 yr, all produced gas to sales

Table 5. Separator pressures and temperatures

Separator Pressure (psia) Temperature (◦F)

Primary 815 80
Primary 315 80
Second stage 65 80
Stock tank 14.7 60

Primary separation at 815 psia until reservoir pressure (at datum) falls below 2,500 psia; then switch to
primary separation at 315 psia

130md,30ft

40md,30ft

20md,50ft

150md,50ft

7330ft
7360ft

7400ft

7450ft

datum=7500ft (subsurface)

293.3ft

293.3ft

1
2

3

4

injection production completion

Fig. 1. A reservoir domain

from the bulked separator gas, and the remaining gas is recycled. Volumetrically,
the two cases under consideration provide for exactly the same amount of recycling
gas to be reinjected over the cycling period (10 years), but more gas is recycled in
the critical early years in the second case. Blowdown (all gas to sales) starts at the
end of the tenth year of cycling, and simulations are run up to 15 years or 1,000 psi
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Fig. 2. A hexagonal prism

Fig. 3. A planar view of the grid

average reservoir pressure, whichever occurs first. The simulations are initialized at
pressure about 100 psi above the dew point pressure 3, 443 psia.

The entire simulation study is divided in two stages:

– PVT phase behavior study to obtain accurate EOS parameters and prediction
results.

– Reservoir simulation study of the compositional flow using the CVFE.

4.1. PVT Phase Behavior Study

4.1.1. PVT Data

The measured PVT data can be found in [4]. These data include hydrocarbon sam-
ple analysis, constant composition expansion data, constant volume depletion data,
and swelling data of four mixtures of reservoir gas with lean gas.
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4.1.2. PVT Study for Matching the PVT Data

The PVT study includes:

– Splitting C7+;
– Pseudo-grouping;
– Constant composition expansion and constant volume depletion;
– Swelling tests;
– Critical parameters at the formation and separator conditions for compositional

modeling.

The heavy C7+ component is split into three components, HC1, HC2, and HC3, to
enhance the accuracy of PVT data matching. The mole fractions, molecular weights,
and specific gravity of these components are stated in Table 6.

We use a pseudo-grouping approach to group components. The purpose of pseudo-
grouping is to reduce the number of components involved in compositional model-
ing. These pseudo-components are described in Table 7.

Detailed matches of the PVT data are displayed in Figs. 4–7. Figure 4 shows pressure-
volume data in constant composition expansion of the reservoir gas at 200◦F.
Figure 5 indicates retrograde condensate during constant volume depletion. Liquid
yield by multistage surface separation in reservoir gas produced by constant volume
depletion is displayed in Fig. 6. The results of swelling of reservoir gas with increas-
ing the dew point pressure of injected lean gas are given in Fig. 7. There are very
good agreements between the laboratory and computed PVT data.

Finally, Tables 8–11 give a summary for the characterization data and binary inter-
action coefficients of the components at the formation and separator conditions.

4.2. Reservoir Simulation Study

The initial fluids in-place using multistage separation are given below:

Wet gas (Bscf): 25.774, Dry gas (Bscf): 23.246, Stock tank oil (MMstb): 3.450.

Simulation results for the compositional model considered are given in Figs. 8–14.
The time step size used in the iterative IMPES is about 30 days (in the first few time
steps, it is smaller). Our compositional simulator can use either the ORTHOMIN
(orthogonal minimum residual) [22] or GMRES (generalized minimum residual)
[19] Krylov subspace methods, with incomplete LU factorization preconditioners,
as the linear solver.

