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Abstract

This paper is concerned with the development and analysis of a new stabilized finite element method based on two local Gauss inte-
grations for the two-dimensional transient Navier—-Stokes equations by using the lowest equal-order pair of finite elements. This new
stabilized finite element method has some prominent features: parameter-free, avoiding higher-order derivatives or edge-based data
structures, and stabilization being completely local at the element level. An optimal error estimate for approximate velocity and pressure
is obtained by applying the technique of the Galerkin finite element method under certain regularity assumptions on the solution. Com-
pared with other stabilized methods (using the same pair of mixed finite elements) for the two-dimensional transient Navier—Stokes equa-
tions through a series of numerical experiments, it is shown that this new stabilized method has better stability and accuracy results.
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1. Introduction

The development of stable mixed finite element methods
is a fundamental component in the search for efficient
numerical methods for solving the Navier-Stokes equa-
tions governing the flow of an incompressible fluid in terms
of their primitive variable formulation. The importance of
ensuring the compatibility of the component approxima-
tions for velocity and pressure by satisfying an inf-sup con-
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dition is widely understood. Numerous mixed finite
elements satisfying this condition have been proposed over
the past years. However, mixed elements that do not satisfy
this condition (termed unstable) may also work well. Some
of the unstable elements are very attractive and useful on
many occasions. In particular, the equal-order pairs of
mixed finite elements for the velocity and pressure are of
practical importance in scientific computation because they
are computationally convenient and efficient in a parallel
or multigrid context [26]. Hence much attention has been
recently paid to the study of the equal-order pairs of mixed
finite elements.

In order to use the equal-order pairs of mixed finite ele-
ments, a popular strategy is to introduce stabilization or
penalty techniques to enforce the inf-sup compatibility con-
dition [4,6,8,11,13,19,21,24]. A common drawback in these
stabilization techniques is, however, that stabilization
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parameters are necessarily incurred either explicitly or
implicitly. In addition, some of these techniques are condi-
tionally stable and are of suboptimal accuracy, depending
upon the choice of the stabilization parameters with respect
to the solution regularity [4,21]. Thus the development of
mixed finite elements free of stabilization parameters has
become increasingly important.

Stabilized mixed finite element methods are often devel-
oped using residuals of the momentum equation [3,11].
These residual terms must be formulated using mesh-
dependent parameters, whose optimal values are usually
unknown. Particularly, for the lowest equal-order pairs of
mixed elements such as P; — Py and Q; — Q;, pressure
and velocity derivatives in the residual either vanish or
are poorly approximated, causing difficulties in the applica-
tion of consistent stabilization. Other stabilized mixed
methods involve non-residual stabilization. Examples
include local and global pressure jump formulations where
the continuity equation is relaxed using the jumps of pres-
sure across element interfaces [23,25]. This stabilization
strategy requires edge-based data structures and a subdivi-
sion of grids into patches.

Regularization of a discrete Stokes formulation has been
recently developed to overcome the problem of incompati-
ble mixed approximations [20]. The central idea of this reg-
ularization in this article is to use two local Gauss
integrations (the difference between the consistent and
under-integrated Gauss integration) in the discrete formu-
lation. Unlike penalty methods [5,12,14,22] to decouple
pressure and velocity, this regularization aims to relax the
continuity equation to enforce the inf-sup condition in
incompatible mixed spaces. It does not require an approx-
imation of derivatives and a specification of mesh-depen-
dent parameters, and it always leads to symmetric
problems. In addition, it is completely local at the element
level, and no edge-based data structure is required. Conse-
quently, the new stabilized method under consideration can
be integrated in existing codes with very little additional
coding effort.

This paper aims to extend the stabilized finite element
method for the Stokes equations [20] to the two-dimen-
sional transient Navier—Stokes equations. Using two local
Gauss integral approximation, we first define this stabilized
method for the lowest equal-order pair of mixed finite ele-
ments such as P; — Py or Q1 — Q;. Then we show its well-
posedness and derive optimal error estimates. The results
indicate that this method has a convergence rate of the
same order as the usual Galerkin finite element method
using the same pair of finite elements. Finally, we numeri-
cally compare this new method with other numerical meth-
ods such as the standard Galerkin method, penalty
methods, the regular (Galerkin least squares-GLS) method,
the multiscale enrich method, and the stable finite element
P, — P; or mini-element P;b — P; methods. Numerical
experiments show that the new method does not suffer
the difficulties that arise when unstructured mesh must be
used in other stabilized finite element methods for the

two-dimensional transient Navier—Stokes problems, and
it is superior to the other stabilized methods compared in
terms of stability and convergence.

The remainder of this paper is organized as follows. In
the next section, an abstract functional setting for the
two-dimensional Navier-Stokes equations is given,
together with some basic notation. The stabilized finite ele-
ment method is stated in Section 3. Error estimates for the
stabilized finite element solution are derived in Sections 4
and 5. In Section 6, a series of numerical experiments are
given to illustrate the theoretical results. We conclude with
a few remarks in the final section.

2. Function settings

Let Q be a bounded domain in R?, with a Lipschitz-con-
tinuous boundary T, satisfying a further condition stated in
(A1) below. The transient Navier—Stokes equations are

1
u[—vAu—&—Vp—i—(u-V)u—l—z(div wu = f,divu =0,

(x,1) € Q% (0,T],
u(x,0) = up(x), xe€Q,

(2.1)

u(x,H)lp=0, te€l0,7], (2.2

where u = u(x, 1) = (u1(x,1), ux(x,t)) represents the velocity
vector, p = p(x,t) the pressure, f'=f(x,f) the prescribed
body force, v> 0 the viscosity, 7> 0 the final time, and
U, = % The term (div u)u/2 is introduced to ensure the dis-
sipativity of Eq. (2.1) [27].

To introduce a variational formulation, set

X = (H)Q)’, Y= (1}Q),
M = Lj(Q) = {q GLZ(Q);/qux=0}7

V={veX:divv=0}, D)= (HQ)NV.
As noted, a further assumption on Q is needed:

(A1) Assume that Q is regular in the sense that the
unique solution (v,q) € (X,M) of the steady Stokes problem

—Av+Vg=g, divv=0inQ, vl,=0

for a prescribed g € Y exists and satisfies

l[vll, + llally < cllgllo,

where ¢ > 0 is a constant depending only on Q and || - ||; de-
notes the usual norm of the Sobolev space H(Q) or
(H(Q))* for i = 0, 1,2. Below the constant ¢ > 0 will depend
at most on the data (v, T, ugy, Q).

