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a b s t r a c t

A precise value of the matrix-fracture transfer shape factor is essential for modeling fluid flow in frac-
tured porous media by a dual-porosity approach. The slightly compressible fluid shape factor has been
widely investigated in the literature. In a recent study, we have developed a transfer function for flow
of a compressible fluid using a constant fracture pressure boundary condition [Ranjbar E, Hassanzadeh
H, Matrix-fracture transfer shape factor for modeling flow of a compressible fluid in dual-porosity media.
Adv Water Res 2011;34(5):627–39. doi:10.1016/j.advwatres.2011.02.012]. However, for a compressible
fluid, the consequence of a pressure depletion boundary condition on the shape factor has not been inves-
tigated in the previous studies. The main purpose of this paper is, therefore, to investigate the effect of the
fracture pressure depletion regime on the shape factor for single-phase flow of a compressible fluid. In
the current study, a model for evaluation of the shape factor is derived using solutions of a nonlinear dif-
fusivity equation subject to different pressure depletion regimes. A combination of the heat integral
method, the method of moments and Duhamel’s theorem is used to solve this nonlinear equation. The
developed solution is validated by fine-grid numerical simulations. The presented model can recover
the shape factor of slightly compressible fluids reported in the literature. This study demonstrates that
in the case of a single-phase flow of compressible fluid, the shape factor is a function of the imposed
boundary condition in the fracture and its variability with time. It is shown that such dependence can
be described by an exponentially declining fracture pressure with different decline exponents. These
findings improve our understanding of fluid flow in fractured porous media.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In general, there are computational challenges in upscaling of
fluid flow in fractured formations. Upscaling of transport and flow
parameters for porous media has been investigated from decades
and a range of upscaling techniques have been introduced [1]. Large
portion of the produced natural gas occurs from fractured forma-
tions including naturally fractured reservoirs (NFR), coal bed meth-
ane (CBM) and tight fractured gas reservoirs. In these reservoirs, the
major storage for the reservoir fluids is in the matrix whereas flow
primarily occurs in the highly conductive fractures [2]. Warren and
Root [3] established the dual-porosity model for modeling of a
slightly compressible fluid flow in the naturally fractured reser-
voirs. In the dual-porosity approach, a fractured reservoir is divided
into two media with completely different properties: fracture and
matrix. The fracture network supplies the main flow paths and
the reservoir rock or matrix acts as the major source of the fluid
storage [4]. On the other hand most of the fluid storage is in the

matrix and fluid flows through the fractures as the main channel.
Therefore, an improved dual porosity model should be able to accu-
rately account for the fracture and matrix interaction.

A dual-porosity model, which is an effective and broadly used
approach for modeling and upscaling of fluid flow in the fractured
porous media, assumes that two distinct types of porosity coexist
in a representative rock volume [2,5–8]. In general, fracture has a
low storage capacity and high transmissivity and the adjacent rock
matrix has a high storage capacity and a relatively low transmissiv-
ity [9]. Defining the transfer shape factor that accounts for the
interaction among the matrix and fracture is a great challenge in
dual-porosity upscaling. In dual-porosity models the matrix-
fracture interaction is modeled through a shape factor. An equiva-
lent fracture permeability, matrix-permeability, matrix-fracture
transfer coefficient (shape factor) and saturation functions (for
multiphase flow) are essential parameters for the dual porosity
approach. Studies have been conducted in the past to determine
the transfer shape factor for slightly compressible fluids in the
fractured reservoirs [10–17]. A precise value of the shape factor
is essential to consider transient and pseudo-steady state perfor-
mance of the matrix-fracture interaction and also geometry of
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the matrix-fracture system. It should be noted that the functional-
ity of the fracture pressure as a boundary to the matrix blocks may
also have a significant effect on the stabilized value of the shape
factor for a slightly compressible fluid [18,19].

In traditional dual porosity formulation the flow between the
matrix and the fracture is considered by a transfer function, which
acts as a source term in the governing equation for fluid flow in the
fractures. Darcy’s law is used in this source function over the mean
path between the matrix and the adjacent fracture. In the non-
coupled dual porosity formulation, flow in the fractures acts as a
boundary condition for flow in the matrix [9]. This transfer func-
tion and the amount of fluid that is transferred from the matrix
to the fracture are directly proportional to the shape factor.
Numerical simulation of naturally fractured reservoirs using a dual
porosity approach requires a precise value of the shape factor for
the entire period of the production time.

In general, there are two models to consider the matrix and
fracture interaction including pseudo-steady state and transient
transfer. The former model ignores the pressure transient in the
matrix while the latter model accounts for the pressure transient
in the matrix. The matrix-fracture shape factor for a slightly com-
pressible fluid can be obtained using the following equation [20]:

r ¼ �lcm/m

km

@�pm
@t

ð�pm � pf Þ
; ð1Þ

where l is the fluid viscosity, cm, /m, and km are the total isothermal
compressibility, porosity and permeability, respectively, �pm shows
the average pressure of the matrix block, pf is the fracture pressure
and r is the matrix-fracture transfer shape factor with dimension of
L�2. In a pseudo-steady state model the matrix blocks are consid-
ered as a lumped system with an average pressure, �pm, while in
the transient model one needs to find the solution of the pressure
diffusivity equation given by:

r km

l rpm

� �
¼ /mcm

@pm

@t
: ð2Þ

For a slightly compressible fluid, negligible variation of the fluid vis-
cosity and isothermal compressibility with the pressure leads to a
linear flow equation for the pressure variation in the matrix. This
equation can be solved by common analytical or semi-analytical
methods such as the Laplace transform or separation of variables
method [8,20–23].

Determination of the matrix-fracture transfer shape factor for a
slightly compressible fluid based on the pseudo-steady state or
transient transfer model has been studied in the past. Investigators
have considered the effect of fracture boundary conditions on the
dual porosity formulation and shape factor for the slightly com-
pressible fluids [18,19,24]. It has been shown that the fracture
pressure and its variation with time affect the transient and pseu-
do-steady state values of the shape factor.

There have been new efforts to determine the shape factors for
multi-phase flow and thermal methods in fractured porous media
[24–26]. There have also been a few reports in the literature to
model dual porosity systems for compressible fluids with different
approaches than this study [27,28]. A more detailed review of
shape factor developments was discussed elsewhere [29].