Table 6. HC1, HC2, and HC3

Component Mole fraction Molecular weights Specific gravity

HC1 0.05011 118.44 0.74985
HC2 0.01340 193.95 0.81023
HC3 0.00238 295.30 0.86651
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Table 7. Pseudo-grouping of components

Pseudo-component P1 P2 P3 P4 P5 P6 P7

Natural component C1, N2 C2, CO2 C3, C4 C5, C6 HC1 HC2 HC3
Mole fraction 0.6793 0.0990 0.1108 0.0450 0.05011 0.0134 0.00238
Molecular weights 16.38 31.77 50.64 77.78 118.44 193.95 295.30
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Fig. 4. Pressure-volume relation of reservoir fluid at 200◦ F – Constant composition expansion; the dotted
line is laboratory and the solid is computed
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Fig. 5. Retrograde condensate during constant volume gas depletion at 200◦ F; the dotted line is
laboratory and the solid is computed
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Stock-tank oil rates for the first and second cases and the corresponding cumulative
liquid production for these cases at the final simulation time of 15 years are shown
in Figs. 8–11. Incremental stock-tank oil produced by gas-sales deferral (the second
case minus the first), and oil saturations are given in Figs. 12–14. Primary separator
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Table 8. Characterization data of components at the formation conditions

Pseudo Zc Pc Tc (◦F) Molecular Acentric ω �a �b
components (psia) weight

P1 0.28968 667.96 −119.11 16.38 0.00891 0.34477208 0.06328161
P2 0.28385 753.82 90.01 31.77 0.11352 0.52197368 0.09982480
P3 0.27532 586.26 252.71 50.64 0.17113 0.51497212 0.10747888
P4 0.26699 469.59 413.50 77.78 0.26910 0.41916871 0.09345540
P5 0.27164 410.14 605.99 118.44 0.34196 0.48594317 0.07486045
P6 0.23907 260.33 795.11 193.95 0.51730 0.57058309 0.10120595
P7 0.22216 183.92 988.26 295.30 0.72755 0.45723552 0.07779607

Table 9. Binary interaction coefficients at the formation conditions

components P1 P2 P3 P4 P5 P6 P7

P1 0.0
P2 0.000622 0.0
P3 −0.002471 −0.001540 0.0
P4 0.011418 0.010046 0.002246 0.0
P5 −0.028367 0.010046 0.002246 0.0 0.0
P6 −0.100000 0.010046 0.002246 0.0 0.0 0.0
P7 0.206868 0.010046 0.002246 0.0 0.0 0.0 0.0

Table 10. Characterization data of components at the separator conditions

Pseudo Zc Pc Tc (◦F) Molecular Acentric ω �a �b
components (psia) weight

P1 0.28968 667.96 −119.11 16.38 0.00891 0.50202385 0.09960379
P2 0.28385 753.82 90.01 31.77 0.11352 0.45532152 0.08975547
P3 0.27532 586.26 252.71 50.64 0.17113 0.46923415 0.08221724
P4 0.26699 469.59 413.50 77.78 0.26910 0.58758251 0.08178213
P5 0.27164 410.14 605.99 118.44 0.34196 0.55567652 0.06715680
P6 0.23907 260.33 795.11 193.95 0.51730 0.49997263 0.07695341
P7 0.22216 183.92 988.26 295.30 0.72755 0.45723552 0.07779607

Table 11. Binary interaction coefficients at the separator conditions

Components P1 P2 P3 P4 P5 P6 P7

P1 0.0
P2 0.000622 0.0
P3 −0.002471 −0.001540 0.0
P4 0.011418 0.010046 0.002246 0.0
P5 0.117508 0.010046 0.002246 0.0 0.0
P6 0.149871 0.010046 0.002246 0.0 0.0 0.0
P7 0.112452 0.010046 0.002246 0.0 0.0 0.0 0.0

switchout occurs late in the cycling phase (10 years). The predicted surface oil rate
is closely correlated with the liquid yield predictions shown in Fig. 6.