We denote by (-,") and || - ||o the inner product and norm
on L*(Q) or (L*(Q))?, as appropriate. The spaces H)(Q) and
X are equipped with their usual scalar product and norm

((,0)) = (Vu, Vo), lully = ((u, )",

(Due to the norm equivalence between ||u||; and ||Vu]|o on
H{}(Q), we are using the same notation for them.) It is well
known that for each v € X there hold the following
inequalities:
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1/4 1/2 1/2
ol < 2410l >Ny, Nolly < 2ol (2.3)

where y is a positive constant depending only on Q and

1/4
lolzs = (Joo'de)"™.

(A2) The initial velocity uy € D(A) and the body force
fix,t) € L*(0,T:Y) are assumed to satisfy

T 12
e A (T

The continuous bilinear forms a(-,”) on X x X and d(-,")
on X x M are, respectively, defined by

a(u,v) =v((u,v)) Vu,veX,
d(Uvq) = _(Ua Vq) = (quiV U)

and the generalized bilinear form on (X,M) X (X,M) is gi-
ven by

B((uvp)v (Ua q)) = a(u7 U) - d(U,p) + d(ua q)

Then there hold the following estimates for the bilinear
term B((-,);(-)) [5,14]:

YoeX,qgeM,

IB((ut p); () = o]l (24)
1B, p): (0sa))] < el + [plo) (ol +llalle)s (2.5)
Bolllull + 1plle) < sup PR :0))] (2.6)

el =+ llallo

for all (u,p), (v,q) € (X,M), where the constant [ >0 is
independent of /.
Also, the trilinear term b(-, - ,-) on X X X X X is defined

(v,9)€(X,M)

Yu,v,w € X.

It satisfies

b(u,v,w) = —b(u, w,v), |b(u,v,w)| + |b(w, v, u)|
+ [b(u, w, )| (2.7)

1/2 1/2 1/2 1/2 1/2 1/2
< el 2l (loll il w1 + Dell 2ol o, )

(2.8)
for all u, v, w € X, and
|b(u, v,w)| + |b(v, u, w)| + |b(w,u,v)|
< cllullilfolllwllo, (2.9)

for allu € X,v € D(A),w € Y.
The mixed variational form of (2.1) and (2.2) is to seek
(u,p) € (X, M), t >0, such that, for all (v,q) € (X,M),

(uh U) +B((”7p); (U,q)) + b(”?”? U) = (fﬂ U)7
u(0) = uy.

(2.10)
(2.11)

For convenience, we recall the Gronwall Lemma that
will be frequently used.

Lemma 2.1. ([22]). Let g(t), £t), and &(t) be three
nonnegative functions satisfying, for t € [0,T],

&(t) + G(2) <c+/0t€ ds—i—/otgé ds,

where G(t) is a nonnegative function on [0,T]. Then

&)+ G(r) < (c + /Ot 6ds> exp </Otgds>.

The following result concerning the existence, unique-
ness, and regularity of a global strong solution to the
Navier—Stokes equations is presented under the assump-
tions (A1) and (A2).

(2.12)

Lemma 2.2. ([17]). Assume that (A1) and (A2) hold. Then,
for any given T>0 there exists a unique solution (u,p)
satisfying the following regularities:

sup (lu(e) 3 + I (0) 1 + N (0)11) < e, (2.13)
0<t<T

T
2 2 2 2
sup (1)} + / (0) (Il + 1P + N1 ) < .

0<t<T

(2.14)

where 7(¢£) = min{1,7}.
3. Stabilized finite element method

For h>0, we introduce finite-dimensional subspaces
(X, M) C (X,M), which are associated with K}, a triangu-
lation of Q into triangles or quadrilaterals, assumed to be
regular in the usual sense [9,10]. We assume that for the
finite element spaces (X, M}), the following approximation
properties hold: For (v,q) € (D(4), H'(Q) N M), there exist
approximations I,v € X}, and p,qg € M), such that

llv = Iyvlly + hllv = Lyll, < ch?|lo]l,,
lg = paallo + 2llg — pugll, < chllqll;,

where the Lz—projection oM — M, satisfies
(p—pw,qy) =0 YpeM,
We also assume that the inverse inequality holds [9,10]

(3.3)

This paper focuses on the analysis for the unstable veloc-
ity-pressure pair of the lowest equal-order finite elements:

X, = {v, € C°Q)*NX : 0y, € RI(K)VK € K}

qn €Mh.

IVully < ch ' lully Vo € X

and
M, ={gq, € C(Q)NM:q,, €R(K)VK € K;},
where R|(K)=Qy(K) if K is quadrilateral and

Ri(K) = Py(K) if K is triangular.

It is well known that this lowest equal-order finite ele-
ment pair does not satisfy the inf-sup condition. We define
the following local difference between a consistent and
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an under-integrated mass matrices the stabilized formula-
tion [20]

G(pyas) = Pl (My — M,)q, = pI Mg, — p'Mq,.

Here, we set

T
piT = Lvaph'"va—l} 9= [quqla---qu—lL

N-I
My = (¢ 9;), py= Zpid’iv
=0

o =p,(x), Vp,eM,;, i,j=0,1,...N—1,
where ¢; is the basis function of the pressure on the domain
Q such that its value is one at node x; and zero at other
nodes; the symmetric and positive M,k > 2 and M, are
pressure mass matrix computed by using k-order and 1-or-
der Gauss integrations in each direction, respectively; Also,
piand ¢;, i=0,1..., N — 1 are the value of p;, and g, at the
node x;. p! is the transpose of the matrix p;.

Let IT,:M — R, be the standard L>-projection with the
following properties [20]:

(pa qh) = (th7 qh) vp € M7 qh S R07 (34)
[TLplly < cllplly VP €M, (3.5)
lp = Tplly < chllpll, Vpe H'(Q)NM, (3.6)

where Ry = {q;, € M:q;| is a constant, VK € K},}. Then we
can rewrite the bilinear form G{-,") by

G(p,q) = (p — p, q — T,q). (3.7)

Remark. The bilinear form G(-,') in (3.7) is a symmetric,
semi-positive definite form generated on each local set K.
This term can alleviate and offset the inf-sup condition.
Some details will be explained in Theorem 3.1.