Although the dual porosity approach with the shape factor con-
cept has some limitations, it has been widely used and well ac-
cepted approach in hydrological sciences and petroleum reservoir
modeling. This may be because of its simplicity, computational
efficiency and flexibility in application to various fluid flow and
transport problems. In addition, lack of more advanced and
efficient models that can accurately take into account the matrix-
fracture interaction have contributed to extensive use of the dual
porosity models. Currently, the majority of commercial flow simu-
lators use the dual porosity approach. However, it should be

Nomenclature

A cross-sectional area [L2]
Bg gas formation volume factor
cm matrix total compressibility [LT2/M]
hm = 2Lc matrix block length [L]
km matrix permeability [L2]
l time dependent length where pressure is average

pressure [L]
Lc matrix block characteristic length [L]
n exponent in the polynomial trial solution using HBIM
pm matrix-block pressure [M/LT2]
�pm average matrix-block pressure [M/LT2]
pf fracture pressure [M/LT2]
qsc matrix-fracture fluid transfer [L3/T]
q̂ interporosity flow rate per unit volume of rock [1/T]
t time [T]
t⁄ dimensionless time at which the pressure disturbance

reach to the boundary
tD dimensionless time
T reservoir temperature [K]
Vb matrix-block volume [L3]
xD dimensionless distance

Greek Symbols
a decline constant [1/T]
b space correction factor
c gas specific gravity
d penetration depth
e proportionality constant for penetration depth

gm matrix hydraulic diffusivity [L2/T]
�g average hydraulic diffusivity [L2/T]
gD dimensionless hydraulic diffusivity
gD1 dimensionless fracture hydraulic diffusivity
j dimensionless decline constant
k dimensionless exponent of solution of gas diffusivity

equation using moment method
l fluid viscosity [M/LT]
r shape factor [1/L2]
s Duhamel ’s variable
/ porosity
�wm average matrix-block pseudo-pressure [M/LT3]
wf fracture pseudo-pressure [M/LT3]
wi initial pseudo-pressure [M/LT3]
wD dimensionless pseudo-pressure
wfD dimensionless fracture pseudo-pressure
�wD average dimensionless pseudo-pressure
w1 fracture pseudo-pressure when tD tends to infinity

[M/LT3]

Subscripts
D dimensionless
f fracture
g gas
i initial condition
m matrix
SC standard conditions
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pointed out that a new line of attack on tackling fluid flow and
transport in fractured rocks has been recently introduced based
on discrete fracture network models [30]. Hoteit and Firoozabadi
[30] presented a discrete fracture model for single phase flow of
compressible fluids in heterogeneous and fractured media. They
developed a numerical model by combining the mixed finite
element and the discontinuous Galerkin methods for multi-
component gas flow. Discrete fracture model also have been
used for multiphase flow and water injection in fractured media
[31,32].

It has been reported in the literature that in the case of a slightly
compressible fluid the pseudo-steady state value of the matrix-
fracture shape factor is a function of the pressure decline regime
in the fracture. Contrary to the slightly compressible fluid case,
the variation of the isothermal compressibility and viscosity with
pressure cannot be ignored when dealing with a compressible
fluid. This leads to a nonlinear PDE. Therefore, the reported shape
factors for slightly compressible fluids cannot be applied for com-
pressible fluids or their application has not been validated in the
previous studies. In a recent study we derived the matrix-fracture
shape factor for a compressible fluid in dual-porosity systems [29].
The effect of fracture pressure decline on the compressible fluid
shape factor has not been reported in the previous studies. In this
study, we further develop our previous study to investigate the ef-
fect of pressure decline in the fracture on the matrix-fracture
transfer shape factor for a compressible fluid.

We study the influence of the fracture pressure (as a boundary
condition for the matrix block) on the shape factor for flow of a
compressible fluid in a dual-porosity model which has not been
investigated in the former works. To obtain the matrix-fracture
shape factor, a nonlinear diffusivity equation is solved using the
heat integral method and the method of moments. To consider
the effect of the time variation of the boundary conditions a mod-
ified trial solution (early time) and Duhamel’s theorem (late time)
are used to derive the early and late time shape factors for the
declining fracture pressure cases. The developed approximate ana-
lytical solution is validated by a numerical model [29]. The devel-
oped shape factor model can recover predictions from the shape
factor models available in the literature for a slightly compressible
fluid. This shape factor may find applications in dual-porosity mod-
eling of the convectional and unconventional naturally fractured
gas reservoirs such as coalbed methane and fractured tight gas
reservoirs.

This paper is organized in a manner that follows a methodology
for derivation of the shape factor for compressible fluids. Next
solution of the nonlinear diffusivity equation subject to a declining
fracture pressure is obtained using the heat integral and moment
methods and Duhamel’s theorem. Afterwards model verification
and results are discussed followed by conclusions.

2. Methodology

In this section the shape factor for flow of a compressible fluid
from a matrix block under different fracture boundary conditions is
derived by taking into account the pressure dependency of the vis-
cosity and isothermal compressibility. Darcy’s law for flow of gas in
the porous media is expressed as follows:

qgsc ¼ �
kmA
lBg

dp
dx
; ð3Þ

where A is the cross-section area and Bg is the gas formation
volume factor. Using the definitions of the gas formation volume
factor and real gas pseudo-pressure [34] and writing the Darcy’s
law over some characteristics length l, leads to the following
equation:

qsc ¼
kmTsc

Tpsc

A
l

�wm � wf

2
: ð4Þ

As shown in Eq. (4) l is a length where the matrix pressure is equal
to its average pressure and this length changes with time during
transient matrix production. For a matrix-fracture combination
shown in Fig. 1, Eq. (4) is multiplied and divided by the bulk volume
of the matrix-block to define the transfer function for compressible
fluids. Using the definition of the shape factor (Eq. (5)); the final
equation for the matrix-fracture transfer function for compressible
fluids (e.g. gases), is expressed as Eq. (6) [29]:

r ¼ A
lðVb=2Þ ; ð5Þ

qsc ¼
TscVb

4psc

kmr
T
ð�wm � wf Þ: ð6Þ

In this equation T is the absolute temperature, r is the shape factor,
�wm shows the average matrix block pseudo-pressure and wf is the
fracture pseudo-pressure.

According to the Warren and Root [3] dual-porosity model for a
slightly compressible fluid, the interporosity flow rate per unit vol-
ume of the rock can be expressed in terms of the accumulation rate
in the matrix as follows:

q̂ ¼ �/mcm
@�pm

@t
: ð7Þ

The interporosity flow rate for compressible fluids can be expressed
as follows [29]:

qsc ¼ �
TscVb

4psc

lcm/m

T
@�wm

@t
: ð8Þ

Combination of Eqs. (6) and (8) leads to the following equation for
single-phase shape factor of compressible fluids [29]:

r ¼ � lcm/m

kmð�wm � wf Þ
@�wm

@t
: ð9Þ

There is another alternative to derive the shape factor for compress-
ible fluids by integrating of the diffusivity equation over the matrix-
block volume. This method was used by Zimmerman et al. to derive
the shape factor for slightly compressible fluids and leads to Eq. (1)
[23]. By integrating of the gas diffusivity equation over half of the
matrix block volume we reach to the following equation,

/mcm
@�wm

@t
¼ 1

Vb=2

Z
km

l
@

@x
@wm

@x

� �
Adx: ð10Þ

Simplification of Eq. (10) leads to the following equation:
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Fig. 1. Schematic of the matrix-fracture model.
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/mcm
@�wm

@t
¼ A

Vb=2
km

l
@wm

@x
: ð11Þ

Using the Warren and Root [3] approximation we have,

@wm

@x
¼

wf � �wm

l
; ð12Þ

where l is the characteristics length, which is the distance from the
matrix-fracture boundary where the matrix pressure is equal to its
average pressure. By substituting this equation in Eq. (11) we reach
to the following equation:

/mcm
@�wm

@t
¼ A

lðVb=2Þ
km

l
ðwf � �wmÞ: ð13Þ

Using the definition of the shape factor given by Eq. (5) we reach to
the following equation for the shape factor of compressible fluids,
which is similar to the equation that was obtained by Zimmerman
et al. [23] for slightly compressible fluids. It should be noted that in
this equation pseudo-pressure is appeared in the final equation as
we are dealing with compressible fluids.

r ¼ lcm/m

km

@�wm
@t

ðwf � �wmÞ
: ð14Þ

This equation is the same as Eq. (9). It should be pointed out that for
a compressible fluid the viscosity-isothermal compressibility prod-
uct is a strong function of pressure, in Eq. (9) or (14) the solution of
the nonlinear gas diffusivity equation is utilized to determine the
shape factor for different pressure regimes in the fracture.