As noted earlier, the first case is gas cycling with constant sales gas removal, while
the second case is cycling with some gas sales deferral to enhance pressure mainte-
nance in the early life of the reservoir. The total sales gas removal is the same for
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Fig. 9. Stock-tank oil production rate in case 2

the two cases; the difference lies in the way sales gas is removed in the first ten years
(see Table 4). For a gas condensate reservoir, decreasing the occurring of retrograde
condensate phenomena leads to less loss of heavy hydrocarbon components and
more production of oil.
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Fig. 11. Cumulative stock-tank oil production in case 2

Figure 12 gives incremental stock-tank oil produced by gas-sales deferral. In the
peak of this curve (at the eighth year), the cumulative stock-tank oil produced by
the second case is 182 Mstb more than that by the first case (i.e., 9.76% increase). At
the final production time (the 15th year), the increase is down to 159 Mstb (6.65%).
This phenomenon can be seen from the observation that after injection of recycle
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Fig. 12. Incremental stock-tank oil produced by gas-sales deferral (case 2 minus case 1)

gas stops, liquid production is due to depletion and the heavy end fractions vaporize
into the vapor phase and are produced.

Figures 13 and 14 give the oil saturation at the grid block (7,7,4) for these two cases,
respectively. From these two figures, we see that the oil saturation in the second
case is smaller than that in the first case. This shows that the retrograde condensate
phenomenon in the second occurs less than that in the first.

Compared with those presented in [11], the numerical results in Figs. 8–14 show that
our numerical scheme performs very well. In fact, our stock-tank oil rate and corre-
sponding cumulative production are close to the respective averaged values of those
provided by nine companies in [11]. In our numerical scheme for the compositional
simulation, the treatment of crossing “bubble points” and “dew points” in Newton-
Raphson’s iterations is very accurate, which leads to a very accurate computation
of Jacobian matrices when the flow changes from three-phase to two-phase or vice
versa. Our scheme also utilizes an accurate post-processing technique for checking
consistency of the solution variables (F, L) with the natural variables (So, Sg) after
the Newton-Raphson iterations. Through comparisons with other simulators and
applications to real fluid analyses, we believe that our compositional simulator is a
reliable, accurate, and fast simulator.

5. Concluding Remarks

We have developed an iterative IMPES solution approach to the numerical sim-
ulation of three-dimensional, three-phase, multicomponent compositional flow in
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porous media. The CVFE method on unstructured grids has been employed for the
discretization of the governing equations of this compositional model. Numerical
experiments have been presented for the benchmark problem of the third CSP, and
have shown that the iterative IMPES approach performs very well for this problem
of a moderate size. To simulate accurately the process of recycle gas injection in
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a gas condensate reservoir using a compositional model, from our experience the
following factors are very important:

– Through a PVT data match of the retrograde condensate curve during constant
volume depletion, one is able to predict an accurate change of the reservoir oil
saturation in the process of a pressure decrease.

– Through a PVT data match of swelling tests, one is able to see that the increase
of the dew point pressure after injection of recycle gas can lead to the transfer
of heavy hydrocarbon components in the thermodynamic equilibrium from the
liquid phase to the vapor phase and to the production of these components at
production wells, thus increasing their production.

– In compositional simulation, it is necessary to input two sets of critical PVT data;
one set is in high pressure and is used for simulation of a reservoir flow process,
while another set is in lower pressure and is used for simulation of a separator pro-
cess. The efficiency of enhanced oil recovery depends on the accuracy of separator
simulation.

– The simulations in Sect. 5 have been performed on an SGI Power Indigo with 1
GB RAM, and the CPU time for the present compositional problem at the final
time of 15 years is about 39 seconds.

The CVFE method can be easily employed in a wide range of unstructured reservoir
simulations (e.g., local grid refinement, horizontal well simulation, hybrid grids, and
fault treatment). This paper provides a basis using this method for the compositional
modeling. The nature of any IMPES solution approach restricts the time step size. To
improve the efficiency of this approach for large-scale problems, we are investigating
a sequential solution approach for the computation of the compositional model. In
the sequential approach, the global hydrocarbon and water flow equations will be
solved implicitly in pressure, saturation, and composition.
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