Using the above notation, the variational stabilized for-
mulation of problem (2.10) and (2.11) reads: Find
(upspr) € (Xp,My), t€[0,7], such that, for all (vgqp) €
(X, M),

(unes vn) + B((un, p); (Ons q3)) + b(un, iy v3) = (f, ), (3.8)
un(0) = uop, (3.9)

where ug, is an approximation of uy, and

“%)((uhvph); (Uthh)) = a(uhvvh) - d(vhvph) +d(uhaqh) + G(pthh)7

is the new stabilized bilinear form. The following theorem
establishes the weak coercivity of (3.8) for the equal-order
finite element pair R, — R (see [20]).

Theorem 3.1. Let (X, M}) be defined as above. Then there
exists a positive constant f5, independent of h, such that

|12 ((u, p); (v, )| < e([ully + llpllo) ol + ligllo)

V(u,p), (v,q) € (X, M), (3.10)
|°@((uh7ph);(vh7q/))|
Bllluslly + llpalle) < sup ’
Y aneaiany llonll 4 llgally
V(un, py) € (Xn, My), (3.11)
G(p,q)| < cllp — Wpllllg — Thgll, VpgeM.  (3.12)

4. Error analysis

To derive error estimates for the finite element solution
(up.pr), we also define the projection operator (R;,Qp):
(X,M) — (X;,M;) by

B((Ri(v,9),04(v,9)); (v, q,)) = B((v,9); (i, q5))

V(v,q) € (X, M), (vs,q,) € (Xn, M), (4.1)

which are well defined and satisfy the following approxima-
tion properties:

Lemma 4.1. Under the assumptions of Theorem 3.1, the
projection operator (R, Q) satisfies

o= Ru(v, )y + llg — Qu(v9)llo < cCllvlly + llglly),  (4.2)
for all (v, q) € (X, M) and
[0 = Ru(v,9)lo + Al — Ru(v, 9) ||y + llg — Ou(v,q)lly)

< el ([loll + llally), (43)

for all (v, q) € (D(A),H'(Q) N M).

Proof. First, using the triangle inequality, (2.5), (3.10)—
(3.12) and (4.1) gives

lv = Ri(v, @)l + llg — Cu(v,9)lo
< lolly + llgllo + [Ru(v, @)1y + 195w, ) o

< HUHI + HqHO +ﬁ—l sup '%((Rh(vaq)vgh(vv q)); (Uthh))

(0n,4n)EX 3, Mp) loally + llgllo

B((Dv q); (Uhv qh))

<ol +llgllo+ 87" sup
S 0 loally + llgnllo

(vn,q1)€(X . Mp)

< e(lfelly + llgllo)- (4.4)

Then we see from the definition of (R;,Q}), the triangle
inequality, and (3.10)—(3.12) that
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o= Ru(v; @)y + llg — Ou(v: @)l

< o —Lwlly + [lg — pagllo + 10 — Ru(v, 9],

+llpwg — Cu(0,9)llo < [l = Lol + g — pagll
|B((15v — Ry (v, 9), psq — O4(v:9)); (4, 41))]

+p7! sup
[loally + llgallo

(0n5q5)€(Xn,Mp)
< o= 2olly +llg = pagll
|B((1sv — v, ppq — )5 (va, q1))| + 1G(q: 95)
loally + llgullo

+p! sup
(vngn) €(Xp-Mp)

<o =Ll + llg = pagllo)

LB sup 1G(¢,9,)]

T S chlllvlly + llally)-
(0n,q5)€Xn.Mp) ”DhH + HQhHO h : !

(4.5)

To derive the estimate in the L>-norm, we consider the dual
linearized problem for (®,¥) € X x M satisfying

B((w,r); (®,¥)) = (w,v — Ry(v,q)) V(w,r) €X XM,
(4.6)

which satisfies

1P, + 1], < ello = Ra(v; g)llo- (4.7)

Obviously, using (3.2) and (4.5) and setting (w,r)=
(e;n) = (v — Ry(v,9).g — Qu(v,g)) In (4.6) and (vq,) =
(1, ®,p,) in (4.1), respectively, we see that

lello = Z((e,n); (® — 1,0, ¥ — p, )

+Glg,pY) — G(n, )

c(llelly + llnllo) (NP = 1n @]l + I = p,¥llo)

+ G, p¥ =) + G(q,¥) — G(n, V)

ch{(llelly + [Inlle) @I, + [1¥11,) + Allqll, 11, }

<
< ch(llelly + llnll + Allgll ) TPl + [1¥1)-

(4.8)

Thus, by combining (4.8) with (4.7) and using (4.5), we
deduce

lo = Ri(v, q)llo < ch*([loll, + llgl),

which, together with (4.5), yields (4.3). O

Due to uy € D(A), we can define po € H'(Q) N M (see
[17]). Now, we define (uopn.pon) = (Ry(to.po), Qn(to.po))-

Lemma 4.2. Under the assumptions of Lemma 2.2 and
Theorem 3.1, it holds that, for t € [0,T],

t
(ol + | (v||uh||%+G<ph,ph>)ds<c,

/ 25 < c,

Jue) 1) g+ / (vnufuhuﬁG(pfph,pfph))ds<ch2.
(4.11)

(4.9)

V(D)7 +G(p, (1) (4.10)

Proof. Taking (v,q) =
the definition of %(;

2(u,py) 1n (3.8) and using (2.7) and
-), we have

d 2 2 2 — 2
a7l + 2vllenlly + 26y, p1) < Vlnlly +v7 I/l

Integrating the above inequality from 0 to 7 and noting

[EAGIIES

we obtain (4.9).
Subtracting (3.8) from (2.10) with (v,q) = (v,q;), We
have

l[uoll + lfsto = Ra(uo, po)llg < e(lluolly + [lpollo)

(u; — wps,vp) + B((w — up, p — pp); (0n,q,)) + bE + ep, u,vp)
+ b(up, E + ey, v) = G(p, q,,), (4.12)

for all (vpg) € (Xp,M;), where (epnn) = (Ry(u,p) —

Up, Qh(uyp) - Ph) and E=u-— Rh(u9p)' Settlng (U,q) =
2(epnp) in (4.12) and using (4.1) and (2.7), we deduce

d
PPl wllg + 2vllenlls +2G (., my) + 26(E + ey, u, 1)