2.1. Constant fracture pressure

In this case it is assumed that at the matrix-fracture interface,
the fracture pressure and hence the pseudo-pressure is a constant.
For this case the dimensionless variables are defined as follows:

wD ¼
wm � wi

wf � wi
; ð15Þ

xD ¼
x
Lc
; ð16Þ

gD ¼
gm

�g
; ð17Þ

tD ¼
�gt

L2
c

: ð18Þ

In Eq. (17) the average hydraulic diffusivity, �g, is given by [29]:

�g ¼ 1
pf � pi

Z pf

pi

km

lcm/m
dp ¼ km

/m

1
pf � pi

Z pf

pi

dp
lcm

: ð19Þ

Using the definition of dimensionless variables (Eqs. (15), (17) and
(18)) in the shape factor equation (Eq. (9)), the subsequent equation
for the dimensionless shape factor in the case of the constant frac-
ture pressure is obtained:

rh2
m ¼ �

4
gD

1
�wD � 1

� �
@�wD

@tD
: ð20Þ

2.2. Linearly declining fracture pressure

For a linearly declining fracture pressure we have the following
equation for the fracture pseudo-pressure:

wf ¼ wið1� atÞ; a 6
1
t

ð21Þ

where a is a decline constant. For this case the dimensionless pseu-
do-pressure and the dimensionless fracture pseudo-pressure are
defined as follows:

wD ¼
wi � wm

wi
; ð22Þ

wfDðtDÞ ¼ jtD; j 6
1
tD

ð23Þ

where j is the dimensionless decline constant and is defined as
follows:

j ¼ at
tD
; ð24Þ

Applying the explanation of the dimensionless variables, Eqs. (17),
(18), (22) and (23), in the shape factor equation (Eq. (9)), leads to
the following equation for the shape factor in the case of the linearly
declining fracture pressure:

rh2
m ¼ �

4
gD

@�wD
@tD

�wD � jtD

 !
: ð25Þ

2.3. Exponentially declining fracture pressure

For this case the fracture pressure declines exponentially with
time according to the following equation:

wf ¼ w1 þ ðwi � w1Þ expð�atÞ; ð26Þ

where w1 = wf(t ?1). For an exponential decline, the dimension-
less pseudo-pressure and the fracture dimensionless pseudo-pres-
sure are defined as follows:

wDðtDÞ ¼
wm � wi

w1 � wi
; ð27Þ

wfDðtDÞ ¼ 1� expð�jtDÞ; ð28Þ
where j is the dimensionless decline constant and is defined in Eq.
(24). Using the definition of dimensionless variables (Eqs. (17), (18),
(27) and (28)) in the shape factor equation (Eq. (9)), leads to the fol-
lowing equation for the shape factor in the case of the exponentially
declining fracture pressure:

rh2
m ¼
�4
gD

@�wD
@tD

�wD � ð1� expð�jtDÞÞ
: ð29Þ

3. The approximate analytical solutions

The compressible fluid diffusivity equation for linear flow can
be stated as:

@2wm

@x2 ¼
lcm/m

km

@wm

@t
: ð30Þ

Strong pressure dependence of the viscosity and isothermal com-
pressibility leads to a nonlinear partial differential equation (PDE)
for compressible fluid flow in fractured porous media. Solution of
this PDE cannot be obtained by common methods like Laplace or
separation of variables. Eq. (30) in term of the matrix hydraulic dif-
fusivity, gm = km/lcm/m is expressed as follows:

@wm

@t
¼ gmðpÞ

@2wm

@x2 : ð31Þ

In Eq. (31), hydraulic diffusivity is a space and time dependent
parameter. To solve Eq. (31), we neglect the isothermal compress-
ibility-viscosity product variation with space and effect of the space
is considered by a correction factor, b [29,33]. Fine-grid numerical
simulations are used to determine this correction factor. Since the
gas compressibility is orders of magnitude larger than the rock
compressibility we ignore the rock compressibility in the solution
[33,34]. Therefore, we reach the following PDE with the initial
and boundary conditions.
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@wm

@t
¼ @

@x
bgmðtÞ

@wm

@x

� �
; ð32Þ

t ¼ 0! wm ¼ wi; ð33aÞ

x ¼ 0! @wm

@x
¼ 0; ð33bÞ

x ¼ Lc ! wm ¼ wf : ð33cÞ

In Eqs. (32) and (33), b is used to correct the effect of space on the
hydraulic diffusivity; Lc is characteristic length of the matrix-block
which is half of the matrix-block thickness (hm). Fig. 1 illustrates
a graphical representation of the matrix-fracture system.

3.1. Constant fracture pressure

A solution for the constant fracture pressure is given in our
recent work [29]. Since this solution will be used as a basis for
the time-dependent boundary condition, the final form of the solu-
tion is given in the following. Using an integral method [35–38] the
early time solution for constant fracture pressure can be found as
follow [29]:

wD ¼
ðxD þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24bgD1tD

p
� 1Þ3

24bgD1tD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24bgD1tD

p ¼ 1� 1� xDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24bgD1tD

p
 !3

; tD <
1

24bgD1
:

ð34Þ

�wD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24bgD1tD

p
4

; tD <
1

24bgD1
: ð35Þ

where �wD is the average pseudo-pressure and gD1 is hydraulic diffu-
sivity of the fracture in dimensionless form and is expressed as
follows:

gD1 ¼
gmðxD ¼ 1Þ

�g
¼

km=lf cf /m

�g
: ð36Þ

The late time solution can be obtained by the method of moments
[18,39,40] as given by [29]:

wDðxD; tDÞ ¼ ð1� 1:252 expðbk1tDÞ þ 0:489 expðbk2tDÞÞ
þ ð1:793 expðbk1tDÞ � 6:175 expðbk2tDÞÞx2

D

þ ð�0:541 expðbk1tDÞ þ 5:686 expðbk2tDÞÞx3
D;

tD P
1

24bgD1
; ð37Þ

�wD ¼ 1� 0:790 expðbk1tDÞ � 0:148 expðbk2tDÞ; tD P
1

24bgD1
;

ð38Þ

where

k1 ¼ �2:486gD1; ð39Þ
k2 ¼ �32:181gD1: ð40Þ

Substituting early and late time average dimensionless pseudo-
pressures (Eqs. (35) and (38)) and their derivatives in Eq. (20) leads
to the following equation for the dimensionless shape factor for
flow of a compressible fluid from a matrix block subject to a con-
stant fracture pressure boundary condition:

rh2
m ¼

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
6bgD1

p
gD

1
4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24bgD1tD

p
 !