+2b(u, E, e) = 2(u; — up, E). (4.13)

Using Lemma (2.2), (2.3), (2.7), (2.8), and the Young
inequality, we see that

2
|6(E, u, e)| < ellElllulllexll, < cllEIully + IIehllp

1/2 3/2 1/2 1/2
(e, s en)| < e{ llenlloleall Nl + Neall e 1yl }
v 2 2 2 2
< g leallf + e (14 Yl ) el e,

v 2 2 2
[6(un, E, en)| < cllunlly|El llenll, < g lleally + cllunlITIET

[(uy — wpi, E)| < c||E||0||u, - “ht“m

lleallo < llu = wllo + cllE],-

Now, combining these inequalities with (4.13), one can find
that

Vel + G i)

2 2 2
(1 Yl ) el e = s
el + (1 + Nl ) 12103

+ Cl| o]l — wnllo-

2
e — il +

(4.14)
Then, by integrating (4.14) from 0 to ¢ and noting that

lto = R (a0, po)llo < e (lluoll, + [lpoll,),

IEllg + AlIEN, < ch*(lull, + lIplh), (4.15)

it follows from the Schwarz inequality, Lemma 2.2 and
(4.9) that
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) =l + [ (vl + Glnm)as

t
<ch4+6/ [ — uy5ds
0
[ 1/2 ot 172
2 2 . o
vt ([ (i 1) as) ([ (ol ol
0 0
t
s [ (ol + (14 ) ) (1t + 1) s
: 1/2 t
<o (14 [ i) e [ - wiios
0 0

(4.16)
Applying Lemma 2.1 to (4.16) gives
2 ! 2
Juae) = un (1) + / (vleall; + Gy )ds
t 1/2
< ch2{1 + (/ ||uh[|§ds> } (4.17)
0

which, together with (3.12), (4.3) and Lemma 2.2, yields

i)~ w0l + [ (sl =l + 6o = prop — p)ds

0
t ) 1/2
<ch*{l+ ( |uh,||0ds> .
0

To estimate f(; Huh,||(2)ds, we differentiate the term
d(u,q1) + G(pp,qn) with respect to time ¢ in (3.8) and set
(0nqn) = (Hm,p;,) to have

(4.18)

el +5 o (sl + Gpy 1)) + bl )
+b(uh7 _u}ﬂuht) == (f7uht)'

Thanks to (2.8), (2.9) and (3.3), the trilinear terms can be
bounded as follows:

(4.19)

1D oty 1y )| <l el |5 lleenel o

- uhﬂl}n)\
1/2 1/2 1/2 1/2

{Huhll e A T e T

1/2 1/2 1/2 1/2
+nuh|| Pl = e = ) }

1
<3 IIumll(z) +cllull3llun 1, [B(uwn, u

< gl > (el =l + el = aal3).

Subsequently, combining the above estimates with (4.19)
gives

d
2 2
s+ (hll} + G oo )
2 2 — 2 2 2 2
< cllullannl} + e (1ol = w1+ ool 1 = w15

(4.20)

Now, integrating (4.20) from O to z, using Lemma 2.2, (4.9),
and noting

ol + G po) < (Jluonl} + ooy

2 2
<e(lluollf + lpolly ).

we obtain

t
2 2
/0 el 2ds + vl + Gpa(e), 24 (1)
2 ! 2 2
< vllanll? + Gooy, pon) + / HIARE

t
— 2 2 2 2
et [ (Il =l -+ ol = ) ds

t 1/2
<c+c</ ||uht||§ds> .
0

Combining (4.21) with (4.18) gives (4.10) and (4.11). O

(4.21)

Lemma 4.3. Under the assumptions of Lemma 2.2 and The-
orem 3.1, it holds that, for t € [0,T],

ve(t)|u(t) — un(0)||} +/0 o)y — wpe||ods < ch?. (4.22)

Proof. Differentiating the term d(u — uy,q;) + G(p — pr.qn)
in (4.12), taking (v,q5) = (en»45) In (4.12) and using (4.1),
we see that

1
5||€m||§+§||uz—um||§ 2 T ( lealls + Gy i)
< |b(u _uh7u7eht>| + |b( u,u _uh7eht)|
+ [b(u — up, u — up, )| + 5 ||Et||0 (4.23)

Due to (2.7), (2.8), (2
|b(u—upu,ep,) + b(u,u—uy,ep)]

<cllullyllu =l llenllo

.9) and Lemma 2.2, we have

2 2 2
Sgllemllo+ elullyllee = ulli,

|b(u—up v — up, en)|

1/2 3/2 1/2 1/2

Scllu—unlg™ lJu—unlly llenllo™ llenll;
1 _ 3
Sgl\ehrlloﬂh et — a1t = an -
Hence, combining these inequalities with (4.23) yields
d
+ 2 (vleall? + GOmmy)

< lENg +cllullyllu — sl +ch™

(|t _“hr||(2)

= w1 — w5
(4.24)

Multiplying (4.24) by 1(7), integrating from 0 to 7, and
using Lemmas 2.2, 4.1 and 4.2, we deduce

/0 o(s) = s + <0 (s} + Gna(0.m,(0)
< [ (el + Gl as

t
+c/ t(s)||E/le ds + ch? < ch?,
0
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which, together with Lemmas 2.2, 4.1 and 4.2, yields
(4.22). O

Lemma 4.4. Under the assumptions of Lemma 2.2 and The-
orem 3.1, it holds that, for t € [0,T],

t
1+ [ (41l + Glpuop)) ds < c (4.25)

<) (W 1} + G0, pul) + [ 6) s < o,

(4.26)

<010 = (01 + | 6) (el + ) ) ds < el
(4.27)

Proof. By differentiating (3.8) with respect to time, it fol-
lows that

(s o) + B((Unts Pue); (On> 45)) + b (unes un, vp)

+b(uh7uht7vh) = (,ft7vh)7 (428)

for all (Uh»qh) c (Xh,Mh). Taklng (Uh:qh) = 2(“;,,,[);,,) in (428)
and using (2.7), we deduce

d
g7 llls + 28wl I} + 2G Dy ) + 26 (ute, )

v
< Slanl} + Al (429)

Using (2.7) and (2.8), we have

1/2 3/2 1/2 1/2
210 utny e < ellanellg” el 1 el a1

2 2 2 2
< gl + elluanllgleenlly N lo,

Y
4

which, combined with (4.29), gives

d 2 2
dr ||“htHo + "H“htHl + Gy Pie)

2 2 2 2
< cllunllollaenllillenlo + ell/illo-

(4.30)

Integrating (4.30) and using Lemma 4.2, we obtain (4.25).
Then, differentiating again the term d(u;,,,q5) + G(pni»qn)
in (4.28) and taking (vy,qx) = (Upi-Pis), We see that

1d
ol + 5 5 (41} + Gl ) ) + Bt s 1)
+ b, ty Upa) + D(vney uy — v, up) + by — v, s )

1
< g ol + el (431)

Obviously, it follows from (2.7)—+(2.9), (3.3), (4.10) and
(4.11) that

|b(ua Upt, uhtt) + b(“hh u, uhtt)l
< cffull el |y otnal o
1 2 2 2
< g lutnallo + ellullzllunlly,
Bt un — w, pg) + b(un — uy tpg, )|

— 1/2 1/2 1/2 1/2
< el M llg sl * e = wnllg et — 2ea 1y 2t

1 ) _
< g Nl + A2 el ol 1 = o lae = -

Then, combining these estimates with (4.31), it follows
from Lemma 2.2 that

d
2 2
sl + - (v} + Gpas 1))
2 2 —
< cllull3|lully + ch 2||”htH0||”ht||1H”
2
—wlollu = ]}, + el £l

Similarly, multiplying (4.32) by 1(¢), integrating from 0 to ¢,
and using Lemma 4.2 and (A2), we see that

(4.32)

t
[ el + <) (sl + Gl )
! 2 ! 2
< [ (slndi+ Glpuepi) ds-+e [ 11 ds

ot
e [ (Bl + 2=l = )
(4.33)

Combining (4.33) with and (4.25), (4.11) and using Lemma
2.2 completes the proof of (4.26).

To show (4.27), differentiating (4.12) with respect to
time ¢ and using (4.1) gives

(e — vnee, va) + B((€nes M) (05, ) + (e — vpe, u, 03)
+ b(u — up, up, v) + b(ugy u — wyyvp) + b(uy vy — uyy, vy)
— b(u, — vpg, ut — up, v) — b(u — uy, u, — vy, vy) = 0,
(4.34)

for all (vs.,qn) € (Xi,My). Taking (vp.qs) = (€nsnn) in (4.34),
we see that
1d 2 2
2 dr e — e[y + vllendly + Gy M) + b(ute — vnes s ene)

+ b(u — unyuy, €) + bty u — uy, €4)

+ b(ua Uy — Upy, eht) - b(ut — Upsy U — Up, eht)
(4.35)
Thanks to 2.3 and (2.7)—-(2.9), we estimate the trilinear
terms in (4.35) as follows:

- b(u — Up, Uy — Upyg, eht) = (utt - uhmEt)~

|b(ut — Up, U, eht) + b(u; Uy — Upy, eht)‘
v 2 2 2
< cllullylledlllu = unlly < g llewlly + ellullallu — wsllo,
|b(u - uhaul;ehl)| + |b(ulau - uhaehl)|

v 2 2 2
< clludlillendlllu = wually < g llenlly + ellualiille = ualli,
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|b(tty — w1t — sy, e)| + |b(u — wpy 1ty — vy, €|
< clur — el Nl — wil Nl enlly

v 2 2 2 2
< gllenlly + eClleelly =+ loane ) lee = unli,

|(tr — ey E)| < |1ty — ”htt”O”EtHO
< (Nl + llunallo) (el + llpl)-

Combining these inequalities with (4.35) yields

d 2 2
ar [, — ”htHo + v”eht”l + Gy M)

2 2 2 2 2
< el = w5+ e (el + 1) e =
o+ ek (Jually + laly) el + ) (4.36)

Multiplying (4.36) by t(¢) gives

d

& (sl = w7) + ) (vllewll} + Gl )
<1+ ul) =), = ol
e (Nl N} ) ) e =

+ch? (1) (luallo + lwnallo) (el L + 17l )-

Finally, we integrate (4.37) from 0 to ¢ and apply Lemmas
2.2, 4.2 and 4.3 to obtain

(4.37)

t
rmmm—wm%+AdQQWM+a%w»m
! 2 2
<e | (1 ) 2ol — ol ds
0

t t
2 2 2
e [ (ol ) ) = o s | (6)
+ o) el + ) s < e

which completes the proof. [

Lemma 4.5. Under the assumptions of Lemma 2.2 and The-
orem 3.1, it holds that, for t € [0,T],

2(@0)llp(r) = pa()lly < ch. (4.38)

Proof. It follows from the inf-sup condition (3.11) and
(4.12) that

B((en(t),n,(1)); (vn,
e T N
< B undt) = un () llg + e(llu(@)];

+ Nan (D) e = un (D)l
Using Lemmas 4.1-4.4 we see that
2@y (0l < et 2O llur(t) = un(@)llg + c(lu(@)]],

H @l )2 (@) lu(e) = us(0)]]y < ch.
(4.40)

(4.39)

Thus, using Lemmas 2.2 and 4.1 again yields

20 lp(1) = pa(0)llg
< 20 0l + PO lIp(0) — 0, u(e), 0
< ch+ch([[u(n)l, + |lp()]y) < ch,

which is (4.38). O

Theorem 4.6. Under the assumptions of Lemma 2.2 and The-
orem 3.1, it holds that, for t € [0,T],

2O u() = un@)ll, + TP llp(e) = pa(0)llg < e (441)

This theorem follows from Lemmas 4.3 and 4.5.

5. L*-Error estimates

In this section we estimate the error |[u — uy||o using a
parabolic duality argument for a backward-in-time linear-
ized Navier-Stokes problem [17,18]. The dual problem is to
seek (D(2),¥(tr)) € Xx M such that, for ¢€[0,7] and
g€ L*0.1.Y),

(Uv (Dt) - B((v’ Q); ((D7 \P)) - b(u’ v, Q)) - b(l), u, (D) = (U7g)7
(5.1)

for all (v,q) € (X, M), with ®(T) = 0. This problem is well-
posed and has a unique solution (®,¥) with [18]

®c C0,T,V)NL*0,T,D(A))NH'(0,T,Y),
W e L*0,T,H (Q) N M).