1ffiffiffiffiffi
tD
p ; tD <

1
24bgD1

ð41Þ

rh2
m ¼

4bgD1

gD

1:964 expðbk1tDÞ þ 4:763 expðbk2tDÞ
0:790 expðbk1tDÞ þ 0:148 expðbk2tDÞ

; tD P
1

24bgD1
:

ð42Þ

where parameters b and gD were obtained by matching the early
and late time cumulative production from the matrix to the fracture
by a numerical flow simulator [41].

3.2. Linearly declining fracture pressure

For the linearly declining fracture pressure the diffusivity equa-
tion and its initial and boundary conditions are expressed as
follows:

@wD

@tD
¼ @

@xD
bgDðtÞ

@wD

@xD

� �
; ð43Þ

tD ¼ 0! wD ¼ 0; ð44aÞ

xD ¼ 0! @wD

@xD
¼ 0; ð44bÞ

xD ¼ 1! wD ¼ wfDðtDÞ ¼ jtD: ð44cÞ

For the early time solution of these equations we assume that the
trial solution has the following form:

wDðxD; tDÞ ¼ jtD 1� 1� xD

1� dðtDÞ

� �3

: ð45Þ

When the boundary condition changes with time the penetration
depth in the heat balance integral method (HBIM) is found by solv-
ing the following ordinary differential equation [42]:

d
dtD

wfDðtDÞ�dðtDÞ
nþ 1

�
�dðtDÞh
ðnþ 1Þ2

" #
¼

nwfDðtDÞ þ h
�dðtDÞ

: ð46Þ

In this equation n is the exponent in the trial solution, n = 3 for our
case, and �d ¼ 1� d. In Eq. (46), h can be found from the following
equation [42]:

h ¼
@wfD

@tD

�d2 � nðn� 1ÞwfD

2n� 1
: ð47Þ

Solving Eq. (46) for a linearly declining fracture pressure leads to
the following penetration depth:

d � 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8bgD1tD

p
: ð48Þ

It should be noted that Eq. (48) is obtained by assuming h = 0, in Eq.
(46) [42]. If we do not use the assumption of h = 0, Eq. (46) cannot
be solved analytically. The derivation of this equation is shown in
Appendix A.1 in more details. Our numerical results show that we
can obtain a more accurate solution if we use the following equa-
tion for the penetration depth:

d ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9bgD1tD

p
: ð49Þ

The early time solution is valid till the penetration depth reaches
the inner boundary, so we can find the time at which the pressure
disturbance reaches the boundary (t⁄) as follows:

0 ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9bgD1t�

p
) t� ¼ 1

9bgD1
: ð50Þ

Therefore, the early time solution of the partial differential Eq. (43)
with the boundary conditions (44) can be expressed as follows:

wDðxD; tDÞ ¼ jtD 1� 1� xDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9bgD1tD

p
 !3

; tD <
1

9bgD1
: ð51Þ

Integrating of Eq. (51) over the matrix block volume, leads to Eq.
(52) for the early time average dimensionless pseudo pressure:

�wD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
9bgD1

p
4

kt3=2
D ; tD <

1
9bgD1

: ð52Þ

The time dependence of the boundary condition for the late time
solution can be considered using Duhamel’s theorem. When the
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fracture pseudo-pressure varies with time (Eq. (44c)), Duhamel’s
theorem provides the basis to solve the problem with variable
boundary conditions based on the solution provided for the con-
stant fracture pseudo-pressure. Using Duhamel’s theorem
[18,43,44] the solution of PDE (43) with the boundary conditions
(44b) and (44c) can be expressed as:

wD ¼
@

@tD

Z tD

0
wfDðsÞwDðxD; tD � sÞds; ð53Þ

where wD within the integral is the solution when wfD = 1 and wD on
the left-hand side is the solution of PDE (43) when the matrix-frac-
ture boundary condition changes with time.

Using Duhamel’s theorem leads to the following late time solu-
tion for the case of the linearly declining fracture pressure:

wDðxD; tDÞ ¼ jtD �
0:55790j

bk1
2:314� 3:314x2

D þ x3
D

� �
ðexpðbk1tDÞ � 1Þ

þ 5:47256j
bk2

0:086� 1:086x2
D þ x3

D

� �
ðexpðbk2tDÞ � 1Þ;

tD P
1

9bgD1
: ð54Þ

Derivation of Eq. (54) is shown in Appendix A.1 in more details. The
late time average matrix block pseudo-pressure for the linearly
declining fracture pressure is obtained as follows:

�wDðxD; tDÞ ¼
Z 1

0
wDdxD ¼ jtD �

0:81416j
bk1

ðexpðbk1tDÞ � 1Þ

� 0:14229j
bk2

ðexpðbk2tDÞ � 1Þ; tD P
1

9bgD1
; ð55Þ

Using the average pseudo-pressure and its derivative in the shape
factor equation (Eq. (25)) results in the following equations for
the early and late time shape factors in the case of the linearly
declining fracture pressure:

rh2
m ¼

�3
2gD

ffiffiffiffiffiffiffiffiffiffiffiffiffi
9bgD1

pffiffiffiffiffiffiffiffiffi
9bgD1

p
4

ffiffiffiffiffi
tD
p
� 1

� � 1ffiffiffiffiffi
tD
p ; tD <

1
9bgD1

; ð56Þ

rh2
m ¼
�4bgD1

gD

1� 0:81416 expðbk1tDÞ � 0:14229 expðbk2tDÞ
0:32750ðexpðbk1tDÞ � 1Þ þ 0:00442ðexpðbk2tDÞ � 1Þ ;

tD P
1

9bgD1
ð57Þ

It should be noted that for the linearly declining fracture pressure,
the shape factor for compressible fluid is not a function of the
dimensionless decline constant, j; a similar observation was re-
ported by Hassanzadeh and Pooladi-Darvish [19] for flow of a
slightly compressible fluid in fractured porous media.

3.3. Exponentially declining fracture pressure

For the exponentially declining fracture pressure the solution of
the following PDE should be used in Eq. (29) to derive the shape
factor for this case:

@wD

@tD
¼ @

@xD
bgDðtÞ

@wD

@xD

� �
; ð58Þ

tD ¼ 0! wD ¼ 0; ð59aÞ

xD ¼ 0! @wD

@xD
¼ 0; ð59bÞ

xD ¼ 1! wD ¼ wfDðtDÞ ¼ 1� expð�jtDÞ; ð59cÞ

The following function is assumed for the early time solution which
satisfies the outer boundary condition:

wDðxD; tDÞ ¼ ð1� expð�jtDÞÞ 1� 1� xD

1� dðtDÞ

� �3

: ð60Þ

Solving the ODE of Eq. (46) leads to the following equation for the
penetration depth in the case of an exponentially declining fracture
pressure:

d � 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12bgD1tD

2
1� expð�jtDÞ

�
ffiffiffiffi
p
p

1� expð�jtDÞ
erf ð

ffiffiffiffiffiffiffiffi
jtD
p

Þffiffiffiffiffiffiffiffi
jtD
p

� �s
:

ð61Þ

The derivation of this equation is illustrated in Appendix A.2. It
should be noted that in Eq. (61), erf (x) is the error function defined
as follows:

erf ð
ffiffiffiffiffiffiffiffi
jtD
p

Þ ¼ 2ffiffiffiffi
p
p

Z ffiffiffiffiffiffi
jtD

p

0
e�y2

dy: ð62Þ

Since Eq. (61) is obtained based on an approximation of h = 0 in Eq.
(46), our numerical results show that one can obtain a more accu-
rate solution if we use the following equation for penetration depth:

d ¼ 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12:96bgD1tD
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�
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1� expð�jtDÞ
erf ð

ffiffiffiffiffiffiffiffi
jtD
p

Þffiffiffiffiffiffiffiffi
jtD
p

� �s
:

ð63Þ

It should be noted that the effect of pressure disturbance will reach
the inner boundary when d = 0 and for the exponential decline we
cannot obtain an explicit equation for t⁄ and t⁄ is determined for
any values of k by making Eq. (63) equal to zero. Therefore, the
early time solution of Eqs. (58) and (59) can be expressed as
follows:

wDðxD; tDÞ ¼ ð1� expð�jtDÞÞ

� 1� 1� xDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12:96bgD1tDð 2
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p
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1
CCA

3

;

tD < t�: ð64Þ

Integrating of Eq. (64) over the matrix block volume, leads to Eq.
(65) for the early time average dimensionless pseudo pressure:

�wD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� expð�jtDÞ

p
4

�
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p

� �s
; tD < t�:

ð65Þ

Duhamel’s theorem and the verified solution of the constant frac-
ture pressure boundary condition lead to the following equation
for the late time dimensionless pseudo-pressure in the case of the
exponentially declining fracture pressure:

wDðxD; tDÞ ¼ 1� expð�jtDÞ � 0:48743
1� expð�jt�Þ

expðbk1t�Þ � expð�jt�Þ

� �
� expðbk1tDÞ 2:314� 3:314x2

D þ x3
D

� �
þ 1:48743

1� expð�jt�Þ
expðbk2t�Þ � expð�jt�Þ

� �
� expðbk2tDÞ 0:086� 1:086x2

D þ x3
D

� �

þ
0:48743 1�expð�jt�Þ

expðbk1t�Þ�expð�jt�Þ

� �
2:314� 3:314x2

D þ x3
D

� �
�1:48743 1�expð�jt�Þ

expðbk2t�Þ�expð�jt�Þ

� �
0:086� 1:086x2

D þ x3
D

� �
2
64

3
75

� expð�jtDÞ; tD P t�: ð66Þ

More details about the derivation of Eq. (66) are discussed in
Appendix A.2. Integrating over the matrix-block bulk volume
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results in the following equations for the average dimensionless
pseudo-pressure in the case of the exponentially declining fracture
pressure:

�wDðxD; tDÞ ¼ 1� expð�jtDÞ � 0:71132
1� expð�jt�Þ

expðbk1t�Þ � expð�jt�Þ

� �

� expðbk1tDÞ � 0:03867
1� expð�jt�Þ

expðbk2t�Þ � expð�jt�Þ

� �

� expðbk2tDÞ þ 0:71132
1� expð�jt�Þ

expðbk1t�Þ � expð�jt�Þ

� �	

þ 0:03867
1� expð�jt�Þ

expðbk2t�Þ � expð�jt�Þ

� �

expð�jtDÞ;

tD P t�: ð67Þ

Using the average pseudo-pressure and its derivative in Eq. (29)
leads to the following equations for the early and late time shape
factors in the case of the exponentially declining fracture pressure:

Based on Eqs. (68) and (69), for an exponentially declining fracture
pressure the shape factor for a compressible fluid is a function of the
decline exponent, k. Similar observations have been made in the
previous studies for a slightly compressible fluid [18,19].

4. Model verification

The developed shape factor was validated by a fine-grid single
porosity model (Eclipse 100). The total cumulative production
from the matrix to the fracture based on the simulator was used
to find the correction factor (b) and gD and to validate the pre-
sented model. Fig. 2 shows the matrix-fracture cumulative fluid
production versus time for a case with c = 0.7, T = 93.3 �C and pres-
sure drawdown of 45 to 22.5 MPa. The values obtained for the cor-
rection factor (b), the matching parameter (gD), the average
hydraulic diffusivity ð�gÞ and the dimensionless fracture hydraulic
diffusivity (gD1) are 0.730, 0.3127, 0.03457 and 0.3691, respec-
tively. In the model verification studies, a slab-shaped matrix-
block with thickness (hm) of 4 m, permeability of 1mD, and poros-
ity of 0.1 are considered. We use the same reservoir data and

parameters throughout this paper. As illustrated in Fig. 2 the
approximate analytical model based on this study is in a good
agreement with the fine grid numerical simulation. More details
about the numerical simulations and more validation cases are dis-
cussed elsewhere [29].

The developed model with b = gD1 = gD = 1 must reproduce the
shape factor for a slightly compressible fluid. For additional valida-
tion of the developed model, the shape factor derived here is eval-
uated with the shape factor of the slightly compressible fluid.
Outcomes show that the models developed for different boundary
conditions can reproduce the slightly compressible fluid shape fac-
tor for the complete period of time.

Fig. 3 compares the developed shape factor model for a slightly
compressible fluid (b = gD1 = gD = 1) and models available in the lit-
erature [18,19] when the fracture pressure declines linearly with
time. According to this figure the presented model shows an
acceptable match with other models.

Figs. 4–6 demonstrate the comparisons between the presented
shape factor models in this study with the literature models for a
slightly compressible fluid when the fracture pressure declines
exponentially with time for different values of the decline expo-
nent. These figures demonstrate that the presented model can
reproduce the slightly compressible fluid shape factor with an
acceptable accuracy.

5. Results

In this section a comparison of the developed model with the
Warren and Root model [3] is presented and then the behavior of
the shape factor for different fracture pressure depletion regimes
for flow of a compressible fluid through dual porosity media is
described.

5.1. Comparison of model with Warren and Root model

Warren and Root [3] used a pseudo-steady state approach to
derive the shape factor for a slightly compressible fluid in the
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Fig. 3. Comparison of the developed shape factor model with literature models for
slightly compressible fluid in the case of linearly declining fracture pressure.
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Fig. 4. Comparison of the developed shape factor model with literature models for
slightly compressible fluid in the case of exponentially declining fracture pressure
for small values of exponent (k = 0.0001).
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Fig. 5. Comparison of the developed shape factor model with literature models for
slightly compressible fluid in the case of exponentially declining fracture pressure
(k = 0.632).
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Fig. 6. Comparison of the developed shape factor model with literature models for
slightly compressible fluid in the case of exponentially declining fracture pressure
for large values of exponent (k = 1).
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Fig. 2. Comparison of the matrix-fracture cumulative fluid production obtained
from the approximate analytical solution and the numerical model of Eclipse for
constant fracture pressure.
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Fig. 7. Comparison of the developed semi-analytical model with numerical and
Warren and Root model.
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fractured media. They derived the following shape factor for
slightly compressible fluid for different sets of fractures,

r ¼ 4nðnþ 1Þ
h2

m

: ð70Þ

where n is the number of sets of fractures. For one set of fracture the
derived value of the shape factor is ð12=h2

mÞ. Fig. 7 shows the com-
parison of the matrix-fracture cumulative fluid production based on
the Warren and Root shape factor, presented semi-analytical model
(time dependent shape factor) and numerical results.