First, we need to recall the following regularity results pro-
vided by Hill and Siili in [18].

Lemma 5.1. The solution (®,%) of (5.1) satisfies

T T
sup [0+ [ (1013+ 11+ 103)dr < [ iar.
0<e<T 0 0

(5.2)

Lemma 5.2. Under the assumptions of Lemma 2.2 and The-
orem 3.1, it holds that

T
/0 e — uy||5 ds < ch®. (5.3)

Proof. Here we introduce the dual Galerkin projection
(Dy(1),¥)(1)) of (D(1),¥(¢)) such that

B((1:4,)); (Pns ¥n) = B((04,4,); (,'¥)) V(i) € (X0, M),

which yields

B((0n,q1); (® — @, ¥ —¥1)) = G(q,, ¥) Y(v3,q5) € (X0, M3).
(5.4)
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By using a similar approach to the proof of Lemma 4.1, we
can prove

1@ — Dyl + Al = Dyl + A[F = Fill,

< (O], + [¥P]],)- (5.5)
Taking (vs, g5) = (®,¥),) in (4.12), we have
(€1, @) + B((e,1); (D, ¥1)) + b(u, e, ®y)

+ b(evuvq)h) - b(eveaq)h) = G(nvlph)v (56)

where (e,n) = (u — uy,p — p;). Adding (5.6) and (5.1) with
(v,9) = (e,n) and g = e, we see that
, d
lefly = 3, (e: @) — (e, @ — @4) — (e, );
((D — (Dha VY — \Ph)) — b(e,u,(D — (Dh) — b(u,e,CD — (I)h)
—b(e,e, @) + G(n, ¥ — ¥,,). (5.7)
Applying (2.7), (2.8), (2.9) and Lemma 5.1, we have

(e ® — @,)] < el + )| — s
< ek (ully + ) U], + 12],),
ble,u,® — @) + b(u,e, @ — )| < clul, ], ® — @,
< chllull, el 1]l
ble,e.®,)] < e}l < ellel (k@] + @],
GO, ¥ = ¥,)| < chG ()| ¥

As for the bilinear term, by using (5.4), (4.3), (3.6) and
(3.12), we have the following estimate

|2((e;n); (© — @, ¥ —¥,))|
< |B((u = Ri(u,p),p — O4(u,p));
(@ — @), ¥ — W) +G(Q4(u,p) — P4, V)
< c(llu = Ri(u, Py + llp = Ou(u, 2)[10) ([ © — @4l
+ ¥ = Willy) +1G(Qy(u, p) —p+n,¥)|
< el ([lully + 121D U/, + 1¥1,) + chG ()P,

Then, combining the above estimates with (5.4), we see
that

d

lelly = 3, (e @) + ch(llully + Rllunello + Il ll],
+ G () (@l + [1¥1],)
+eh?(|Jully + el )@, + 111,

2
+cllelly (Al @], + [|®f],)-

Integrating (5.8) from 0 to 7 yields
T
| e las = ~(e(0),000)

T
2 2 2 2
v [ (Rl el

votn)a) ([ (1ol + 1) o)
vt ([ 1w+ 1017) )
([ (ot + ) os)

ve [ lefial, + ol ds

In addition, by the definition of R, we have
[(e(0), (0))| = [(ut0 — Ry(uo, po), P(0))|

< h*(Jlugly + 2ol 1RO)]l;- (5.10)

Combining (5.10) with (5.9) and using (5.2) with g=e
completes the proof of (5.3). O

1/2

(5.9)

Lemma 5.3. Under the assumptions of Lemmas 2.2 and 5.1
and Theorem 3.1, it holds that, for t € [0,T],

e 2Ollult) — (1), < eI (5.11)

Proof. Taking (v;,qn) = 2(ennn) = 2(Rp(u,p) — up, On(u,p) —
pp) in (4.12) and using (4.1), we see that

d 2 2

ap Newllo +2vllenlly + 2Gmy, ma) + 2b(u, u — uy, e)

+ 2b(u — up u,ey) — 2b(u — up,u — uy, e) < 2||Ed|ollenllo-
(5.12)

Obviously, using (2.7), (2.8), and setting £ =u — Ry(u,p),
we have

Db, — s, e4) + bl — s, e1)| < lulyfleslly s — sl

v
<7 lealls + ellull3llee — wnllg, 215 — un, e — ws, e)]
2 v 2 4
< = wnllillenlly < g lleally + clle — unlly-
Thus, combining these estimates with (5.12) gives

d 2 2
p lewllo +vlleslly + Gloma, 1)

< 2l|E o lleally + cllullalle — ually + cllu — il (5.13)
Using Lemmas 5.2, 2.2 and (4.3), we have
T 2 4 2 r 2
| telias <2 [ - wlias 2 [ e
0 0 0
T
< 2/ = |2 ds
0
T
+ch4/ (|\u||§ + ||p|\f) ds<ch'.  (5.14)
0
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Multiplying (5.13) by 1(¢) and integrating from 0 to z, and
using Lemmas 4.2, 4.3, 5.2 and (5.14), we obtain

t
2 2
(1)llen(0)115 + / (s) (vileall} + Glmy,m) ) ds
' 2 ! 2 2
<c [lelias+e [ Tl —wmiias
t

+c/ o(s)||lu — uy ||} ds
0
2

t 1/2 t 1/
wo( [onesias) ([ lalie) <o
0 0

(5.15)

Using again (4.3) and Lemma 2.2, we have

lue(6) = Ra(u(®), p(0)lg < eh* (@)1 + IP(@)IIT) < ek
(5.16)
Combining (5.15) with (5.16) yields (5.11). O

The next theorem follows from Lemma 5.3 and Theo-
rem 4.6.

Theorem 5.4. Under the assumptions of Lemma 2.2 and
Theorem 3.1, it holds that, for t € [0,T],

[u(?) = wn(®)llg + Allu(t) — wn(@)ll, + Allp(2) = pi (D)l

< et 20k (5.17)
Remark. Unfortunately, we can not drop the singular fac-
tor vV %(1) in the above error estimates because of some
technique difficulties.

6. Numerical experiments

In this section we present numerical results to compare
the new stabilized finite element method presented in Sec-
tion 3 with other finite element methods for the two-dimen-
sional transient Stokes equations and to illustrate the
convergence theory of this new method for the transient
Navier—Stokes equations developed in Sections 4 and 5.
In all experiments here, we consider the transient Navier—
Stokes equations on Q =1[0,1]%x[0,1] with a body force
f(x,?) such that the true solution is

u(x,t) = (u(x,8),us(x,2)), plx,¢)
=10(2x; — 1)(2x, — 1) cos(t),

uy (x, 1) = 1003 (x; — 1), (6, — 1)(2x, — 1) cos(¢),
Uy (x, 1) = —10x; (x; — 1)(2x; — 1)x(xz — 1)* cos(2).

The domain is divided into triangles (see Fig. 1). All the
numerical experiments have been performed using the con-
forming P, finite element for both velocity and pressure.
The implicit (backward) Euler scheme is used for the time
discretization at ¢t = 1, with the time step dz = 0.0025.

We first compare the new stabilized finite element
method with the standard Galerkin method, the penalty
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Fig. 1. Uniform and unstructured triangulation of Q into triangles.

Table 1

Comparison of the results for the transient Navier—Stokes equations with
different stabilized parameter 6 (GLS method with v=10.01 and 1/h =27
on uniform mesh)

0 Hu”ul‘«‘;;Hu Hu”ut‘f‘hl\h HPHPIF‘?‘HO [|div(u — wh)||0.00.K
1.25¢+010  0.58186 0.780421  0.0879626 0.000429764
1250 0.524077 0.714703  0.00231233  0.000417508
125 0.257037 0.414099  0.00136363  0.00034068
12.5 0.0420664 0.154004  0.0010947 0.000164305
1.2500 0.010635 0.10718 0.00106821  4.23749¢—005
0.125 0.00977313  0.104804  0.00106896  2.90663e—005
0.0125 0.0109201 0.108888  0.00116981  2.94516e—005
0.000125 0.0136091 0.126283  0.0020777 3.26249¢—005
1.25¢—-010  0.0137342 0.127326  0.0872114 3.27503e—005
Table 2

Comparison of the results for the transient Navier—Stokes equations with
different stabilized parameter J, (multiscale enrichment method with
v=0.01, 8, = 1/(12v) and 1/h =27 on uniform mesh)

01 W Hu\\j\'\‘:‘h HI’H;)ﬂ/;HO lldiv(u — uh)]|0.00.K
1.25¢+010  0.578187 0.764985  0.212368 0.000385109
1250 0.520675 0.699656  0.0023136 0.000374259
125 0.255029 0.401199  0.0013685 0.000306779
12.5 0.0420326  0.147995  0.00109729  0.000152181
1.25 0.012678 0.106257  0.00106908  3.8449e—005
0.125 0.0121566  0.104464  0.00107023  2.84652e—005
0.00125 0.0152158  0.119877  0.00177986  3.12862e—005
0.000125 0.0133481  0.108487  0.00118251  2.91604e—005
1.25e—010  0.0161279  0.127469  0.084931 3.23125e-005
Table 3

The results for the transient Navier—Stokes equations (Galerkin method
with v =10.01 on uniform mesh)

1/h Huuumu HuHul‘l‘th. Hp‘pm\\u [|div(u — wh)||0.0.K
18 0.0308098 0.189134 1.01439 0.000102231

27 0.013734 0.127327 4.06744 3.27466e—005

36 0.00758175 0.0939097 0.444616 1.43189¢—-005

45 0.00490889 0.0761692 0.151242 7.48351e—006

54 0.00335357 0.0624615 0.12808 4.38911e—-006

63 0.00249719 0.0543352 0.514549 2.78988e—006

72 0.00188206 0.0467924 0.461222 1.88213e—-006

81 0.00150824 0.0422297 0.110548 1.32893e—006
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Table 4
The results for the transient Navier-Stokes equations (GLS method with
v=10.01 and 6 = 0.0125v on uniform mesh)

1/h HuHuT‘f‘nu uuuumul Hpup}ﬁf, I ([div(u — wh)||0-oK
18 0.0319185 0.182044  0.00241892  0.000200833

27 0.010635 0.10718 0.00106821  4.23749¢—005

36 0.00551077  0.0784519  0.000599516  1.42401¢—005

45 0.00343014  0.0623285  0.000383294  6.05239¢—006

54 0.00235515  0.0518077  0.00026603  3.37212¢—006

63 0.00172107  0.0443561  0.000195388  2.14376c—006

72 0.00131399  0.038789  0.000149563  1.44665¢—006

81 0.00103657 ~ 0.0344677  0.000118158  1.02167¢—006

Table 5
The results for the transient Navier—Stokes equations (multiscale enrich
method with v =0.01, 6, = ﬁ and ¢; = 0.0125v on uniform mesh)

1/h Huuuml\u HuHuthl HpHp}"‘/‘:’“!) (|div(z — 1)]0.c0.K
18 0.0348923 0.176206 0.00242275 0.000194556

27 0.012678 0.106257 0.00106908 3.8449e—005

36 0.00678573 0.0781985 0.000599852 1.21692e¢—005

45 0.00427598 0.0622291 0.000383471 5.63247¢—006

54 0.00295196 0.0517581 0.000266142  3.30058¢—006

63 0.00216323 0.044327 0.000195468  2.09918¢—006

72 0.00165422 0.0387699  0.000149626 1.41708¢—006

81 0.00130627 0.0344541 0.000118209 1.00103e—006

method, the GLS method, and the multiscale enrichment
method for the transient Navier-Stokes equations on uni-

form meshes. These five methods have the common discrete
formulation: Find (uy(-,?),pu(-,t)) € (X3,M},), t € (0,T], such
that

(tney o) + alup, vp) — d (v, py) + b(up,up,vn) = (f,vn),  (6.1)
d(un,q,) + Apysgi) =0, (6.2)

for all (v,q5) € (X, M), where A(py, q,) = 0 for the stan-
dard Galerkin method, A(py, gi) = €(ps, qn)/v for the pen-
alty method, A(p,,q,) = 0> hi(Vp, —f,Vq,), for the
GLS method [7,24],

APy q1) = 61 Zhi(vl’h =/ Va,)k
K

el el

K.K'

for the multiscale enrichment method [2] and A(p;.q,) =
G(pp.qp) for the new method, where 4, = |e| and [v] denotes
the jump of v across e= KN K.