According to Fig. 7 it can be concluded that using a constant
slightly compressible fluid shape factor (Based on Warren and Root
model) for flow of compressible fluids leads to large error in pre-
diction of the cumulative production from the matrix.

5.2. Linearly declining fracture pressure

Fig. 8 shows the shape factor for the linearly declining fracture
pressure derived from Eqs. (56) and (57). The shape factor for a
constant fracture pressure is also shown in this figure for compar-
ison. As illustrated in this figure, for the linearly declining fracture
pressure, the transient period for the linear decline is longer than
that of the constant fracture pressure and the shape factor is stabi-
lized at value of 10.38 when tD is about 3.81. For the case of the

constant fracture pressure the stabilized value of the shape factor
is 8.57 when dimensionless time is about 0.7. The same behavior
has been reported for a slightly compressible fluid by Chang [18]
and Hassanzadeh and Pooladi-Darvish [19] in the case of a slightly
compressible fluid. From this figure it can be concluded that the
transient and pseudo-steady state values of the shape factor for a
linear decline is larger than those of the constant fracture pressure.
It should be noted that like slightly compressible fluids, the value
of the depletion rate j has no impact on the transient and stabi-
lized value of the shape factor.

5.3. Exponentially declining fracture pressure

Fig. 9 shows the effect of the exponent of the exponential de-
cline on the shape factors based on Eqs. (68) and (69). Different
values of the decline exponent ranging from 0.0001 to 1,000 are
used. A large decline factor implies fast pressure depletion in the
fracture while a small value represents a slow depletion. As illus-
trated in Fig. 9 for small values of j (j < 0.1), the shape factor be-
gins at large values and subsequently converges to a stabilized
value of 10.38 as compared to 8.57 for a constant fracture pressure
case. As the value of the exponent increases (fast depletion) the
transient and pseudo-steady state values of the shape factor tend
to those of the constant fracture pressure boundary condition.
When j > 10 the constant fracture pressure and the exponentially
declining fracture pressure have the same value of the stabilized
shape factor. Similar behavior was reported for a slightly com-
pressible fluid and exponentially declining fracture pressure by
Chang [18] and Hassanzadeh and Pooladi-Darvish [19].

Fig. 10 shows the dimensionless shape factor for flow of a com-
pressible fluid in a dual-porosity medium for various pressure
depletion regimes in the fracture. Results show that the stabilized
values of the shape factor vary from 8.57 for the constant fracture
pressure to 10.38 for the linearly declining fracture pressure. For
the exponentially declining fracture pressure the stabilized values
vary between these two limits. For a very small value of the expo-
nent (slow depletion) the stabilized value is the same as that for
the linearly declining fracture pressure. However, as the value of
the exponent increases, the stabilized values of the shape factor
for the exponential decline shift to the constant fracture pressure
value. At a large value of the exponential decline (fast depletion),
the constant and exponentially declining fracture pressures have
the same stabilized value of 8.57 for the shape factor.

The above results show that both the transient and pseudo-
steady state values of the single-phase shape factor depend on
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Fig. 8. Comparison of the shape factor for linearly declining and constant fracture
pressure.

Dimensionless Time
0.001 0.01 0.1 1 10 100

D
im

en
si

o
n

le
ss

 S
h

ap
e 

fa
ct

o
r 

( σ
 h

m
2 )

1

10

100

1000

k=0.0001
k=0.4
k=100
k=1000

σhm
2=8.57 

σhm
2=9.31 

σhm
2=10.38 

Fig. 9. Shape factor comparison for different exponents for exponentially declining
fracture pressure.

Dimensionless Time
0.001 0.01 0.1 1 10 100

D
im

en
si

o
n

le
ss

 S
h

ap
e 

fa
ct

o
r 

( σ
 h

m
2 )

1

10

100

1000

Exponential(k=0.0001)
Exponential(k=0.4)
Exponential(k=1000)
Linear decline
Constant Fracture Pressure

σhm
2=8.57 

σhm
2=9.31 

σhm
2=10.38 

Fig. 10. Comparison of the dimensionless shape factor for different pressure
depletion regime in the fracture.

E. Ranjbar et al. / Advances in Water Resources 34 (2011) 1681–1693 1689



Author's personal copy

how the fracture pressure changes with time. It should be noted for
a linearly declining fracture pressure the stabilized value of the
shape factor is independent of the decline rate. On the other hand,
for an exponential decline the stabilized value of the shape factor
depends on the decline exponent. Furthermore, the time depen-
dence of the fracture boundary condition on the stabilized value
of the shape factor can be described by using an exponentially
declining regime with different decline exponents. In such cases,
the small decline exponents replicate the linear pressure decline
in the fracture whereas a large decline exponent reproduces the
constant fracture pressure boundary condition.

Table 1 shows the stabilized values of the single-phase shape
factor and the time at which the effect of pressure disturbance
reaches the inner boundary (t⁄) for different pressure depletion re-
gimes in the fracture. It should be pointed out that the developed
model is applicable for single-phase flow of a compressible fluid
in the fractured media.

6. Conclusions

The following major conclusions are made as a result of this
study:

� The matrix-fracture shape factor for single-phase flow of
compressible fluids illustrates a transient period and then
stabilizes to a stable value throughout pseudo-steady state
transfer.
� The presented approximate analytical solution revealed that the

matrix-fracture transfer shape factor for single phase flow of a
compressible fluid in the dual-porosity media is a function of
the pressure depletion regime in the fracture.
� Based on the pressure depletion regime in the fracture the sta-

bilized value of the shape factor varies between two limits. The
upper limit is obtained for a linearly declining fracture pressure
which corresponds to a slow pressure depletion regime. The
lower limit is derived for the constant fracture pressure bound-
ary conditions where depletion takes place faster.
� When the fracture pressure depletes exponentially with time,

the stabilized value of the shape factor falls between those
values of the constant fracture pressure and linearly declining
fracture pressure. This stabilized value is a function of the
exponent j. For small exponent values the stabilized shape
factor has the same value as that for the linearly declining
fracture pressure. For large exponent values, the stabilized
value of the shape factor is equal to that for a constant fracture
pressure.
� The pseudo-steady state time (stabilization time) of the shape

factor increases as the fracture boundary condition changes
from a fast depletion regime toward a slow depletion regime.
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Appendix A. Solution of the gas diffusivity equation for
different fracture depletion conditions

A.1. Linearly declining fracture pressure

In this case the following PDE with initial and boundary condi-
tions (Eqs. A1.2a, A1.2b, A1.2c) should be solved:

@wD

@tD
¼ @

@xD
bgDðtÞ

@wD

@xD

� �
; ðA1:1Þ

tD ¼ 0! wD ¼ 0; ðA1:2aÞ

xD ¼ 0! @wD

@xD
¼ 0; ðA1:2bÞ

xD ¼ 1! wD ¼ wfDðtDÞ ¼ jtD: ðA1:2cÞ

For the early time solution we use the following trial solution:

wDðxD; tDÞ ¼ jtD 1� 1� xD

1� dðtDÞ

� �3

; ðA1:3Þ

when the boundary condition changes with time the penetration
depth in the heat balance integral method (HBIM) is found by solv-
ing the following ordinary differential equation [42]:

d
dtD

wfDðtDÞ�dðtDÞ
nþ 1

�
�dðtDÞh
ðnþ 1Þ2

" #
¼

nwfDðtDÞ þ h
�dðtDÞ

: ðA1:4Þ

In this equation n is the exponent in the trial solution (n = 3 for our
case) and �d ¼ 1� d. In Eq. (A1.4), h can be obtained by using the fol-
lowing equation:

h ¼
@wfD

@tD

�d2 � nðn� 1ÞwfD

2n� 1
: ðA1:5Þ

Assume that �d ¼ e
ffiffiffiffiffi
tD
p

and substituting this equation in the ODE
equation of (A1.4) leads to following ODE for the linearly declining
fracture pressure:

d
jtDe

ffiffiffiffiffi
tD
p

nþ 1
� 0

	 

¼ njtD

e
ffiffiffiffiffi
tD
p dtD: ðA1:6Þ

It should be noted that this ODE is obtained by assuming h = 0 in Eq.
(A1.4) [42]. Integrating of Eq. (A1.6) leads to the following equation
for e:

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nðnþ 1Þ

3

r
!n¼3 e ¼

ffiffiffi
8
p

: ðA1:7Þ

So we reach the following equation for penetration depth in the
case of a linear PDE:

�d ¼ e
ffiffiffiffiffi
tD
p
¼

ffiffiffiffiffiffiffiffi
8tD

p
) d � 1�

ffiffiffiffiffiffiffiffi
8tD

p
: ðA1:8Þ

In the case of a nonlinear PDE we have the following equation for
the penetration depth:

d � 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8bgD1tD

p
: ðA1:9Þ

As was illustrated in the model verification section we can obtain a
more accurate solution if we use the following equation for the pen-
etration depth:

d ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9bgD1tD

p
: ðA1:10Þ

Therefore, the early time solution of the partial differential Eq.
(A1.1) with the boundary conditions (A1.2) can be expressed as
follows:

Table 1
Stabilized values of the shape factor and time at which the pressure disturbance
reaches the inner boundary for different depletion regimes in the fracture.

Depletion regime in the fracture t⁄ Stabilized value of the
dimensionless shape factor

Linear decline 0.412 10.38
Exponential decline (k = 0.0001) 0.429 10.38
Exponential decline (k = 0.4) 0.416 9.31
Exponential decline (k = 1000) 0.154 8.57
Constant fracture pressure 0.155 8.57
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wDðxD; tDÞ ¼ jtD 1� 1� xDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9bgD1tD

p
 !3

; tD <
1

9bgD1
: ðA1:11Þ

Integrating of Eq. (A1.11) over the matrix block volume, leads to the
following equation for the early time average dimensionless pseudo
pressure:

�wD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
9bgD1

p
4

kt3=2
D ; tD <

1
9bgD1

: ðA1:12Þ

For the late time solution in the case of the linearly declining frac-
ture pressure the following PDE should be solved. It should be noted
that the initial condition for the late time solution comes from the
early time solution (Eq. (A1.11)).

@wD

@tD
¼ @

@xD
bgDðtÞ

@wD

@xD

� �
; ðA1:13Þ

tD ¼
1

9bgD1
! wD ¼

j
9bgD1

� �
x3

D; ðA1:14aÞ

xD ¼ 0! @wD

@xD
¼ 0; ðA1:14bÞ

xD ¼ 1! wD ¼ wfDðtDÞ ¼ jtD: ðA1:14cÞ

The time dependence of the boundary condition for the late time
solution can be considered by Duhamel’s theorem. When the frac-
ture pseudo-pressure varies with time (Eq. (A1.14c)), Duhamel’s
theorem provides the basis to solve the problem with variable
boundary conditions based on the solution provided for the con-
stant fracture pseudo-pressure. Using Duhamel’s theorem
[18,43,44] the solution of PDE (A1.13) with conditions (A1.14) can
be expressed as:

wD ¼
@

@tD

Z tD

0
wfDðsÞwDðxD; tD � sÞds; tD P

1
9bgD1

: ðA1:15Þ

In this equation, wD within the integral is the solution when wfD = 1
(Eq. (A1.16)) and wD on the left-hand side is the solution of the PDE
when the matrix-fracture boundary condition changes with time.

wDðxD; tDÞ ¼ ð1þ 2:314m1 expðbk1tDÞ þ 0:086m2 expðbk2tDÞÞ
þ ð�3:314m1 expðbk1tDÞ � 1:086m2 expðbk2tDÞÞx2

D

þ ðm1 expðbk1tDÞ þm2 expðbk2tDÞÞx3
D: ðA1:16Þ

Derivation of Eq. (A1.16) has been shown in our previous study [29].
Using Duhamel’s theorem and substituting Eqs. (A1.16) and
(A1.14c) in Eq. (A1.15) lead to the following late time solution for
the case of the linearly declining fracture pressure:

wDðxD; tDÞ ¼ jtD þ
2:314jm1

bk1
ðexpðbk1tDÞ � 1Þ þ 0:086jm2

bk2
ðexpðbk2tDÞ � 1Þ

� �

� 3:314jm1

bk1
ðexpðbk1tDÞ � 1Þ þ 1:086jm2

bk2
ðexpðbk2tDÞ � 1Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{C8>><
>>:

9>>=
>>;x2

D

þ jm1

bk1
ðexpðbk1tDÞ � 1Þ þ jm2

bk2
ðexpðbk2tDÞ � 1Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{D
8>><
>>:

9>>=
>>;x3

D; tD P
1

9bgD1
:

ðA1:17Þ

The initial condition is used to find m1 and m2 as follows:

tD ¼ t� ¼ 1
9bgD1

! C ¼ 0; D ¼ j
9bgD1

: ðA1:18Þ

Solving the system of Eq. (A1.18) leads to the following values for
m1 and m2

m1 ¼ �0:55790; m2 ¼ 5:47256: ðA1:19Þ

Using these values in Eq. (A1.17) and some simplifications leads to
the following late time pseudo pressure for the linearly declining
fracture pressure:

wDðxD; tDÞ ¼jtD�
0:55790j

bk1
2:314�3:314x2

Dþ x3
D

� �
ðexpðbk1tDÞ�1Þ

þ5:47256j
bk2

ð0:086�1:086x2
Dþ x3

DÞðexpðbk2tDÞ�1Þ;

tD P
1

9bgD1
: ðA1:20Þ

The late time average matrix block pseudo-pressure for the linearly
declining fracture pressure is obtained as follows:

�wDðxD; tDÞ ¼
Z 1

0
wDdxD

¼ jtD �
0:81416j

bk1
ðexpðbk1tDÞ � 1Þ

� 0:14229j
bk2

ðexpðbk2tDÞ � 1Þ; tD P
1

9bgD1
: ðA1:21Þ

A.2. Exponentially declining fracture pressure

When the fracture pressure changes exponentially with time
we have the following PDE with these initial and boundary
conditions:

@wD

@tD
¼ @

@xD
bgDðtÞ

@wD

@xD

� �
; ðA2:1Þ

tD ¼ 0! wD ¼ 0; ðA2:2aÞ

xD ¼ 0! @wD

@xD
¼ 0; ðA2:2bÞ

xD ¼ 1! wD ¼ wfDðtDÞ ¼ 1� expð�jtDÞ: ðA2:2cÞ

For the early time solution the following trial solution is suggested
which satisfies the outer boundary condition:

wDðxD; tDÞ ¼ ð1� expð�jtDÞÞ 1� 1� xD

1� d

� �3

; tD < t�; ðA2:3Þ

when the boundary condition change with time, the penetration
depth is found by solving the following ODE [42]:

d
dtD

wfDðtDÞ�dðtDÞ
nþ 1

�
�dðtDÞh
ðnþ 1Þ2

" #
¼

nwfDðtDÞ þ h
�dðtDÞ

; ðA2:4Þ

where:

h ¼
@wfD

@tD

�d2 � nðn� 1ÞwfD

2n� 1
: ðA2:5Þ

By assuming h = 0 and �d ¼ e
ffiffiffiffiffi
tD
p

and substituting Eq. (A2.2c) in
(A2.4) we reach the following ODE:

d
e
ffiffiffiffiffi
tD
p
ð1� expð�jtDÞÞ

nþ 1

	 

¼ n

e
ð1� expð�jtDÞÞffiffiffiffiffi

tD
p : ðA2:6Þ

Solving this ODE for e, substituting it in the penetration depth equa-
tion and taking n = 3 lead to the following equation for the penetra-
tion depth for the linear partial differential equation:

d � 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12tD

2
1� expð�jtDÞ

�
ffiffiffiffi
p
p

1� expð�jtDÞ
erf ð

ffiffiffiffiffiffiffiffi
jtD
p

Þffiffiffiffiffiffiffiffi
jtD
p

� �s
:

ðA2:7Þ

And for the nonlinear partial differential equation (Eqs. (A2.1) and
(A2.2)) we reach to the following equation for the penetration
depth:
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d � 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12bgD1tD

2
1� expð�jtDÞ

�
ffiffiffiffi
p
p

1� expð�jtDÞ
erf ð

ffiffiffiffiffiffiffiffi
jtD
p

Þffiffiffiffiffiffiffiffi
jtD
p

� �s
:

ðA2:8Þ

Our numerical results show that we can increase the accuracy of the
solution if we use the following equation for the penetration depth:

d ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12:96bgD1tD

2
1� expð�jtDÞ

�
ffiffiffiffi
p
p

1� expð�jtDÞ
erf ð

ffiffiffiffiffiffiffiffi
jtD
p

Þffiffiffiffiffiffiffiffi
jtD
p

� �s
:

ðA2:9Þ

Therefore, the early time solution in Eqs. (A2.1) and (A2.2) can be
expressed as follows:

wDðxD; tDÞ ¼ ð1� expð�jtDÞÞ

� 1� 1� xDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12:96bgD1tD

2
1�expð�jtDÞ

�
ffiffiffi
p
p

1�expð�jtDÞ
erf ð

ffiffiffiffiffiffi
jtD

p
Þffiffiffiffiffiffi

jtD

p
� �s

0
BBBB@

1
CCCCA

3

;

tD < t�:

ðA2:10Þ
Integrating of Eq. (A2.10) over the matrix block volume, leads to the
following equation for the early time average dimensionless pseudo
pressure:

�wD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� expð�jtDÞ

p
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12:96bgD1tD 2�

ffiffiffiffi
p
p

erf ð
ffiffiffiffiffiffiffiffi
jtD
p

Þffiffiffiffiffiffiffiffi
jtD
p

� �s
; tD < t�:

ðA2:11Þ

For the late time solution in the case of the exponentially declining
fracture pressure the following PDE should be solved. It should be
noted that the initial condition for the late time solution comes
from the early time solution (Eq. (A2.10)).

@wD

@tD
¼ @

@xD
bgDðtÞ

@wD

@xD

� �
; ðA2:12Þ

tD ¼ t� ! wD ¼ ð1� expð�jt�ÞÞx3
D; ðA2:13aÞ

xD ¼ 0! @wD

@xD
¼ 0; ðA2:13bÞ

xD ¼ 1! wD ¼ wfDðtDÞ ¼ 1� expð�jtDÞ: ðA2:13cÞ

Using Duhamel’s theorem (Eq. (A1.15)) and the solution of the con-
stant fracture pressure (Eq. (A1.16)) leads to the following late time
solution for the case of the exponentially declining fracture
pressure:

The initial condition is used to find m1 and m2 as follows:

tD ¼ t� ! C ¼ 0; D ¼ 1� expð�jt�Þ: ðA2:15Þ

Solving the system of Eq. (A2.15) leads to the following values for
m1 and m2

m1 ¼ �0:48743 jþbk1
j

1�expð�jt�Þ
expðbk1t�Þ�expð�jt�Þ ;

m2 ¼ 1:48743 jþbk2
j

1�expð�jt�Þ
expðbk2t�Þ�expð�jt�Þ :

0
@ ðA2:16Þ

Using these values in Eq. (A2.14) and simplifying lead to the
following late time pseudo pressure for the exponentially declining
fracture pressure:

wDðxD; tDÞ ¼ 1� expð�jtDÞ � 0:48743
1� e�jt�

ebk1 t� � e�jt�

� �

� expðbk1tDÞ 2:314� 3:314x2
D þ x3

D

� �
þ 1:48743

1� e�jt�

ebk2 t� � e�jt�

� �
expðbk2tDÞ 0:086� 1:086x2

D þ x3
D

� �

þ
0:48743 1�e�jt�

ebk1 t� �e�jt�

� �
2:314� 3:314x2

D þ x3
D

� �
�

1:48743 1�e�jt�

ebk2 t� �e�jt�

� �
0:086� 1:086x2

D þ 1x3
D

� �
2
64

3
75 expð�jtDÞ;

tD P t�: ðA2:17Þ

Integrating over the matrix block volume results in the following
equations for the average dimensionless pseudo-pressure in the
case of the exponentially declining fracture pressure:

�wDðxD; tDÞ ¼ 1� expð�jtDÞ � 0:71132
1� e�jt�

ebk1t� � e�jt�

� �
expðbk1tDÞ

� 0:03867
1� e�jt�

ebk2t� � e�jt�

� �
expðbk2tDÞ

þ 0:71132
1� e�jt�

ebk2t� � e�jt�

� �
þ 0:03867

1� e�jt�

ebk2t� � e�jt�

� �� �
� expð�jtDÞ; tD P t�: ðA2:18Þ

wDðxD; tDÞ ¼ 1� expð�jtDÞ

þ
2:314m1 1� bk1

jþbk1

� �
expðbk1tDÞ þ 0:086m2 1� bk2

jþbk2

� �
expðbk2tDÞ

� 2:314jm1
jþbk1

þ 0:086jm2
jþbk2

� �
expð�jtDÞ

8<
:

9=
;

�
3:314m1 1� bk1

jþ bk1

� �
expðbk1tDÞ þ 1:086m2 1� bk2

jþ bk2

� �
expðbk2tDÞ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{C

� 3:314jm1

jþ bk1
þ 1:086jm2

jþ bk2

� �
expð�jtDÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

C

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

x2
D

þ
m1 1� bk1

jþ bk1

� �
expðbk1tDÞ þm2 1� bk2

jþ bk2

� �
expðbk2tDÞ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{D

� jm1

jþ bk1
þ jm2

jþ bk2

� �
expð�jtDÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

D

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

x3
D; tD P t�: ðA2:14Þ
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