There is no satisfactory way to obtain the optimal
parameters for the stabilized parameter with any given
mesh. In practice, these parameters are still being deter-
mined by trial and error. The penalty method involves a
stabilization parameter 1.0e — 4 > ¢ > 0 [4,21], which must
be sufficiently small. There is a slight deterioration in the
finite element approximation by the regular stabilized
method with the selected stabilized parameter in [16] for

Table 6

The results for the transient Navier—Stokes equations (new method with v = 0.01 on uniform mesh)

1/h \IuHu»‘flt;Hn Huuulm\h ”pHpT\gHO lldiv(u — )| 000K
18 0.104027 0.386244 0.00937275 0.000525787
27 0.0450949 0.244439 0.00391038 0.000162308
36 0.0246115 0.150347 0.00246092 6.65249¢—005
45 0.0156104 0.116457 0.00156202 3.40361e—005
54 0.0107037 0.0881183 0.00115775 1.94697e—005
63 0.00781958 0.0727358 0.000866687 1.22037e—005
72 0.00595256 0.0604797 0.000690971 8.12688e—006
81 0.00468698 0.0520517 0.000560169 5.68476e—006

L2 error for the velocity by using the different methods
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H1 error for the velocity by using the different methods
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L2 error for the pressure by using the different methods
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H1 error for the velocity by using the different methods
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Fig. 2. Comparison of rate analysis for the transient Navier—Stokes equations by using four different methods (v = 1.0e — 2 on uniform mesh).

the stationary Navier—Stokes equations. Here, we choose
e=1.0e — 6, 6=1/(80v)=0.0125/v, 6; =1/(8v)=0.125/
v, and 8, = 1/(12v) (see [2]). Furthermore, we test the effect
of different stabilized parameters on the convergence rates,
which are shown in Tables 1 and 2, with 4= 1/27 and
v=10.01. We can clearly see that these two methods com-
pletely agree with the above choice of stabilized parameters
in theory for the implicit scheme used.

Except for the penalty method, the relative convergence
rates for the velocity and pressure approximations over dif-
ferent grids for the four methods are given in Tables 3-6
and Fig. 2. From our numerical experiments, there is not
much difference among the four methods for the velocity
approximation. However, as Table 3 shows, the difference
is huge for the pressure approximation. The suboptimal
error estimates for the standard Galerkin method look
really bad, which is not surprising since this method does
not satisfy the inf-sup condition for the P; — P; element
used. The error estimates for the new method, the GLS
method, and the multiscale enrichment method are more
stable than those for the standard Galerkin method, which
seems superconvergent. The results of the new stabilized
method for the transient Navier-Stokes equations confirm
the convergence theory developed in the previous sections.
From Theorem 5.4, the theoretical analysis predicts a con-
vergence rate of order O(%) for velocity in the energy norm,
O(I?) for velocity in the L*-norm, and O(h) for pressure in
the L>-norm. The numerical experiments in Table 6 show
slightly better convergence rates. In fact, the convergence
rates for pressure are close to an order of O(h'®). Most
importantly, there is no negative effect with respect to the
incompressible property by using the new stabilized
method (see Tables 3-6 and Fig. 2). However, compared
with the GLS method and multiscale enrichment method,
the new stabilized method does not require the derivations
or integration on the boundary of the set K. It only
involves two local Gauss integrations.

We also design an unstructured mesh as shown in the
second figure of Fig. 1. We take the solution of the tran-

sient Navier—Stokes equations with the Taylor-Hood
P, — P element over finer grid as the “exact” solution.
Note that the same right-hand side with the previous
numerical experiment on uniform meshes is used. It is no
doubt that the stable Taylor-Hood element performs better
since it employs the P, element for the velocity. Also, the
Taylor-Hood element indicates its superconvergence per-
formance. Then, the absolute error is obtained by compar-
ing the “exact” solution and the finite element solutions
with different methods. Finally, “error constants” can be
obtained by a series of simple calculations (see Table 7).
From Table 7, we can observe that the better “error con-
stants” are obtained by the new stabilized finite element
method.

Finally, the driven cavity is considered for the new sta-
bilized finite element method over the unstructured mesh
of Fig. 1. It is a box full of liquid with its lid moving hor-
izontally at speed one. We compare the new stabilized finite
element method with the GLS method, the multiscale
method, and the standard Galerkin method with the stable
Taylor-Hood element P, — P; and the mini-element
Py — P;. In particular, we plot the vertical component of
the velocity along the horizontal line passing through the
geometrical center of the cavity. The results for both veloc-
ity and pressure are given in Fig. 3. The numerical results
of the new stabilized finite element method indicate the
same performance as those of the standard finite element
method with the Taylor-Hood element.

Table 7
Maximum value of the “error constants” (v = 1.0e — 3)

Type max {Hﬂf;;Z’Hn} max {I\V(fl;u,”,‘)\\n} max {Hﬁf:;;‘\\o}

GLS method 0.752114 6.12452 6.09415

Enriched multiscale 0.893946 6.22024 6.09433
method

Pb— P, 1.47453 16.8133 6.09413

New method 0.750659 5.9606 6.09587
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Fig. 3. Comparison of the velocity and pressure for the drive cavity problem by using five different method (v = 1.0e — 3 on unstructured mesh).

7. Conclusions

In this paper we have provided a theoretical analysis for
a stabilized finite element method based on two local Gauss
integrations. The analysis has extended the work in [20] for
the stationary Stokes equations to the transient Navier—
Stokes equations. The discretization uses a pair of spaces
of finite elements P; — Py over triangles or Q; — Q; over
quadrilateral elements. This new method is computationally
efficient. It does not require a selection of mesh-dependent
stabilization parameters or a calculation of higher-order
derivatives. Its another valuable feature is that the action
of stabilization operators can be performed locally at the
element level with minimal additional cost. The numerical
tests performed are in a good agreement with the theoretical
results established. Most importantly, better performance
of the new stabilized method than other stabilized methods
on structured and unstructured mesh is observed.
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